1
|
Crawford RQ, Tigro H, Solís C. What frozen human hearts can tell us about treating heart failure. Am J Physiol Heart Circ Physiol 2025; 328:H1-H2. [PMID: 39560014 DOI: 10.1152/ajpheart.00758.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Affiliation(s)
- Rhiannon Q Crawford
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Helene Tigro
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Christopher Solís
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
2
|
Scalco A, Lee EN, Johnson MA, Sorensen ML, Hilton TN, Omonaka RK, Zeimantz S, Aicher SA, Woodward WR, Habecker BA. Hypertension-induced heart failure disrupts cardiac sympathetic innervation. Am J Physiol Heart Circ Physiol 2024; 327:H1544-H1558. [PMID: 39485300 PMCID: PMC11684885 DOI: 10.1152/ajpheart.00380.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/03/2024]
Abstract
About 26 million people worldwide live with heart failure (HF), and hypertension is the primary cause in 25% of these cases. Autonomic dysfunction and sympathetic hyperactivity accompany cardiovascular diseases, including HF. However, changes in cardiac sympathetic innervation in HF are not well understood. We hypothesized that cardiac sympathetic innervation is disrupted in hypertension-induced HF. Male and female C57BL6/J mice were infused with angiotensin II (ANG II) for 4 wk to generate hypertension leading to HF; controls were infused with saline. ANG II-treated mice displayed HF phenotype, including reduced cardiac function, hypertrophy, and fibrosis. ANG II-treated mice also had significantly reduced sympathetic nerve density in the left ventricle, intraventricular septum, and right ventricle. In the left ventricle, the subepicardium remained normally innervated, whereas the subendocardium was almost devoid of sympathetic nerves. Loss of sympathetic fibers led to loss of norepinephrine content in the left ventricle. Several potential triggers for axon degeneration were tested and ruled out. ANG II-treated mice had increased premature ventricular contractions after isoproterenol and caffeine injection. Although HF can induce a cholinergic phenotype and neuronal hypertrophy in stellate ganglia, ANG II treatment did not induce a cholinergic phenotype or activation of trophic factors in this study. Cardiac neurons in the left stellate ganglion were significantly smaller in ANG II-treated mice, whereas neurons in the right stellate were unchanged. Our findings show that ANG II-induced HF disrupts sympathetic innervation, particularly in the left ventricle. Further investigations are imperative to unveil the mechanisms of denervation in HF and to develop neuromodulatory therapies for patients with autonomic imbalance.NEW & NOTEWORTHY Angiotensin II (ANG II)-induced hypertension leads to a heart failure phenotype and cardiac sympathetic denervation with the endocardial region of the left ventricle being the most affected. Denervation is accompanied by loss of norepinephrine content in the left ventricle and increased premature ventricular contractions (PVCs) after isoproterenol and caffeine injection. ANG II treatment also causes morphological changes in cardiac-projecting left stellate ganglion neurons.
Collapse
Affiliation(s)
- Arianna Scalco
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Ethan N Lee
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
- Department of Biology, Pomona College, Claremont, California, United States
| | - Morgan A Johnson
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Michelle L Sorensen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Thomas N Hilton
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Riley K Omonaka
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
- Department of Biology, Linfield University, McMinnville, Oregon, United States
| | - Shae Zeimantz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Sue A Aicher
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - William R Woodward
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Beth A Habecker
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
3
|
Williams JS, Wiley E, Cheng JL, Stone JC, Bostad W, Cherubini JM, Gibala MJ, Tang A, MacDonald MJ. Differences in cardiovascular risk factors associated with sex and gender identity, but not gender expression, in young, healthy cisgender adults. Front Cardiovasc Med 2024; 11:1374765. [PMID: 39318832 PMCID: PMC11420989 DOI: 10.3389/fcvm.2024.1374765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/10/2024] [Indexed: 09/26/2024] Open
Abstract
Background Sex differences exist in cardiovascular disease risk factors including elevated blood pressure and arterial stiffness, and decreased endothelial function in males compared to females. Feminine gender expression may be associated with elevated risk of acute coronary syndrome. However, no study has investigated the associations between sex, gender identity, and gender expression and cardiovascular disease risk factors in young adults. Methods One hundred and thirty participants (22 ± 3 years) underwent assessments of hemodynamics, arterial stiffness [pulse wave velocity (PWV)], and brachial artery endothelial function (flow-mediated dilation; %FMD). Participants completed a questionnaire capturing sex category (50 male/80 female), gender identity category (49 men/79 women/2 non-binary), and aspects of gender expression assessed by the Bem Sex Role Inventory-30 (39 androgynous/33 feminine/29 masculine/29 undifferentiated). Sex/gender identity category groups were compared using unpaired t-tests and gender expression groups compared using one-way ANOVAs. Results Resting systolic and mean arterial pressure (p < 0.01) were elevated in males vs. females. Central PWV was elevated in males [median (interquartile range): 6.4 (1.8) vs. 5.8 (2.2) m/s, p = 0.02]; however, leg and arm PWV were not different between sexes. %FMD was elevated in males vs. females, after accounting for a larger baseline artery diameter in males (8.8 ± 3.3% vs. 7.2 ± 3.1%, p = 0.02); since the majority of participants were cisgender, the same results were found examining gender identity (men vs. women). There were no differences across gender expression groups (p > 0.05). Conclusions Sex/gender identity category, but not gender expression, influence cardiovascular risk factors (blood pressure, arterial stiffness, endothelial function) in cisgender adults; further research is needed in gender-diverse populations.
Collapse
Affiliation(s)
- Jennifer S. Williams
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Elise Wiley
- School of Rehabilitation Science, McMaster University, Hamilton, ON, Canada
| | - Jem L. Cheng
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Jenna C. Stone
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - William Bostad
- Human Performance Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Joshua M. Cherubini
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Martin J. Gibala
- Human Performance Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Ada Tang
- School of Rehabilitation Science, McMaster University, Hamilton, ON, Canada
| | - Maureen J. MacDonald
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
4
|
Neuhäuser M, Ruxton GD. Perspective on statistical power and equivalence tests. Am J Physiol Heart Circ Physiol 2024; 326:H1420-H1423. [PMID: 38700473 DOI: 10.1152/ajpheart.00746.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
The use of both sexes or genders should be considered in experimental design, analysis, and reporting. Since there is no requirement to double the sample size or to have sufficient power to study sex differences, challenges for the statistical analysis can arise. In this article, we focus on the topics of statistical power and ways to increase this power. We also discuss the choice of an appropriate design and statistical method and include a separate section on equivalence tests needed to show the absence of a relevant difference.
Collapse
Affiliation(s)
- Markus Neuhäuser
- Department of Mathematics and Technology, RheinAhrCampus, Koblenz University of Applied Sciences, Remagen, Germany
| | - Graeme D Ruxton
- School of Biology, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
5
|
Lindsey ML, Kirk JA, LeBlanc AJ, Brunt KR, Carter JR, Hansell Keehan K, Ripplinger CM, Kleinbongard P, Kassiri Z. Looking backward to plan forward. Am J Physiol Heart Circ Physiol 2024; 326:H1155-H1158. [PMID: 38551484 DOI: 10.1152/ajpheart.00154.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024]
Affiliation(s)
- Merry L Lindsey
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
- Research Service, Nashville Veterans Affairs Medical Center, Nashville, Tennessee, United States
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Chicago, Illinois, United States
| | - Amanda J LeBlanc
- Department of Cardiovascular and Thoracic Surgery and Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States
| | - Keith R Brunt
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada
| | - Jason R Carter
- Robbins College of Health and Human Sciences, Baylor University, Waco, Texas, United States
| | - Kara Hansell Keehan
- American Journal of Physiology-Heart and Circulatory Physiology, American Physiological Society, Rockville, Maryland, United States
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California, United States
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Lindsey ML, Usselman CW, Ripplinger CM, Carter JR, DeLeon-Pennell KY. Sex as a biological variable for cardiovascular physiology. Am J Physiol Heart Circ Physiol 2024; 326:H459-H469. [PMID: 38099847 PMCID: PMC11219053 DOI: 10.1152/ajpheart.00727.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 02/03/2024]
Abstract
There have been ongoing efforts by federal agencies and scientific communities since the early 1990s to incorporate sex and/or gender in all aspects of cardiovascular research. Scientific journals provide a critical function as change agents to influence transformation by encouraging submissions for topic areas, and by setting standards and expectations for articles submitted to the journal. As part of ongoing efforts to advance sex and gender in cardiovascular physiology research, the American Journal of Physiology-Heart and Circulatory Physiology recently launched a call for papers on Considering Sex as a Biological Variable. This call was an overwhelming success, resulting in 78 articles published in this collection. This review summarizes the major themes of the collection, including Sex as a Biological Variable Within: Endothelial Cell and Vascular Physiology, Cardiovascular Immunity and Inflammation, Metabolism and Mitochondrial Energy, Extracellular Matrix Turnover and Fibrosis, Neurohormonal Signaling, and Cardiovascular Clinical and Epidemiology Assessments. Several articles also focused on establishing rigor and reproducibility of key physiological measurements involved in cardiovascular health and disease, as well as recommendations and considerations for study design. Combined, these articles summarize our current understanding of sex and gender influences on cardiovascular physiology and pathophysiology and provide insight into future directions needed to further expand our knowledge.
Collapse
Affiliation(s)
- Merry L Lindsey
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
- Research Service, Nashville Veterans Affairs Medical Center, Nashville, Tennessee, United States
| | - Charlotte W Usselman
- Cardiovascular Health and Autonomic Regulation Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Crystal M Ripplinger
- Department of Pharmacology, UC Davis School of Medicine, Davis, California, United States
| | - Jason R Carter
- Robbins College of Health and Human Sciences, Baylor University, Waco, Texas, United States
| | - Kristine Y DeLeon-Pennell
- Division of Cardiology, Department of Medicine, School of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States
| |
Collapse
|
7
|
Heusch G. Myocardial ischemia/reperfusion: Translational pathophysiology of ischemic heart disease. MED 2024; 5:10-31. [PMID: 38218174 DOI: 10.1016/j.medj.2023.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
Ischemic heart disease is the greatest health burden and most frequent cause of death worldwide. Myocardial ischemia/reperfusion is the pathophysiological substrate of ischemic heart disease. Improvements in prevention and treatment of ischemic heart disease have reduced mortality in developed countries over the last decades, but further progress is now stagnant, and morbidity and mortality from ischemic heart disease in developing countries are increasing. Significant problems remain to be resolved and require a better pathophysiological understanding. The present review attempts to briefly summarize the state of the art in myocardial ischemia/reperfusion research, with a view on both its coronary vascular and myocardial aspects, and to define the cutting edges where further mechanistic knowledge is needed to facilitate translation to clinical practice.
Collapse
Affiliation(s)
- Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
8
|
Wan HY, Bunsawat K, Amann M. Autonomic cardiovascular control during exercise. Am J Physiol Heart Circ Physiol 2023; 325:H675-H686. [PMID: 37505474 PMCID: PMC10659323 DOI: 10.1152/ajpheart.00303.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/11/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
The cardiovascular response to exercise is largely determined by neurocirculatory control mechanisms that help to raise blood pressure and modulate vascular resistance which, in concert with regional vasodilatory mechanisms, promote blood flow to active muscle and organs. These neurocirculatory control mechanisms include a feedforward mechanism, known as central command, and three feedback mechanisms, namely, 1) the baroreflex, 2) the exercise pressor reflex, and 3) the arterial chemoreflex. The hemodynamic consequences of these control mechanisms result from their influence on the autonomic nervous system and subsequent alterations in cardiac output and vascular resistance. Although stimulation of the baroreflex inhibits sympathetic outflow and facilitates parasympathetic activity, central command, the exercise pressor reflex, and the arterial chemoreflex facilitate sympathetic activation and inhibit parasympathetic drive. Despite considerable understanding of the cardiovascular consequences of each of these mechanisms in isolation, the circulatory impact of their interaction, which occurs when various control systems are simultaneously activated (e.g., during exercise at altitude), has only recently been recognized. Although aging and cardiovascular disease (e.g., heart failure, hypertension) have both been recognized to alter the hemodynamic consequences of these regulatory systems, this review is limited to provide a brief overview on the action and interaction of neurocirculatory control mechanisms in health.
Collapse
Affiliation(s)
- Hsuan-Yu Wan
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah, United States
| | - Kanokwan Bunsawat
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Markus Amann
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
9
|
Vanden Noven ML, Anselmo M, Tahsin CT, Carter JR, Keller-Ross ML. A review of the historical use of sex as a biological variable in the American Journal of Physiology-Heart and Circulatory Physiology. Am J Physiol Heart Circ Physiol 2023; 325:H768-H773. [PMID: 37594486 PMCID: PMC10643001 DOI: 10.1152/ajpheart.00278.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Despite National Institute of Health (NIH) mandates requiring sex as a biological variable (SABV), female underrepresentation persists in research, driving the American Journal of Physiology-Heart and Circulatory Physiology (Am J Physiol-Heart Circ) to publish SABV expectations in 2021. To determine progress within the Am J Physiol-Heart Circ, this mini-review evaluated SABV during the first 6 mo of each decade from 1980 to 2020, and 2019, to mitigate pandemic influence. Of the 1,205 articles published, 1,087 articles were included in this review (articles without original research subjects were excluded), of which 72.9% identified subjects. There were consistently fewer female human participants than males, except within 2019 (1980: females n = 3, males n = 5; 1990: females n = 70, males n = 199; 2000: females n = 305, males n = 355; 2010: females n = 186, males n = 472; 2019: females n = 1,695, males n = 1,550; 2020: females n = 1,157, males n = 1,222) and fewer female animals than males (1980: females n = 58, males n = 1,291; 1990: females n = 447, males n = 2,628; 2000: females n = 590, males n = 3,083; 2010: females n = 663, males n = 4,517; 2019: females n = 338, males n = 1,340; 2020: females n = 1,372, males n = 1,973). Only 16 (12.3%) articles including humans discussed SABV from 1980 to 2020. There are persistent SABV disparities within Am J Physiol-Heart Circ with some improvements in recent years. It is imperative that organizations such as the American Physiological Society and NIH foster an expectation of SABV as the norm, not the exception.
Collapse
Affiliation(s)
- Marnie L Vanden Noven
- Department of Exercise Science, Belmont University, Nashville, Tennessee, United States
| | - Miguel Anselmo
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Chowdhury Tasnova Tahsin
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Jason R Carter
- Department of Health, Human Performance and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, Texas, United States
| | - Manda L Keller-Ross
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
10
|
Stendahl JC, Liu Z, Boutagy NE, Parajuli N, Lu A, Alkhalil I, Lin BA, Duncan JS, Sinusas AJ. Multiaxial pressure-strain analysis of regional myocardial work in the setting of graded coronary stenoses and dobutamine stress. Am J Physiol Heart Circ Physiol 2023; 325:H492-H509. [PMID: 37417870 PMCID: PMC10538990 DOI: 10.1152/ajpheart.00735.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
We present a detailed analysis of regional myocardial blood flow and work to better understand the effects of coronary stenoses and low-dose dobutamine stress. Our analysis is based on a unique open-chest model in anesthetized canines that features invasive hemodynamic monitoring, microsphere-based blood flow analysis, and an extensive three-dimensional (3-D) sonomicrometer array that provides multiaxial deformational assessments in the ischemic, border, and remote vascular territories. We use this model to construct regional pressure-strain loops for each territory and quantify the loop subcomponent areas that reflect myocardial work contributing to the ejection of blood and wasted work that does not. We demonstrate that reductions in coronary blood flow markedly alter the shapes and temporal relationships of pressure-strain loops, as well as the magnitudes of their total and subcomponent areas. Specifically, we show that moderate stenoses in the mid-left anterior descending coronary artery decrease regional midventricle myocardial work indices and substantially increase indices of wasted work. In the midventricle, these effects are most pronounced along the radial and longitudinal axes, with more modest effects along the circumferential axis. We further demonstrate that low-dose dobutamine can help to restore or even improve function, but often at the cost of increased wasted work. This detailed, multiaxial analysis provides unique insight into the physiology and mechanics of the heart in the presence of ischemia and low-dose dobutamine, with potential implications in many areas, including the detection and characterization of ischemic heart disease and the use of inotropic support for low cardiac output.NEW & NOTEWORTHY Our unique experimental model assesses cardiac pressure-strain relationships along multiple axes in multiple regions. We demonstrate that moderate coronary stenoses decrease regional myocardial work and increase wasted work and that low-dose dobutamine can help to restore myocardial function, but often with further increases in wasted work. Our findings highlight the significant directional variation of cardiac mechanics and demonstrate potential advantages of pressure-strain analyses over traditional, purely deformational measures, especially in characterizing physiological changes related to dobutamine.
Collapse
Affiliation(s)
- John C Stendahl
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Zhao Liu
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Nabil E Boutagy
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, United States
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Nripesh Parajuli
- Department of Biomedical Engineering, Yale University School of Engineering and Applied Science, New Haven, Connecticut, United States
| | - Allen Lu
- Department of Biomedical Engineering, Yale University School of Engineering and Applied Science, New Haven, Connecticut, United States
| | - Imran Alkhalil
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Ben A Lin
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, New Haven, Connecticut, United States
| | - James S Duncan
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Biomedical Engineering, Yale University School of Engineering and Applied Science, New Haven, Connecticut, United States
| | - Albert J Sinusas
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Biomedical Engineering, Yale University School of Engineering and Applied Science, New Haven, Connecticut, United States
| |
Collapse
|
11
|
Lindsey ML, Kassiri Z, LeBlanc AJ, Ripplinger CM, Kirk JA, Carter JR, Kleinbongard P, Brunt KR. Spring cleaning: freshening up the portfolio. Am J Physiol Heart Circ Physiol 2023; 324:H840-H842. [PMID: 37115630 PMCID: PMC10190828 DOI: 10.1152/ajpheart.00219.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 04/29/2023]
Affiliation(s)
- Merry L Lindsey
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
- Research Service, Nashville Veterans Affairs Medical Center, Nashville, Tennessee, United States
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada
| | - Amanda J LeBlanc
- Department of Cardiovascular and Thoracic Surgery and Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States
| | - Crystal M Ripplinger
- Department of Pharmacology, UC Davis School of Medicine, Davis, California, United States
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Chicago, Illinois, United States
| | - Jason R Carter
- Robbins College of Health and Human Sciences, Baylor University, Waco, Texas, United States
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Keith R Brunt
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada
| |
Collapse
|
12
|
Lindsey ML, Kleinbongard P, Kassiri Z, Carter JR, Hansell Keehan K, Ripplinger CM, LeBlanc AJ, Brunt KR, Kirk JA. We asked and you answered. Am J Physiol Heart Circ Physiol 2023; 324:H657-H658. [PMID: 36930658 PMCID: PMC10085547 DOI: 10.1152/ajpheart.00084.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/17/2023] [Indexed: 03/18/2023]
Affiliation(s)
- Merry L Lindsey
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
- Research Service, Nashville Veterans Affairs Medical Center, Nashville, Tennessee, United States
| | - Petra Kleinbongard
- West German Heart and Vascular Center, Institute for Pathophysiology, University of Essen Medical School, Essen, Germany
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R Carter
- Robbins College of Health and Human Sciences, Baylor University, Waco, Texas, United States
| | - Kara Hansell Keehan
- Associate Publications Director, Editorial and Content Development and Executive Editor, AJP-Heart and Circulatory Physiology, American Physiological Society, Rockville, Maryland, United States
| | - Crystal M Ripplinger
- Department of Pharmacology, UC Davis School of Medicine, Davis, California, United States
| | - Amanda J LeBlanc
- Department of Cardiovascular and Thoracic Surgery and Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States
| | - Keith R Brunt
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Chicago, Illinois, United States
| |
Collapse
|