1
|
Morrissey SM, Kirkland LG, Phillips TK, Levit RD, Hopke A, Jensen BC. Multifaceted roles of neutrophils in cardiac disease. J Leukoc Biol 2025; 117:qiaf017. [PMID: 39936506 DOI: 10.1093/jleuko/qiaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/15/2025] [Accepted: 02/11/2025] [Indexed: 02/13/2025] Open
Abstract
Neutrophils, the most abundant leukocytes in human blood, have long been recognized as critical first responders in the innate immune system's defense against pathogens. Some of the more notable innate antimicrobial properties of neutrophils include generation of superoxide free radicals like myeloperoxidase, production of proteases that reshape the extracellular matrix allowing for easier access to infected tissues, and release of neutrophil extracellular traps, extruded pieces of DNA that ensnare bacterial and fungi. These mechanisms developed to provide neutrophils with a vast array of specialized functions to provide the host defense against infection in an acute setting. However, emerging evidence over the past few decades has revealed a far more complex and nuanced role for these neutrophil-driven processes in various chronic conditions, particularly in cardiovascular diseases. The pathophysiology of cardiac diseases involves a complex interplay of hemodynamic, neurohumoral, and inflammatory factors. Neutrophils, as key mediators of inflammation, contribute significantly to this intricate network. Their involvement extends far beyond their classical role in pathogen clearance, encompassing diverse functions that can both exacerbate tissue damage and contribute to repair processes. Here, we consider the contributions of neutrophils to myocardial infarction, heart failure, cardiac arrhythmias, and nonischemic cardiomyopathies. Understanding these complex interactions is crucial for developing novel therapeutic strategies aimed at modulating neutrophil functions in these highly morbid cardiac diseases.
Collapse
Affiliation(s)
- Samantha M Morrissey
- Department of Medicine, University of North Carolina School of Medicine, 125 MacNider Hall, Chapel Hill, NC 27599-7005, United States
| | - Logan G Kirkland
- McAllister Heart Institute, University of North Carolina School of Medicine, 111 Mason Farm Rd., Chapel Hill, NC 27599-7126, United States
| | - Tasha K Phillips
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City, TN 37614, United States
| | - Rebecca D Levit
- Division of Cardiology, Department of Medicine, Emory University, 100 Woodruff Circle, Atlanta, GA 30322, United States
| | - Alex Hopke
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City, TN 37614, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, PO Box 70300, Johnson City, TN 37614, United States
| | - Brian C Jensen
- Department of Medicine, University of North Carolina School of Medicine, 125 MacNider Hall, Chapel Hill, NC 27599-7005, United States
- McAllister Heart Institute, University of North Carolina School of Medicine, 111 Mason Farm Rd., Chapel Hill, NC 27599-7126, United States
- Department of Pharmacology, University of North Carolina School of Medicine, 120 Mason Farm Rd., Chapel Hill, NC 27599-7365, United States
| |
Collapse
|
2
|
Wearing OH, Chesler NC, Colebank MJ, Hacker TA, Lorenz JN, Simpson JA, West CR. Guidelines for assessing ventricular pressure-volume relationships in rodents. Am J Physiol Heart Circ Physiol 2025; 328:H120-H140. [PMID: 39625460 DOI: 10.1152/ajpheart.00434.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
Ventricular catheterization with a pressure-volume (PV) catheter is the gold-standard method for assessing in vivo cardiac function in animal studies, providing valuable "load-independent" indices of systolic and diastolic heart performance. PV studies are commonly performed to elucidate mechanistic insights into cardiovascular disease using surgical and genetically engineered rat and mouse models, but there is considerable heterogeneity in how these studies are performed. Wide variation in protocol design, volume calibration, anesthesia, manipulation of cardiac loading conditions, how load-independent indices of cardiac function are derived, as well as in data analysis and reporting is constraining reliability and reproducibility in the field. The purpose of this manuscript is to combine our collective expertise in performing open- and closed-chest left and right ventricle PV studies in rodents to provide consensus guidelines on how to perform, analyze, and interpret these studies using either conductance or admittance PV catheters. We first review recent methodological reporting in rodent PV studies in this journal and discuss important details required to improve reproducibility within and across PV studies. We then recommend steps to obtain high-quality PV data, from volume calibration to choice of anesthetic agent and acquiring load-independent indices of both systolic and diastolic function. We also consider between- and within-animal variation and recommend how to perform data analysis and visualization. We hope that this consensus paper guides those performing PV studies in rodents and helps align the field with best practices in surgical/analytical methodologies and reporting, facilitating better reliability and reproducibility in the PV field.
Collapse
Affiliation(s)
- Oliver H Wearing
- Department of Cellular & Physiological Sciences, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Centre for Chronic Disease Prevention and Management, UBC Okanagan, Kelowna, British Columbia, Canada
- Centre for Heart, Lung & Vascular Health, UBC Okanagan, Kelowna, British Columbia, Canada
| | - Naomi C Chesler
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California Irvine, Irvine, California, United States
| | - Mitchel J Colebank
- Department of Mathematics, University of South Carolina, Columbia, South Carolina, United States
| | - Timothy A Hacker
- Cardiovascular Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - John N Lorenz
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati, Cincinnati, Ohio, United States
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| | - Christopher R West
- Department of Cellular & Physiological Sciences, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Centre for Chronic Disease Prevention and Management, UBC Okanagan, Kelowna, British Columbia, Canada
- Centre for Heart, Lung & Vascular Health, UBC Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
3
|
Zhang T, Luo L, He Q, Xiao S, Li Y, Chen J, Qin T, Xiao Z, Ge Q. Research advances on molecular mechanism and natural product therapy of iron metabolism in heart failure. Eur J Med Res 2024; 29:253. [PMID: 38659000 PMCID: PMC11044586 DOI: 10.1186/s40001-024-01809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
The progression of heart failure (HF) is complex and involves multiple regulatory pathways. Iron ions play a crucial supportive role as a cofactor for important proteins such as hemoglobin, myoglobin, oxidative respiratory chain, and DNA synthetase, in the myocardial energy metabolism process. In recent years, numerous studies have shown that HF is associated with iron dysmetabolism, and deficiencies in iron and overload of iron can both lead to the development of various myocarditis diseases, which ultimately progress to HF. Iron toxicity and iron metabolism may be key targets for the diagnosis, treatment, and prevention of HF. Some iron chelators (such as desferrioxamine), antioxidants (such as ascorbate), Fer-1, and molecules that regulate iron levels (such as lactoferrin) have been shown to be effective in treating HF and protecting the myocardium in multiple studies. Additionally, certain natural compounds can play a significant role by mediating the imbalance of iron-related signaling pathways and expression levels. Therefore, this review not only summarizes the basic processes of iron metabolism in the body and the mechanisms by which they play a role in HF, with the aim of providing new clues and considerations for the treatment of HF, but also summarizes recent studies on natural chemical components that involve ferroptosis and its role in HF pathology, as well as the mechanisms by which naturally occurring products regulate ferroptosis in HF, with the aim of providing reference information for the development of new ferroptosis inhibitors and lead compounds for the treatment of HF in the future.
Collapse
Affiliation(s)
- Tianqing Zhang
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Li Luo
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang City, China
| | - Sijie Xiao
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Yuwei Li
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Junpeng Chen
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Tao Qin
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Zhenni Xiao
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Qingliang Ge
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China.
| |
Collapse
|
4
|
Chen T, Xiong Y, Deng C, Hu C, Li M, Quan R, Yu X. NDRG2 alleviates photoreceptor apoptosis by regulating the STAT3/TIMP3/MMP pathway in mice with retinal degenerative disease. FEBS J 2024; 291:986-1007. [PMID: 38037211 DOI: 10.1111/febs.17021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/05/2023] [Accepted: 10/29/2023] [Indexed: 12/02/2023]
Abstract
Photoreceptor apoptosis is the main pathological feature of retinal degenerative diseases; however, the underlying molecular mechanism has not been elucidated. Recent studies have shown that N-myc downstream regulated gene 2 (NDRG2) exerts a neuroprotective effect on the brain and spinal cord. In addition, our previous studies have confirmed that NDRG2 is expressed in mouse retinal photoreceptors and counteracts N-methyl-N-nitrosourea (MNU)-induced apoptosis. However, the underlying molecular mechanism remains unclear. In this study, we observed that the expression of NDRG2 was not only significantly inhibited in photoreceptors after MNU treatment but also after hydrogen peroxide treatment, and photoreceptor apoptosis was alleviated or aggravated after overexpression or knockdown of NDRG2 in the 661W photoreceptor cell line, respectively. The apoptosis inhibitor Z-VAD-FMK rescued photoreceptor apoptosis induced by MNU after NDRG2 knockdown. Next, we screened and identified tissue inhibitor of metalloproteinases 3 (TIMP3) as the downstream molecule of NDRG2 in 661W cells by using quantitative real-time polymerase chain reaction. TIMP3 exerts a neuroprotective effect by inhibiting the expression of matrix metalloproteinases (MMPs). Subsequently, we found that signal transducer and activator of transcription 3 (STAT3) mediated the NDRG2-associated regulation of TIMP3. Finally, we overexpressed NDRG2 in mouse retinal tissues by intravitreally injecting an adeno-associated virus with mouse NDRG2 in vivo. Results showed that NDRG2 upregulated the expression of phospho-STAT3 (p-STAT3) and TIMP3, while suppressing MNU-induced photoreceptor apoptosis and MMP expression. Our findings revealed how NDRG2 regulates the STAT3/TIMP3/MMP pathway and uncovered the molecular mechanism underlying its neuroprotective effect on mouse retinal photoreceptors.
Collapse
Affiliation(s)
- Tao Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University, China
| | - Yecheng Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University, China
| | - Chunlei Deng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University, China
| | - Chengbiao Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University, China
| | - Mengxing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University, China
| | - Rui Quan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University, China
| | - Xiaorui Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Institute of Molecular and Translational Medicine, Xi'an Jiaotong University, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, China
| |
Collapse
|
5
|
Wang Y, Yue S, Cai F, Zhu W, Zhong Y, Chen J, Li C. Treatment of berberine alleviates diabetic nephropathy by reducing iron overload and inhibiting oxidative stress. Histol Histopathol 2023; 38:1009-1016. [PMID: 36861878 DOI: 10.14670/hh-18-599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Diabetic nephropathy (DN) has become one of the major fatal factors in diabetic patients. The aim of this study was to elucidate the function and mechanism by which berberine exerts renoprotective effects in DN. In this work, we first demonstrated that urinary iron concentration, serum ferritin and hepcidin levels were increased and total antioxidant capacity was significantly decreased in DN rats, while these changes could be partially reversed by berberine treatment. Berberine treatment also alleviated DN-induced changes in the expression of proteins involved in iron transport or iron uptake. In addition, berberine treatment also partially blocked the expression of renal fibrosis markers induced by DN, including MMP2, MMP9, TIMP3, β-arrestin-1, and TGF-β1. In conclusion, the results of this study suggest that berberine may exert renoprotective effects by ameliorating iron overload and oxidative stress and reducing DN.
Collapse
Affiliation(s)
- Yujing Wang
- Department of Hemodialysis, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Xiangya, China
| | - Shuling Yue
- Department Renal Pathology, King Medical Diagnostics Center, Guangzhou, China
| | - Feng Cai
- Department Ophthalmology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Xiangya, China
| | - Wen Zhu
- College of Tropical Crops, Hainan University, Hainan, China
| | - Yuxiang Zhong
- Deparment of Hemodialysis, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Xiangya, China
| | - Juanjuan Chen
- Deparment of Hemodialysis, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Xiangya, China
| | - Chunyun Li
- Clinical Laboratory, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Xiangya, China.
| |
Collapse
|
6
|
Yang C, Wu A, Tan L, Tang D, Chen W, Lai X, Gu K, Chen J, Chen D, Tang Q. Epigallocatechin-3-Gallate Alleviates Liver Oxidative Damage Caused by Iron Overload in Mice through Inhibiting Ferroptosis. Nutrients 2023; 15:nu15081993. [PMID: 37111212 PMCID: PMC10145929 DOI: 10.3390/nu15081993] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/29/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Ferroptosis, a form of regulated cell death, has been widely explored as a novel target for the treatment of diseases. The failure of the antioxidant system can induce ferroptosis. Epigallocatechin-3-Gallate (EGCG) is a natural antioxidant in tea; however, whether EGCG can regulate ferroptosis in the treatment of liver oxidative damage, as well as the exact molecular mechanism, is unknown. Here, we discovered that iron overload disturbed iron homeostasis in mice, leading to oxidative stress and damage in the liver by activating ferroptosis. However, EGCG supplementation alleviated the liver oxidative damage caused by iron overload by inhibiting ferroptosis. EGCG addition increased NRF2 and GPX4 expression and elevated antioxidant capacity in iron overload mice. EGCG administration attenuates iron metabolism disorders by upregulating FTH/L expression. Through these two mechanisms, EGCG can effectively inhibit iron overload-induced ferroptosis. Taken together, these findings suggest that EGCG is a potential ferroptosis suppressor, and may be a promising therapeutic agent for iron overload-induced liver disease.
Collapse
Affiliation(s)
- Chunjing Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Liqiang Tan
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Dandan Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Wei Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Xin Lai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Ke Gu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Junzhou Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Qian Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| |
Collapse
|
7
|
Zhang L, Hu Y, Xie M, Zhang Y, Cen K, Chen L, Cui Y, Li H, Wang D. Carnitine-acylcarnitine translocase deficiency caused by SLC25A20 gene heterozygous variants in twins: a case report. J Int Med Res 2023; 51:3000605231163811. [PMID: 37115522 PMCID: PMC10155003 DOI: 10.1177/03000605231163811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
The current case report describes the clinical, biochemical and genetic characteristics of carnitine-acylcarnitine translocase deficiency (CACTD) in infant male and female twins that presented with symptoms shortly after elective caesarean delivery. The clinical manifestations were neonatal hypoglycaemia, arrhythmia and sudden death. The age of onset was 1.5 days and the age of the death was 1.5-3.5 days. Dried blood filter paper analysis was used for the detection of acylcarnitine. Peripheral venous blood and skin samples were used for next-generation sequencing. The twins and their parents underwent gene analysis and whole exome sequencing analyses of the solute carrier family 25 member 20 (SLC25A20; also known as carnitine-acylcarnitine translocase) gene. Both infants carried compound heterozygous variants of the SLC25A20 gene: variant M1:c.706_707insT:p.R236L fs*12 and variant M2:c.689C>G:p.P230R. The M1 variant was paternal and had not been previously reported regarding CACTD. The M2 variant was maternal. CACTD has severe clinical manifestations and a poor prognosis, which is manifested as hypoketotic hypoglycaemia, hyperammonaemia, liver function damage and elevated creatine kinase.
Collapse
Affiliation(s)
- Liya Zhang
- Newborn Centre, Ningbo Women and Children's Hospital, Ningbo, Zhejiang Province, China
| | - Ying Hu
- Central Laboratory of Birth Defects, Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, Zhejiang Province, China
| | - Min Xie
- Central Laboratory of Birth Defects, Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, Zhejiang Province, China
| | - Yuxin Zhang
- Central Laboratory of Birth Defects, Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, Zhejiang Province, China
| | - Kuankuan Cen
- Newborn Centre, Ningbo Women and Children's Hospital, Ningbo, Zhejiang Province, China
| | - Lili Chen
- Newborn Centre, Ningbo Women and Children's Hospital, Ningbo, Zhejiang Province, China
| | - Yingbo Cui
- Newborn Centre, Ningbo Women and Children's Hospital, Ningbo, Zhejiang Province, China
| | - Haibo Li
- Central Laboratory of Birth Defects, Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, Zhejiang Province, China
| | - Donge Wang
- Newborn Centre, Ningbo Women and Children's Hospital, Ningbo, Zhejiang Province, China
| |
Collapse
|
8
|
Knockout of Trpa1 accelerates age-related cardiac fibrosis and dysfunction. PLoS One 2022; 17:e0274618. [PMID: 36103570 PMCID: PMC9473441 DOI: 10.1371/journal.pone.0274618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/31/2022] [Indexed: 11/19/2022] Open
Abstract
Age-related cardiac fibrosis contributes to the development of heart failure with preserved ejection fraction which lacks ideal treatment. Transient receptor potential ankyrin 1 (TRPA1) is an oxidative stress sensor and could attenuate age-related pathologies in invertebrates. The present study aimed to test whether TRPA1 plays a role in age-related cardiac remodeling and dysfunction. The cardiac function and pathology of 12-week-old (young) and 52-week-old (older) Trpa1-/- mice and wild-type (WT) littermates were evaluated by echocardiography and histologic analyses. The expression levels of 84 fibrosis-related genes in the heart were measured by quantitative polymerase chain reaction array. Young Trpa1-/- and WT mice had similar left ventricular wall thickness, volume, and systolic and diastolic function. Older Trpa1-/- mice had significantly increased left ventricular internal diameter and volume and impaired systolic (lower left ventricular ejection fraction) and diastolic (higher E/A ratio and isovolumetric relaxation time) functions compared with older WT mice (P<0.05 or P<0.01). Importantly, older Trpa1-/- mice had enhanced cardiac fibrosis than older WT mice (P<0.05) while the two strains had similar degree of cardiac hypertrophy. Among the 84 fibrosis-related genes, Acta2, Inhbe, Ifng, and Ccl11 were significantly upregulated, while Timp3, Stat6, and Ilk were significantly downregulated in the heart of older Trpa1-/- mice compared with older WT mice. Taken together, we found that knocking out Trpa1 accelerated age-related myocardial fibrosis, ventricular dilation, and cardiac dysfunction. These findings suggest that TRPA1 may become a therapeutic target for preventing and/or treating cardiac fibrosis and heart failure with preserved ejection fraction in the elderly.
Collapse
|
9
|
Man W, Song X, Xiong Z, Gu J, Lin J, Gu X, Yu D, Li C, Jiang M, Zhang X, Yang Z, Cao Y, Zhang Y, Shu X, Wu D, Wang H, Ji G, Sun D. Exosomes derived from pericardial adipose tissues attenuate cardiac remodeling following myocardial infarction by Adipsin-regulated iron homeostasis. Front Cardiovasc Med 2022; 9:1003282. [PMID: 36172581 PMCID: PMC9510661 DOI: 10.3389/fcvm.2022.1003282] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
As a vital adipokine, Adipsin is closely associated with cardiovascular risks. Nevertheless, its role in the onset and development of cardiovascular diseases remains elusive. This study was designed to examine the effect of Adipsin on survival, cardiac dysfunction and adverse remodeling in the face of myocardial infarction (MI) injury. In vitro experiments were conducted to evaluate the effects of Adipsin on cardiomyocyte function in the face of hypoxic challenge and the mechanisms involved. Our results showed that Adipsin dramatically altered expression of proteins associated with iron metabolism and ferroptosis. In vivo results demonstrated that Adipsin upregulated levels of Ferritin Heavy Chain (FTH) while downregulating that of Transferrin Receptor (TFRC) in peri-infarct regions 1 month following MI. Adipsin also relieved post-MI-associated lipid oxidative stress as evidenced by decreased expression of COX2 and increased GPX4 level. Co-immunoprecipitation and immunofluorescence imaging prove a direct interaction between Adipsin and IRP2. As expected, cardioprotection provided by Adipsin depends on the key molecule of IRP2. These findings revealed that Adipsin could be efficiently delivered to the heart by exosomes derived from pericardial adipose tissues. In addition, Adipsin interacted with IRP2 to protect cardiomyocytes against ferroptosis and maintain iron homeostasis. Therefore, Adipsin-overexpressed exosomes derived from pericardial adipose tissues may be a promising therapeutic strategy to prevent adverse cardiac remodeling following ischemic heart injury.
Collapse
Affiliation(s)
- Wanrong Man
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xinglong Song
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhenyu Xiong
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jing Gu
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Jie Lin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaoming Gu
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
| | - Duan Yu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Mengyuan Jiang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xuebin Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhi Yang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yang Cao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yan Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaofei Shu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Dexi Wu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Haichang Wang
- Heart Hospital, Xi’an International Medical Center, Xi’an, China
- Haichang Wang,
| | - Gang Ji
- Department of Gastrointestinal Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
- Gang Ji,
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Dongdong Sun,
| |
Collapse
|
10
|
Yao Y, He S, Wang Y, Cao Z, Liu D, Fu Y, Chen H, Wang X, Zhao Q. Blockade of Exosome Release Suppresses Atrial Fibrillation by Alleviating Atrial Fibrosis in Canines With Prolonged Atrial Pacing. Front Cardiovasc Med 2021; 8:699175. [PMID: 34722652 PMCID: PMC8553970 DOI: 10.3389/fcvm.2021.699175] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/15/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Clinical studies have shown that exosomes are associated with atrial fibrillation (AF). However, the roles and underlying mechanisms remain unclear. Hence, this study aimed to investigate the function of exosomes in AF development. Methods: Twenty beagles were randomly divided into the sham group (n = 6), the pacing group (n = 7), and the pacing + GW4869 group (n = 7). The pacing and GW4869 groups underwent rapid atrial pacing (450 beats/min) for 7 days. The GW4869 group received intravenous GW4869 injection (an inhibitor of exosome biogenesis/release, 0.3 mg/kg, once a day) during pacing. Electrophysiological measurements, transmission electron microscopy, nanoparticle tracking analysis, western blotting, RT-PCR, Masson's staining, and immunohistochemistry were performed in this study. Results: Rapid atrial pacing increased the release of plasma and atrial exosomes. GW4869 treatment markedly suppressed AF inducibility and reduced the release of exosomes. After 7 days of pacing, the expression of transforming growth factor-β1 (TGF-β1), collagen I/III, and matrix metalloproteinases was enhanced in the atrium, and the levels of microRNA-21-5p (miR-21-5p) were upregulated in both plasma exosomes and the atrium, while the tissue inhibitor of metalloproteinase 3 (TIMP3), a target of miR-21-5p, showed a lower expression in the atrium. The administration of GW4869 abolished these effects. Conclusions: The blockade of exosome release with GW4869 suppressed AF by alleviating atrial fibrosis in a canine model, which was probably related to profibrotic miR-21-5p enriched in exosomes and its downstream TIMP3/TGF-β1 pathway.
Collapse
Affiliation(s)
- Yajun Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shanqing He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Youcheng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Dishiwen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yuntao Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Huiyu Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
11
|
Wang F, Tong H. Precondition of sevoflurane upregulates TIMP3 expression to alleviate myocardial ischemia/reperfusion injury. Perfusion 2020; 36:717-723. [PMID: 33016228 DOI: 10.1177/0267659120960306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Previous studies have pointed out that sevoflurane (Sef) preconditioning could relieve myocardial ischemia/reperfusion (I/R) injury, but the mechanisms is still unknown. METHODS C57BL/6 mice model of myocardial I/R injury was established to evaluate the function of Sef. Briefly, Sef was inhaled before I/R operation. The levels of TIMP3, oxidative damage-related factors, and mitogen activated protein kinases (MAPKs) pathway-related factors were measured by qRT-PCR and western blot. Myocardial infarction (MI) area was detected by triphenyl tetrazolium chloride (TTC) staining assay. RESULTS Sef preconditioning reduced MI area in myocardial I/R injury mice and upregulated TIMP3 expression in myocardial tissues of I/R mice. In addition, downregulation of TIMP3 reversed the alleviating effects of Sef pretreatment on myocardial oxidative damage and inhibited the effect of Sef pretreatment on MAPKs pathway activity. CONCLUSION Sef preconditioning ameliorated myocardial I/R injury by modulating MAPKs pathway activity via upregulating TIMP3.
Collapse
Affiliation(s)
- Fen Wang
- Department of Cardiovascular Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Hua Tong
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
12
|
Yang Q, Liu W, Zhang S, Liu S. The cardinal roles of ferroportin and its partners in controlling cellular iron in and out. Life Sci 2020; 258:118135. [DOI: 10.1016/j.lfs.2020.118135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
|
13
|
Yan Y, Xu Y, Ni G, Wang S, Li X, Gao J, Zhang H. MicroRNA-221 promotes proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) by targeting tissue inhibitor of metalloproteinases-3 (TIMP3). Cardiovasc Diagn Ther 2020; 10:646-657. [PMID: 32968621 PMCID: PMC7487395 DOI: 10.21037/cdt-20-328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/09/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Aberrant vascular smooth muscle cell (VSMC) proliferation and migration play an important role in the development of cardiovascular diseases including pulmonary arterial hypertension (PAH). MicroRNAs (miRNAs, miRs) have been considered to be implicated in the progression of PAH pathogenesis. In this study, we aim to clarify the role of miR-221 on proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) and identify the target genes involved in this biological process. METHODS PASMCs were isolated from the pulmonary arteries of male Sprague-Dawley (SD) rats. Cell proliferation of PASMCs was detected by 5-ethynyl-2'-deoxyuridine (EdU) assay. Cell migration was determined by a scratch wound assay. Quantitative real-time PCR was used to determine the expression of miR-221 while western blot analysis was used to determine the expression of TIMP3. Luciferase assay was used to confirm that TIMP3 was a direct target gene of miR-221. Monocrotaline (MCT) induced-PAH rat model was established and miR-221 and TIMP3 levels were checked in lung tissue and PASMCs from PAH rats. RESULTS miR-221 was able to promote the proliferation and migration PASMCs. TIMP3 were negatively regulated by miR-221 at the protein level in PASMCs. In addition, TIMP3 was identified to be a direct target gene of miR-221 in PASMCs based on luciferase assays. TIMP3 knockdown abolished the inhibitory effect of miR-221 inhibitor on PASMCs proliferation and migration, suggesting TIMP3 mediated the effects of miR-221 in PASMCs. Finally, we found that miR-221 was increased while TIMP3 was down-regulated in PASMCs in MCT-treated rats. CONCLUSIONS In conclusion, miR-221 promotes PASMCs proliferation and migration by targeting TIMP3. MiR-221 and TIMP3 could be potential therapeutic targets for the treatment of PAH.
Collapse
Affiliation(s)
- Yan Yan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gehui Ni
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Siqi Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Juan Gao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Haifeng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Azar F, Courtet K, Dekky B, Bonnier D, Dameron O, Colige A, Legagneux V, Théret N. Integration of miRNA-regulatory networks in hepatic stellate cells identifies TIMP3 as a key factor in chronic liver disease. Liver Int 2020; 40:2021-2033. [PMID: 32306499 DOI: 10.1111/liv.14476] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Activation of hepatic stellate cells (HSC) is a critical process involved in liver fibrosis. Several miRNAs are implicated in gene regulation during this process but their exact and respective contribution is still incompletely understood. Here we propose an integrative approach of miRNA-regulatory networks to predict new targets. METHODS miRNA regulatory networks in activated HSCs were built using lists of validated miRNAs and the CyTargetLinker tool. The resulting graphs were filtered according to public transcriptomic data and the reduced graphs were analysed through GO annotation. A miRNA network regulating the expression of TIMP3 was further studied in human liver samples, isolated hepatic cells and mouse model of liver fibrosis. RESULTS Within the up-regulated miRNAs, we identified a subnetwork of five miRNAs (miR-21-5p, miR-222-3p, miR-221-3p miR-181b-5p and miR-17-5p) that target TIMP3. We demonstrated that TIMP3 expression is inversely associated with inflammatory activity and IL1-ß expression in vivo. We further showed that IL1-ß inhibits TIMP3 expression in HSC-derived LX-2 cells. Using data from The Cancer Genome Atlas (TCGA), we showed that, in hepatocellular carcinoma (HCC), TIMP3 expression is associated with survival (P < .001), while miR-221 (P < .05), miR-222 (P < .01) and miR-181b (P < .01) are markers for a poor prognosis. CONCLUSIONS Several miRNAs targeting TIMP3 are up-regulated in activated HSCs and down-regulation of TIMP3 expression is associated with inflammatory activity in liver fibrosis and poor prognosis in HCC. The regulatory network including specific miRNAs and TIMP3 is therefore central for the evolution of chronic liver disease.
Collapse
Affiliation(s)
- Fida Azar
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Rennes, France
| | - Kevin Courtet
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Rennes, France.,University Rennes, CNRS, IRISA (Institut de recherche en informatique et système aléatoire, Rennes, France
| | - Bassil Dekky
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Rennes, France
| | - Dominique Bonnier
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Rennes, France
| | - Olivier Dameron
- University Rennes, CNRS, IRISA (Institut de recherche en informatique et système aléatoire, Rennes, France
| | - Alain Colige
- Laboratory of Connective Tissues Biology, GIGA-R, University of Liege, Sart Tilman, Belgium
| | - Vincent Legagneux
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Rennes, France
| | - Nathalie Théret
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Rennes, France.,University Rennes, CNRS, IRISA (Institut de recherche en informatique et système aléatoire, Rennes, France
| |
Collapse
|
15
|
Guo S, Yang C, Jiang S, Ni Y, Zhao R, Ma W. Repeated Restraint Stress Enhances Hepatic TFR2 Expression and Induces Hepatic Iron Accumulation in Rats. Biol Trace Elem Res 2020; 196:590-596. [PMID: 31707638 DOI: 10.1007/s12011-019-01956-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/24/2019] [Indexed: 12/26/2022]
Abstract
Abnormal hepatic iron metabolism is detrimental to health. The objective of this study was to detect repeated restraint stress on liver iron metabolism in rats. Twenty-four male rats aged 7 weeks were randomly divided into 2 groups: control group (Con) and repeated restraint stress group (RS). Rats were subjected to 6 h of daily restraint stress for 14 consecutive days in the repeated restraint stress group. The results showed that repeated restraint stress exposure decreased growth performance including impaired final weight (P = 0.07), reducing average daily gain (P = 0.01), and average daily feed intake (P = 0.00) during the 14-day experimental period. Repeated restraint stress exposure did not affect hemoglobin content and plasma iron parameters except downregulated unsaturated iron-binding capacity (P = 0.04). Repeated restraint stress exposure inhibited liver development (P = 0.03) and induced liver iron accumulation (P = 0.05). In addition, repeated restraint stress downregulated the expression of transferrin (TF) and transferrin receptor 2 (TFR2) at the mRNA level (P < 0.01), but upregulated at the protein level (P = 0.03 for TF; P = 0.00 for TFR2). These results indicated that repeated restraint stress induces hepatic iron accumulation, which is closely related to higher expression of hepatic TFR2 protein in rats.
Collapse
Affiliation(s)
- Shihui Guo
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Chun Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Shuxia Jiang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Wenqiang Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China.
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
16
|
Edwards TM, Mosie IJ, Moore BC, Lobjoit G, Schiavone K, Bachman RE, Murray-Hudson M. Low oxygen: A (tough) way of life for Okavango fishes. PLoS One 2020; 15:e0235667. [PMID: 32730271 PMCID: PMC7392303 DOI: 10.1371/journal.pone.0235667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Botswana's Okavango Delta is a World Heritage Site and biodiverse wilderness. In 2016-2018, following arrival of the annual flood of rainwater from Angola's highlands, and using continuous oxygen logging, we documented profound aquatic hypoxia that persisted for 3.5 to 5 months in the river channel. Within these periods, dissolved oxygen rarely exceeded 3 mg/L and dropped below 0.5 mg/L for up to two weeks at a time. Although these dissolved oxygen levels are low enough to qualify parts of the Delta as a dead zone, the region is a biodiversity hotspot, raising the question of how fish survive. In association with the hypoxia, histological samples, collected from native Oreochromis andersonii (threespot tilapia), Coptodon rendalli (redbreast tilapia), and Oreochromis macrochir (greenhead tilapia), exhibited widespread hepatic and splenic inflammation with marked granulocyte infiltration, melanomacrophage aggregates, and ceroid and hemosiderin accumulations. It is likely that direct tissue hypoxia and polycythemia-related iron deposition caused this pathology. We propose that Okavango cichlids respond to extended natural hypoxia by increasing erythrocyte production, but with significant health costs. Our findings highlight seasonal hypoxia as an important recurring stressor, which may limit fishery resilience in the Okavango as concurrent human impacts rise. Moreover, they illustrate how fish might respond to hypoxia elsewhere in the world, where dead zones are becoming more common.
Collapse
Affiliation(s)
- Thea M. Edwards
- Department of Biology, University of the South, Sewanee, Tennessee, United States of America
| | - Ineelo J. Mosie
- Okavango Research Institute, University of Botswana, Maun, Botswana
| | - Brandon C. Moore
- Department of Biology, University of the South, Sewanee, Tennessee, United States of America
| | | | - Kelsie Schiavone
- Department of Biology, University of the South, Sewanee, Tennessee, United States of America
| | - Robert E. Bachman
- Department of Chemistry, University of the South, Sewanee, Tennessee, United States of America
| | | |
Collapse
|
17
|
Ogilvie LM, Edgett BA, Huber JS, Platt MJ, Eberl HJ, Lutchmedial S, Brunt KR, Simpson JA. Hemodynamic assessment of diastolic function for experimental models. Am J Physiol Heart Circ Physiol 2020; 318:H1139-H1158. [PMID: 32216614 DOI: 10.1152/ajpheart.00705.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Traditionally, the evaluation of cardiac function has focused on systolic function; however, there is a growing appreciation for the contribution of diastolic function to overall cardiac health. Given the emerging interest in evaluating diastolic function in all models of heart failure, there is a need for sensitivity, accuracy, and precision in the hemodynamic assessment of diastolic function. Hemodynamics measure cardiac pressures in vivo, offering a direct assessment of diastolic function. In this review, we summarize the underlying principles of diastolic function, dividing diastole into two phases: 1) relaxation and 2) filling. We identify parameters used to comprehensively evaluate diastolic function by hemodynamics, clarify how each parameter is obtained, and consider the advantages and limitations associated with each measure. We provide a summary of the sensitivity of each diastolic parameter to loading conditions. Furthermore, we discuss differences that can occur in the accuracy of diastolic and systolic indices when generated by automated software compared with custom software analysis and the magnitude each parameter is influenced during inspiration with healthy breathing and a mild breathing load, commonly expected in heart failure. Finally, we identify key variables to control (e.g., body temperature, anesthetic, sampling rate) when collecting hemodynamic data. This review provides fundamental knowledge for users to succeed in troubleshooting and guidelines for evaluating diastolic function by hemodynamics in experimental models of heart failure.
Collapse
Affiliation(s)
- Leslie M Ogilvie
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| | - Brittany A Edgett
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada.,IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| | - Jason S Huber
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Mathew J Platt
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Hermann J Eberl
- Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada
| | - Sohrab Lutchmedial
- Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada.,Department of Cardiology, New Brunswick Heart Center, Saint John Regional Hospital, Horizon Health Network, Saint John, New Brunswick, Canada
| | - Keith R Brunt
- Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada.,IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| |
Collapse
|
18
|
Insights into basic science: what basic science can teach us about iron homeostasis in trauma patients. Curr Opin Anaesthesiol 2020; 33:240-245. [PMID: 31876785 DOI: 10.1097/aco.0000000000000825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW This review summarizes recent basic science studies on homeostasis of iron, an essential dietary nutrient and potentially toxic metal, and explores the relevance of these studies to our understanding of trauma and related severe, acute events. RECENT FINDINGS Recent studies in experimental models of iron homeostasis have added to our understanding of how iron levels are regulated in the body and how iron levels and iron-dependent biological processes contribute to trauma and related events. Iron deficiency, a common nutritional disorder, can impair critical organ function and wound and injury repair. Iron excess, typically because of genetic defects, can cause toxicity to tissues and, like iron deficiency, impair wound and injury repair. Finally, pharmacologic inhibition of ferroptosis, a novel form of iron-dependent cell death, is beneficial in animal models of cardiac, hepatic, and intestinal injury and intracerebral hemorrhage, suggesting that ferroptosis inhibitors could serve as novel therapeutic agents for trauma and related events. SUMMARY Perturbations in iron homeostasis can contribute significantly to an individual's predisposition to trauma and their ability to recover posttrauma, whereas pharmacologic targeting of ferroptosis may attenuate severity of trauma-induced organ dysfunction.
Collapse
|
19
|
Chen M, Cai Y, Li S, Xiong H, Liu M, Ma F, Xiao X, Hao H. Late-Onset Carnitine-Acylcarnitine Translocase Deficiency With SLC25A20 c.199-10T>G Variation: Case Report and Pathologic Analysis of Liver Biopsy. Front Pediatr 2020; 8:585646. [PMID: 33194920 PMCID: PMC7661852 DOI: 10.3389/fped.2020.585646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/23/2020] [Indexed: 12/31/2022] Open
Abstract
Introduction: Carnitine-acylcarnitine translocase deficiency (CACTD) is a rare and life-threatening autosomal recessive disorder of mitochondrial fatty acid oxidation caused by variation of the Solute carrier family 25 member 20 (SLC25A20) gene. Carnitine-acylcarnitine translocase is one of the crucial transport proteins in the oxidation process of mitochondrial fatty acids. In Asia, the c.199-10T>G splice site variation is the most frequently reported variant of SLC25A20. Patients with CACTD with c.199-10T>G variation usually present with a severe clinical phenotype. Materials and Methods: Herein, we report a neonatal case of late-onset CACTD in mainland China. Symptoms emerged 61 days after birth; the patient presented with a severe metabolic crisis, and her clinical condition rapidly deteriorated, and she died of respiratory insufficiency and cardiac arrest at 61 days. We present the clinical and biochemical features of this patient and briefly review previously reported CACTD cases with c.199-10T>G variation. Results: Acylcarnitine profiling by tandem mass spectrometry and high-throughput sequencing revealed that our patient was homozygous for the c.199-10T>G variation, confirming the diagnosis of CACTD. Histopathologic analysis of the liver by Prussian blue staining showed focal iron deposition in hepatocytes, and electron microscopy analysis revealed a large number of lipid droplet vacuoles in diffusely distributed hepatocytes. Conclusion: The development of CACTD in our patient 61 days after birth is the latest reported onset for CACTD with SLC25A20 c.199-10T>G variation. Early recognition of symptoms and timely and appropriate treatment are critical for improving the outcome of this highly lethal disorder. Death from late-onset CACTD may be caused by the accumulation of long-chain fatty acids as well as iron deposition in the heart leading to heart failure.
Collapse
Affiliation(s)
- Min Chen
- Department of Pediatrics, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yao Cai
- Department of Pediatrics, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sitao Li
- Department of Pediatrics, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hui Xiong
- Department of Pediatrics, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mengxian Liu
- Department of Pediatrics, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fei Ma
- Department of Pediatrics, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xin Xiao
- Department of Pediatrics, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hu Hao
- Department of Pediatrics, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Zhang H, Zhabyeyev P, Wang S, Oudit GY. Role of iron metabolism in heart failure: From iron deficiency to iron overload. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1925-1937. [PMID: 31109456 DOI: 10.1016/j.bbadis.2018.08.030] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/25/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022]
Abstract
Iron metabolism is a balancing act, and biological systems have evolved exquisite regulatory mechanisms to maintain iron homeostasis. Iron metabolism disorders are widespread health problems on a global scale and range from iron deficiency to iron-overload. Both types of iron disorders are linked to heart failure. Iron play a fundamental role in mitochondrial function and various enzyme functions and iron deficiency has a particular negative impact on mitochondria function. Given the high-energy demand of the heart, iron deficiency has a particularly negative impact on heart function and exacerbates heart failure. Iron-overload can result from excessive gut absorption of iron or frequent use of blood transfusions and is typically seen in patients with congenital anemias, sickle cell anemia and beta-thalassemia major, or in patients with primary hemochromatosis. This review provides an overview of normal iron metabolism, mechanisms underlying development of iron disorders in relation to heart failure, including iron-overload cardiomyopathy, and clinical perspective on the treatment options for iron metabolism disorders.
Collapse
Affiliation(s)
- Hao Zhang
- Division of Cardiology, Department of Medicine, Canada; Mazankowski Alberta Heart Institute, Canada
| | - Pavel Zhabyeyev
- Division of Cardiology, Department of Medicine, Canada; Mazankowski Alberta Heart Institute, Canada
| | - Shaohua Wang
- Mazankowski Alberta Heart Institute, Canada; Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, Canada; Mazankowski Alberta Heart Institute, Canada.
| |
Collapse
|
21
|
Bradshaw AD, DeLeon-Pennell KY. Iron overload: what's TIMP-3 got to do with it. Am J Physiol Heart Circ Physiol 2018. [PMID: 29522369 DOI: 10.1152/ajpheart.00161.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Amy D Bradshaw
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center and Division of Cardiology, Department of Medicine, Medical University of South Carolina , Charleston, South Carolina
| | - Kristine Y DeLeon-Pennell
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center and Division of Cardiology, Department of Medicine, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|