1
|
Marabelli C, Santiago DJ, Priori SG. The Structural-Functional Crosstalk of the Calsequestrin System: Insights and Pathological Implications. Biomolecules 2023; 13:1693. [PMID: 38136565 PMCID: PMC10741413 DOI: 10.3390/biom13121693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Calsequestrin (CASQ) is a key intra-sarcoplasmic reticulum Ca2+-handling protein that plays a pivotal role in the contraction of cardiac and skeletal muscles. Its Ca2+-dependent polymerization dynamics shape the translation of electric excitation signals to the Ca2+-induced contraction of the actin-myosin architecture. Mutations in CASQ are linked to life-threatening pathological conditions, including tubular aggregate myopathy, malignant hyperthermia, and Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT). The variability in the penetrance of these phenotypes and the lack of a clear understanding of the disease mechanisms associated with CASQ mutations pose a major challenge to the development of effective therapeutic strategies. In vitro studies have mainly focused on the polymerization and Ca2+-buffering properties of CASQ but have provided little insight into the complex interplay of structural and functional changes that underlie disease. In this review, the biochemical and structural natures of CASQ are explored in-depth, while emphasizing their direct and indirect consequences for muscle Ca2+ physiology. We propose a novel functional classification of CASQ pathological missense mutations based on the structural stability of the monomer, dimer, or linear polymer conformation. We also highlight emerging similarities between polymeric CASQ and polyelectrolyte systems, emphasizing the potential for the use of this paradigm to guide further research.
Collapse
Affiliation(s)
- Chiara Marabelli
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Laboratory of Molecular Cardiology, IRCCS ICS Maugeri, 27100 Pavia, Italy
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain;
| | - Demetrio J. Santiago
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain;
| | - Silvia G. Priori
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Laboratory of Molecular Cardiology, IRCCS ICS Maugeri, 27100 Pavia, Italy
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain;
| |
Collapse
|
2
|
The function and regulation of calsequestrin-2: implications in calcium-mediated arrhythmias. Biophys Rev 2022; 14:329-352. [PMID: 35340602 PMCID: PMC8921388 DOI: 10.1007/s12551-021-00914-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/14/2021] [Indexed: 01/09/2023] Open
Abstract
Cardiac arrhythmias are life-threatening events in which the heart develops an irregular rhythm. Mishandling of Ca2+ within the myocytes of the heart has been widely demonstrated to be an underlying mechanism of arrhythmogenesis. This includes altered function of the ryanodine receptor (RyR2)-the primary Ca2+ release channel located to the sarcoplasmic reticulum (SR). The spontaneous leak of SR Ca2+ via RyR2 is a well-established contributor in the development of arrhythmic contractions. This leak is associated with increased channel activity in response to changes in SR Ca2+ load. RyR2 activity can be regulated through several avenues, including interactions with numerous accessory proteins. One such protein is calsequestrin-2 (CSQ2), which is the primary Ca2+-buffering protein within the SR. The capacity of CSQ2 to buffer Ca2+ is tightly associated with the ability of the protein to polymerise in response to changing Ca2+ levels. CSQ2 can itself be regulated through phosphorylation and glycosylation modifications, which impact protein polymerisation and trafficking. Changes in CSQ2 modifications are implicated in cardiac pathologies, while mutations in CSQ2 have been identified in arrhythmic patients. Here, we review the role of CSQ2 in arrhythmogenesis including evidence for the indirect and direct regulation of RyR2 by CSQ2, and the consequences of a loss of functional CSQ2 in Ca2+ homeostasis and Ca2+-mediated arrhythmias. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-021-00914-6.
Collapse
|
3
|
Ng K, Titus EW, Lieve KV, Roston TM, Mazzanti A, Deiter FH, Denjoy I, Ingles J, Till J, Robyns T, Connors SP, Steinberg C, Abrams DJ, Pang B, Scheinman MM, Bos JM, Duffett SA, van der Werf C, Maltret A, Green MS, Rutberg J, Balaji S, Cadrin-Tourigny J, Orland KM, Knight LM, Brateng C, Wu J, Tang AS, Skanes AC, Manlucu J, Healey JS, January CT, Krahn AD, Collins KK, Maginot KR, Fischbach P, Etheridge SP, Eckhardt LL, Hamilton RM, Ackerman MJ, Noguer FRI, Semsarian C, Jura N, Leenhardt A, Gollob MH, Priori SG, Sanatani S, Wilde AAM, Deo RC, Roberts JD. An International Multicenter Evaluation of Inheritance Patterns, Arrhythmic Risks, and Underlying Mechanisms of CASQ2-Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation 2020; 142:932-947. [PMID: 32693635 PMCID: PMC7484339 DOI: 10.1161/circulationaha.120.045723] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Genetic variants in calsequestrin-2 (CASQ2) cause an autosomal recessive form of catecholaminergic polymorphic ventricular tachycardia (CPVT), although isolated reports have identified arrhythmic phenotypes among heterozygotes. Improved insight into the inheritance patterns, arrhythmic risks, and molecular mechanisms of CASQ2-CPVT was sought through an international multicenter collaboration. METHODS Genotype-phenotype segregation in CASQ2-CPVT families was assessed, and the impact of genotype on arrhythmic risk was evaluated using Cox regression models. Putative dominant CASQ2 missense variants and the established recessive CASQ2-p.R33Q variant were evaluated using oligomerization assays and their locations mapped to a recent CASQ2 filament structure. RESULTS A total of 112 individuals, including 36 CPVT probands (24 homozygotes/compound heterozygotes and 12 heterozygotes) and 76 family members possessing at least 1 presumed pathogenic CASQ2 variant, were identified. Among CASQ2 homozygotes and compound heterozygotes, clinical penetrance was 97.1% and 26 of 34 (76.5%) individuals had experienced a potentially fatal arrhythmic event with a median age of onset of 7 years (95% CI, 6-11). Fifty-one of 66 CASQ2 heterozygous family members had undergone clinical evaluation, and 17 of 51 (33.3%) met diagnostic criteria for CPVT. Relative to CASQ2 heterozygotes, CASQ2 homozygote/compound heterozygote genotype status in probands was associated with a 3.2-fold (95% CI, 1.3-8.0; P=0.013) increased hazard of a composite of cardiac syncope, aborted cardiac arrest, and sudden cardiac death, but a 38.8-fold (95% CI, 5.6-269.1; P<0.001) increased hazard in genotype-positive family members. In vitro turbidity assays revealed that p.R33Q and all 6 candidate dominant CASQ2 missense variants evaluated exhibited filamentation defects, but only p.R33Q convincingly failed to dimerize. Structural analysis revealed that 3 of these 6 putative dominant negative missense variants localized to an electronegative pocket considered critical for back-to-back binding of dimers. CONCLUSIONS This international multicenter study of CASQ2-CPVT redefines its heritability and confirms that pathogenic heterozygous CASQ2 variants may manifest with a CPVT phenotype, indicating a need to clinically screen these individuals. A dominant mode of inheritance appears intrinsic to certain missense variants because of their location and function within the CASQ2 filament structure.
Collapse
Affiliation(s)
- Kevin Ng
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
- Cairns Hospital, Queensland, Australia
| | - Erron W. Titus
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Krystien V. Lieve
- Amsterdam University Medical Centre, University of Amsterdam, Heart Centre, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart
| | - Thomas M. Roston
- Heart Rhythm Services, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrea Mazzanti
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, Istituto di Ricovero e Cura a Carattere Scientifico and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Frederick H. Deiter
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Isabelle Denjoy
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart
- Service de Cardiologie et CNMR Maladies Cardiacques Héréditaires Rares, Hôpital Bichat, Paris, France
| | - Jodie Ingles
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, Australia
| | - Jan Till
- Department of Cardiology, Royal Brompton Hospital, London, United Kingdom
| | - Tomas Robyns
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart
- Department of Cardiovascular Disease, University Hospitals Leuven, Leuven, Belgium
| | - Sean P. Connors
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Memorial University, St. John’s, Newfoundland and Labrador, Canada
| | | | - Dominic J. Abrams
- Inherited Cardiac Arrhythmia Program, Boston Children’s Hospital, Harvard Medical School, Massachusetts, USA
| | - Benjamin Pang
- Arrhythmia Service, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Melvin M. Scheinman
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - J. Martijn Bos
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen A. Duffett
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Memorial University, St. John’s, Newfoundland and Labrador, Canada
| | - Christian van der Werf
- Amsterdam University Medical Centre, University of Amsterdam, Heart Centre, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart
| | - Alice Maltret
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart
- Service de Cardiologie et CNMR Maladies Cardiacques Héréditaires Rares, Hôpital Bichat, Paris, France
| | - Martin S. Green
- Arrhythmia Service, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Julie Rutberg
- Arrhythmia Service, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Seshadri Balaji
- Department of Pediatrics, Division of Cardiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Julia Cadrin-Tourigny
- Cardiovascular Genetics Center, Montreal Heart Institute, Université de Montréal, Montréal, Canada
| | - Kate M. Orland
- University of Wisconsin-Madison Inherited Arrhythmia Clinic, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Linda M. Knight
- Children’s Healthcare of Atlanta, Sibley Heart Center Cardiology, Atlanta, Georgia, USA
| | - Caitlin Brateng
- Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jeremy Wu
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
| | - Anthony S. Tang
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
| | - Allan C. Skanes
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
| | - Jaimie Manlucu
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
| | - Jeff S. Healey
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Craig T. January
- University of Wisconsin-Madison Inherited Arrhythmia Clinic, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrew D. Krahn
- Heart Rhythm Services, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathryn K. Collins
- Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kathleen R. Maginot
- Department of Pediatrics, University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin, USA
| | - Peter Fischbach
- Children’s Healthcare of Atlanta, Sibley Heart Center Cardiology, Atlanta, Georgia, USA
| | - Susan P. Etheridge
- Department of Pediatrics, University of Utah, and Primary Children’s Hospital, Salt Lake City, Utah, USA
| | - Lee L. Eckhardt
- University of Wisconsin-Madison Inherited Arrhythmia Clinic, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Robert M. Hamilton
- The Labatt Family Heart Centre (Department of Pediatrics) and Translational Medicine, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Michael J. Ackerman
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, Minnesota, USA
| | | | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, Australia
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Antoine Leenhardt
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart
- Service de Cardiologie et CNMR Maladies Cardiacques Héréditaires Rares, Hôpital Bichat, Paris, France
| | - Michael H. Gollob
- Department of Physiology and Department of Medicine, Toronto General Hospital, University of Toronto, Ontario, Canada
| | - Silvia G. Priori
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, Istituto di Ricovero e Cura a Carattere Scientifico and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Shubhayan Sanatani
- Department of Pediatrics, Children’s Heart Centre, BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arthur A. M. Wilde
- Amsterdam University Medical Centre, University of Amsterdam, Heart Centre, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart
| | - Rahul C. Deo
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
- One Brave Idea and Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Jason D. Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
4
|
Cacheux M, Fauconnier J, Thireau J, Osseni A, Brocard J, Roux-Buisson N, Brocard J, Fauré J, Lacampagne A, Marty I. Interplay between Triadin and Calsequestrin in the Pathogenesis of CPVT in the Mouse. Mol Ther 2019; 28:171-179. [PMID: 31607542 DOI: 10.1016/j.ymthe.2019.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/28/2019] [Accepted: 09/06/2019] [Indexed: 01/07/2023] Open
Abstract
Recessive forms of catecholaminergic polymorphic ventricular tachycardia (CPVT) are induced by mutations in genes encoding triadin or calsequestrin, two proteins that belong to the Ca2+ release complex, responsible for intracellular Ca2+ release triggering cardiac contractions. To better understand the mechanisms of triadin-induced CPVT and to assay multiple therapeutic interventions, we used a triadin knockout mouse model presenting a CPVT-like phenotype associated with a decrease in calsequestrin protein level. We assessed different approaches to rescue protein expression and to correct intracellular Ca2+ release and cardiac function: pharmacological treatment with kifunensine or a viral gene transfer-based approach, using adeno-associated virus serotype 2/9 (AAV2/9) encoding the triadin or calsequestrin. We observed that the levels of triadin and calsequestrin are intimately linked, and that reduction of both proteins contributes to the CPVT phenotype. Different combinations of triadin and calsequestrin expression level were obtained using these therapeutic approaches. A full expression of each is not necessary to correct the phenotype; a fine-tuning of the relative re-expression of both triadin and calsequestrin is required to correct the CPVT phenotype and rescue the cardiac function. AAV-mediated gene delivery of calsequestrin or triadin and treatment with kifunensine are potential treatments for recessive forms of CPVT due to triadin mutations.
Collapse
Affiliation(s)
- Marine Cacheux
- Grenoble Institut Neurosciences, INSERM, Grenoble Alpes University, U1216, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Jérémy Fauconnier
- University of Montpellier, INSERM U1046, CNRS 9214, CHU Montpellier, 34295 Montpellier, France
| | - Jérôme Thireau
- University of Montpellier, INSERM U1046, CNRS 9214, CHU Montpellier, 34295 Montpellier, France
| | - Alexis Osseni
- Grenoble Institut Neurosciences, INSERM, Grenoble Alpes University, U1216, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Jacques Brocard
- Grenoble Institut Neurosciences, INSERM, Grenoble Alpes University, U1216, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Nathalie Roux-Buisson
- Grenoble Institut Neurosciences, INSERM, Grenoble Alpes University, U1216, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Julie Brocard
- Grenoble Institut Neurosciences, INSERM, Grenoble Alpes University, U1216, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Julien Fauré
- Grenoble Institut Neurosciences, INSERM, Grenoble Alpes University, U1216, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Alain Lacampagne
- University of Montpellier, INSERM U1046, CNRS 9214, CHU Montpellier, 34295 Montpellier, France.
| | - Isabelle Marty
- Grenoble Institut Neurosciences, INSERM, Grenoble Alpes University, U1216, CHU Grenoble Alpes, 38700 La Tronche, France.
| |
Collapse
|
5
|
Walweel K, Oo YW, Laver DR. The emerging role of calmodulin regulation of RyR2 in controlling heart rhythm, the progression of heart failure and the antiarrhythmic action of dantrolene. Clin Exp Pharmacol Physiol 2017; 44:135-142. [PMID: 27626620 DOI: 10.1111/1440-1681.12669] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/27/2016] [Accepted: 09/09/2016] [Indexed: 11/28/2022]
Abstract
Cardiac output and rhythm depend on the release and the take-up of calcium from the sarcoplasmic reticulum (SR). Excessive diastolic calcium leak from the SR due to dysfunctional calcium release channels (RyR2) contributes to the formation of delayed after-depolarizations, which underlie the fatal arrhythmias that occur in heart failure and inherited syndromes. Calmodulin (CaM) is a calcium-binding protein that regulates target proteins and acts as a calcium sensor. CaM is comprised of two calcium-binding EF-hand domains and a flexible linker. CaM is an accessory protein that partially inhibits RyR2 channel activity. CaM is critical for normal cardiac function, and altered CaM binding and efficacy may contribute to defects in SR calcium release. The present paper reviews CaM binding to RyR2 and how it regulates RyR2 channel activity. It then goes on to review how mutations in the CaM amino acid sequence give rise to inherited syndromes such as Catecholaminergic Polymorphic Ventricular Tachychardia (CPVT) and long QT syndrome (LQTS). In addition, the role of reduced CaM binding to RyR2 that results from RyR2 phosphorylation or from oxidation of either RyR2 or CaM contributes to the progression of heart failure is reviewed. Finally, this manuscript reviews recent evidence that CaM binding to RyR2 is required for the inhibitory action of a pharmaceutical agent (dantrolene) on RyR2. Dantrolene is a clinically used muscle relaxant that has recently been found to exert antiarrhythmic effects against SR Ca2+ overload arrhythmias.
Collapse
Affiliation(s)
- Kafa Walweel
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, 2308, Australia
| | - Ye Win Oo
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, 2308, Australia
| | - Derek R Laver
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, 2308, Australia
| |
Collapse
|
6
|
Michenet A, Saintilan R, Venot E, Phocas F. Insights into the genetic variation of maternal behavior and suckling performance of continental beef cows. Genet Sel Evol 2016; 48:45. [PMID: 27335091 PMCID: PMC4918023 DOI: 10.1186/s12711-016-0223-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/09/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In beef cattle, maternal care is critical for calf survival and growth. Our objective was to evaluate the major sources of additive genetic variation in maternal behavior and suckling performance in two genetically close beef breeds. METHODS Maternal performance was assessed based on maternal behavior (MB), milk yield (MY) and udder swelling score (US) of 1236 Blonde d'Aquitaine cows and 1048 Limousin cows. MB was scored just after calving to describe the intensity of the dam's protective behavior towards her calf. Most of the cows were genotyped using the low-density chip EuroG10K BeadChip, and imputed to the high-density 770K panel within breed. Genetic parameters for each trait were estimated for each breed under a multi-trait best linear unbiased prediction animal model. Genomic analysis was performed for each breed using the high-density genotypes and a Bayesian variable selection method. RESULTS Heritabilities were low for MB (0.11-0.13), intermediate for MY (0.33-0.45) and high for US (0.47-0.64). Genetic correlations between the traits ranged from 0.31 to 0.58 and 0.72 to 0.99 for the Blonde d'Aquitaine and Limousin breeds, respectively. Two quantitative trait loci (QTL) were detected for MB in Blonde d'Aquitaine with NPY1R and ADRA2A as candidate causative genes. Thirty to 56 QTL were detected for MY and US in both breeds and 12 candidate genes were identified as having a role in the genetic variation of suckling performance. Since very few pleiotropic QTL were detected, there was little biological explanation for the moderate (0.57) to very high (0.99) genetic correlations estimated between MY and US in the Blonde d'Aquitaine and Limousin cows, respectively. In Blonde d'Aquitaine, the correlation was largely due to the pleiotropic QTL detected in the region upstream of the CG gene, while in Limousin, this region was only identified for US, thus attesting the difference in genetic architecture between the breeds. CONCLUSIONS Our findings question the assumption that two populations that have close genetic links share many QTL. Nevertheless, we identified four candidate genes that may explain a substantial amount of the genetic variation in suckling performance of these two breeds.
Collapse
Affiliation(s)
- Alexis Michenet
- />GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
- />AURIVA, Les Nauzes, 81580 Soual, France
| | - Romain Saintilan
- />GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
- />ALLICE, 149 rue de Bercy, 75012 Paris, France
| | - Eric Venot
- />GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Florence Phocas
- />GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
7
|
Petrosino JM, Heiss VJ, Maurya SK, Kalyanasundaram A, Periasamy M, LaFountain RA, Wilson JM, Simonetti OP, Ziouzenkova O. Graded Maximal Exercise Testing to Assess Mouse Cardio-Metabolic Phenotypes. PLoS One 2016; 11:e0148010. [PMID: 26859763 PMCID: PMC4747552 DOI: 10.1371/journal.pone.0148010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/12/2016] [Indexed: 12/22/2022] Open
Abstract
Functional assessments of cardiovascular fitness (CVF) are needed to establish animal models of dysfunction, test the effects of novel therapeutics, and establish the cardio-metabolic phenotype of mice. In humans, the graded maximal exercise test (GXT) is a standardized diagnostic for assessing CVF and mortality risk. These tests, which consist of concurrent staged increases in running speed and inclination, provide diagnostic cardio-metabolic parameters, such as, VO2max, anaerobic threshold, and metabolic crossover. Unlike the human-GXT, published mouse treadmill tests have set, not staged, increases in inclination as speed progress until exhaustion (PXT). Additionally, they often lack multiple cardio-metabolic parameters. Here, we developed a mouse-GXT with the intent of improving mouse-exercise testing sensitivity and developing translatable parameters to assess CVF in healthy and dysfunctional mice. The mouse-GXT, like the human-GXT, incorporated staged increases in inclination, speed, and intensity; and, was designed by considering imitations of the PXT and differences between human and mouse physiology. The mouse-GXT and PXTs were both tested in healthy mice (C57BL/6J, FVBN/J) to determine their ability to identify cardio-metabolic parameters (anaerobic threshold, VO2max, metabolic crossover) observed in human-GXTs. Next, theses assays were tested on established diet-induced (obese-C57BL/6J) and genetic (cardiac isoform Casq2-/-) models of cardiovascular dysfunction. Results showed that both tests reported VO2max and provided reproducible data about performance. Only the mouse-GXT reproducibly identified anaerobic threshold, metabolic crossover, and detected impaired CVF in dysfunctional models. Our findings demonstrated that the mouse-GXT is a sensitive, non-invasive, and cost-effective method for assessing CVF in mice. This new test can be used as a functional assessment to determine the cardio-metabolic phenotype of various animal models or the effects of novel therapeutics.
Collapse
Affiliation(s)
- Jennifer M. Petrosino
- Department of Human Sciences, The Ohio State University, College of Education & Human Ecology, Columbus, Ohio, United States of America
- Biomedical Sciences Program, The Ohio State University, College of Medicine, Columbus, Ohio, United States of America
| | - Valerie J. Heiss
- Department of Human Sciences, The Ohio State University, College of Education & Human Ecology, Columbus, Ohio, United States of America
| | - Santosh K. Maurya
- Cardiovascular Pathobiology Program, Sanford Burnham Medical Research Institute at Lake Nona, Orland, Florida, United States of America
| | - Anuradha Kalyanasundaram
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Muthu Periasamy
- Cardiovascular Pathobiology Program, Sanford Burnham Medical Research Institute at Lake Nona, Orland, Florida, United States of America
| | - Richard A. LaFountain
- Department of Human Sciences, The Ohio State University, College of Education & Human Ecology, Columbus, Ohio, United States of America
| | - Jacob M. Wilson
- Department of Human Performance, The University of Tampa, Tampa, Florida, United States of America
| | - Orlando P. Simonetti
- Department of Radiology, The Ohio State University, College of Medicine, Columbus, Ohio, United States of America
- Department of Cardiovascular Medicine, The Ohio State University, College of Medicine, Columbus, Ohio, United States of America
| | - Ouliana Ziouzenkova
- Department of Human Sciences, The Ohio State University, College of Education & Human Ecology, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
8
|
Exposure to phthalates affects calcium handling and intercellular connectivity of human stem cell-derived cardiomyocytes. PLoS One 2015; 10:e0121927. [PMID: 25799571 PMCID: PMC4370601 DOI: 10.1371/journal.pone.0121927] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/14/2015] [Indexed: 12/25/2022] Open
Abstract
Background The pervasive nature of plastics has raised concerns about the impact of continuous exposure to plastic additives on human health. Of particular concern is the use of phthalates in the production of flexible polyvinyl chloride (PVC) products. Di-2-ethylhexyl-phthalate (DEHP) is a commonly used phthalate ester plasticizer that imparts flexibility and elasticity to PVC products. Recent epidemiological studies have reported correlations between urinary phthalate concentrations and cardiovascular disease, including an increased risk of high blood pressure and coronary risk. Yet, there is little direct evidence linking phthalate exposure to adverse effects in human cells, including cardiomyocytes. Methods and Results The effect of DEHP on calcium handling was examined using monolayers of gCAMP3 human embryonic stem cell-derived cardiomyocytes, which contain an endogenous calcium sensor. Cardiomyocytes were exposed to DEHP (5 – 50 μg/mL), and calcium transients were recorded using a Zeiss confocal imaging system. DEHP exposure (24 – 72 hr) had a negative chronotropic and inotropic effect on cardiomyocytes, increased the minimum threshold voltage required for external pacing, and modified connexin-43 expression. Application of Wy-14,643 (100 μM), an agonist for the peroxisome proliferator-activated receptor alpha, did not replicate DEHP’s effects on calcium transient morphology or spontaneous beating rate. Conclusions Phthalates can affect the normal physiology of human cardiomyocytes, including DEHP elicited perturbations in cardiac calcium handling and intercellular connectivity. Our findings call for additional studies to clarify the extent by which phthalate exposure can alter cardiac function, particularly in vulnerable patient populations who are at risk for high phthalate exposure.
Collapse
|
9
|
Valle G, Boncompagni S, Sacchetto R, Protasi F, Volpe P. Post-natal heart adaptation in a knock-in mouse model of calsequestrin 2-linked recessive catecholaminergic polymorphic ventricular tachycardia. Exp Cell Res 2013; 321:178-89. [PMID: 24370574 DOI: 10.1016/j.yexcr.2013.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 12/05/2013] [Accepted: 12/11/2013] [Indexed: 01/13/2023]
Abstract
Cardiac calsequestrin (CASQ2) contributes to intracellular Ca(2+) homeostasis by virtue of its low-affinity/high-capacity Ca(2+) binding properties, maintains sarcoplasmic reticulum (SR) architecture and regulates excitation-contraction coupling, especially or exclusively upon β-adrenergic stimulation. Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmogenic disease associated with cardiac arrest in children or young adults. Recessive CPVT variants are due to mutations in the CASQ2 gene. Molecular and ultra-structural properties were studied in hearts of CASQ2(R33Q/R33Q) and of CASQ2(-/-) mice from post-natal day 2 to week 8. The drastic reduction of CASQ2-R33Q is an early developmental event and is accompanied by down-regulation of triadin and junctin, and morphological changes of jSR and of SR-transverse-tubule junctions. Although endoplasmic reticulum stress is activated, no signs of either apoptosis or autophagy are detected. The other model of recessive CPVT, the CASQ2(-/-) mouse, does not display the same adaptive pattern. Expression of CASQ2-R33Q influences molecular and ultra-structural heart development; post-natal, adaptive changes appear capable of ensuring until adulthood a new pathophysiological equilibrium.
Collapse
Affiliation(s)
- Giorgia Valle
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto di Neuroscienze del CNR, Istituto Interuniversitario di Miologia, viale G. Colombo 3, 35121 Padova, Italy
| | - Simona Boncompagni
- Dipartimento di Neuroscienze e Imaging dell'Università Gabriele D'Annunzio, Centro Scienze dell'Invecchiamento, Chieti, Italy
| | - Roberta Sacchetto
- Dipartimento di Biomedicina Comparata ed Alimentazione dell'Università di Padova, Padova, Italy
| | - Feliciano Protasi
- Dipartimento di Neuroscienze e Imaging dell'Università Gabriele D'Annunzio, Centro Scienze dell'Invecchiamento, Chieti, Italy
| | - Pompeo Volpe
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto di Neuroscienze del CNR, Istituto Interuniversitario di Miologia, viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
10
|
Glukhov AV, Kalyanasundaram A, Lou Q, Hage LT, Hansen BJ, Belevych AE, Mohler PJ, Knollmann BC, Periasamy M, Györke S, Fedorov VV. Calsequestrin 2 deletion causes sinoatrial node dysfunction and atrial arrhythmias associated with altered sarcoplasmic reticulum calcium cycling and degenerative fibrosis within the mouse atrial pacemaker complex1. Eur Heart J 2013; 36:686-97. [PMID: 24216388 DOI: 10.1093/eurheartj/eht452] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIMS Loss-of-function mutations in Calsequestrin 2 (CASQ2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT patients also exhibit bradycardia and atrial arrhythmias for which the underlying mechanism remains unknown. We aimed to study the sinoatrial node (SAN) dysfunction due to loss of CASQ2. METHODS AND RESULTS In vivo electrocardiogram (ECG) monitoring, in vitro high-resolution optical mapping, confocal imaging of intracellular Ca(2+) cycling, and 3D atrial immunohistology were performed in wild-type (WT) and Casq2 null (Casq2(-/-)) mice. Casq2(-/-) mice exhibited bradycardia, SAN conduction abnormalities, and beat-to-beat heart rate variability due to enhanced atrial ectopic activity both at baseline and with autonomic stimulation. Loss of CASQ2 increased fibrosis within the pacemaker complex, depressed primary SAN activity, and conduction, but enhanced atrial ectopic activity and atrial fibrillation (AF) associated with macro- and micro-reentry during autonomic stimulation. In SAN myocytes, CASQ2 deficiency induced perturbations in intracellular Ca(2+) cycling, including abnormal Ca(2+) release, periods of significantly elevated diastolic Ca(2+) levels leading to pauses and unstable pacemaker rate. Importantly, Ca(2+) cycling dysfunction occurred not only at the SAN cellular level but was also globally manifested as an increased delay between action potential (AP) and Ca(2+) transient upstrokes throughout the atrial pacemaker complex. CONCLUSIONS Loss of CASQ2 causes abnormal sarcoplasmic reticulum Ca(2+) release and selective interstitial fibrosis in the atrial pacemaker complex, which disrupt SAN pacemaking but enhance latent pacemaker activity, create conduction abnormalities and increase susceptibility to AF. These functional and extensive structural alterations could contribute to SAN dysfunction as well as AF in CPVT patients.
Collapse
Affiliation(s)
- Alexey V Glukhov
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH, USA
| | - Anuradha Kalyanasundaram
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH, USA
| | - Qing Lou
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH, USA
| | - Lori T Hage
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH, USA
| | - Brian J Hansen
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH, USA
| | - Andriy E Belevych
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH, USA
| | - Peter J Mohler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH, USA
| | - Björn C Knollmann
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH, USA
| | - Sandor Györke
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH, USA
| | - Vadim V Fedorov
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH, USA
| |
Collapse
|
11
|
Liu N, Denegri M, Dun W, Boncompagni S, Lodola F, Protasi F, Napolitano C, Boyden PA, Priori SG. Abnormal propagation of calcium waves and ultrastructural remodeling in recessive catecholaminergic polymorphic ventricular tachycardia. Circ Res 2013; 113:142-52. [PMID: 23674379 DOI: 10.1161/circresaha.113.301783] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE The recessive form of catecholaminergic polymorphic ventricular tachycardia is caused by mutations in the cardiac calsequestrin-2 gene; this variant of catecholaminergic polymorphic ventricular tachycardia is less well characterized than the autosomal-dominant form caused by mutations in the ryanodine receptor-2 gene. OBJECTIVE We characterized the intracellular Ca²⁺ homeostasis, electrophysiological properties, and ultrastructural features of the Ca²⁺ release units in the homozygous calsequestrin 2-R33Q knock-in mouse model (R33Q) R33Q knock-in mouse model. METHODS AND RESULTS We studied isolated R33Q and wild-type ventricular myocytes and observed properties not previously identified in a catecholaminergic polymorphic ventricular tachycardia model. As compared with wild-type cells, R33Q myocytes (1) show spontaneous Ca²⁺ waves unable to propagate as cell-wide waves; (2) show smaller Ca²⁺sparks with shortened coupling intervals, suggesting a reduced refractoriness of Ca²⁺ release events; (3) have a reduction of the area of membrane contact, of the junctions between junctional sarcoplasmic reticulum and T tubules (couplons), and of junctional sarcoplasmic reticulum volume; (4) have a propensity to develop phase 2 to 4 afterdepolarizations that can elicit triggered beats; and (5) involve viral gene transfer with wild-type cardiac calsequestrin-2 that is able to normalize structural abnormalities and to restore cell-wide calcium wave propagation. CONCLUSIONS Our data show that homozygous cardiac calsequestrin-2-R33Q myocytes develop spontaneous Ca²⁺ release events with a broad range of intervals coupled to preceding beats, leading to the formation of early and delayed afterdepolarizations. They also display a major disruption of the Ca²⁺ release unit architecture that leads to fragmentation of spontaneous Ca²⁺ waves. We propose that these 2 substrates in R33Q myocytes synergize to provide a new arrhythmogenic mechanism for catecholaminergic polymorphic ventricular tachycardia.
Collapse
Affiliation(s)
- Nian Liu
- Leon H. Charney Division of Cardiology, Cardiovascular Genetics Program, New York University School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Calsequestrin is the most abundant Ca-binding protein of the specialized endoplasmic reticulum found in muscle, the sarcoplasmic reticulum (SR). Calsequestrin binds Ca with high capacity and low affinity and importantly contributes to the mobilization of Ca during each contraction both in skeletal and cardiac muscle. Surprisingly, mutations in the gene encoding the cardiac isoform of calsequestrin (Casq2) have been associated with an inherited form of ventricular arrhythmia triggered by emotional or physical stress termed catecholaminergic polymorphic ventricular tachycardia (CPVT). Despite normal cardiac contractility and normal resting ECG, CPVT patients present with a high risk of sudden death at a young age. Here, we review recent new insights regarding the role of calsequestrin in genetic and acquired arrhythmia disorders. Mouse models of CPVT have shed light on the pathophysiological mechanism underlying CPVT. Casq2 is not only a Ca-storing protein as initially hypothesized, but it has a far more complex function in Ca handling and regulating SR Ca release channels. The functional importance of Casq2 interactions with other SR proteins and the importance of alterations in Casq2 trafficking are also being investigated. Reports of altered Casq2 trafficking in animal models of acquired heart diseases such as heart failure suggest that Casq2 may contribute to arrhythmia risk beyond genetic forms of Casq2 dysfunction.
Collapse
Affiliation(s)
- Michela Faggioni
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0575, USA
| | | |
Collapse
|