1
|
Kaneguchi A, Sakitani N, Umehara T. Histological changes in skeletal muscle induced by heart failure in human patients and animal models: A scoping review. Acta Histochem 2024; 126:152210. [PMID: 39442432 DOI: 10.1016/j.acthis.2024.152210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE This scoping review aimed to characterize the histological changes in skeletal muscle after heart failure (HF) and to identify gaps in knowledge. METHODS On April 03, 2024, systematic searches were performed for papers in which histological analyses were conducted on skeletal muscle sampled from patients with HF or animal models of HF. Screening and data extraction were conducted by two independent authors. RESULTS AND CONCLUSION A total of 118 papers were selected, including 33 human and 85 animal studies. Despite some disagreements among studies, some trends were observed. These trends included a slow-to-fast transition, a decrease in muscle fiber size, capillary to muscle fiber ratio, and mitochondrial activity and content, and an increase in apoptosis. These changes may contribute to the fatigability and decrease in muscle strength observed after HF. Although there were some disagreements between the results of human and animal studies, the results were generally similar. Animal models of HF will therefore be useful in elucidating the histological changes in skeletal muscle that occur in human patients with HF. Because the muscles subjected to histological analysis were mostly thigh muscles in humans and mostly lower leg muscles in animals, it remains uncertain whether changes similar to those seen in lower limb (hindlimb) muscles after HF also occur in upper limb (forelimb) muscles. The results of this review will consolidate the current knowledge on HF-induced histological changes in skeletal muscle and consequently aid in the rehabilitation of patients with HF and future studies.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, 739-2695, Japan.
| | - Naoyoshi Sakitani
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Hayashi-cho 2217-4, Takamatsu, Kagawa, 761-0395, Japan
| | - Takuya Umehara
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, 739-2695, Japan
| |
Collapse
|
2
|
Zhang P, Da Silva Goncalves Bos D, Vang A, Feord J, McCullough DJ, Zimmer A, D'Silva N, Clements RT, Choudhary G. Reduced exercise capacity occurs before intrinsic skeletal muscle dysfunction in experimental rat models of pulmonary hypertension. Pulm Circ 2024; 14:e12358. [PMID: 38576776 PMCID: PMC10993156 DOI: 10.1002/pul2.12358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/06/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Reduced exercise capacity in pulmonary hypertension (PH) significantly impacts quality of life. However, the cause of reduced exercise capacity in PH remains unclear. The objective of this study was to investigate whether intrinsic skeletal muscle changes are causative in reduced exercise capacity in PH using preclinical PH rat models with different PH severity. PH was induced in adult Sprague-Dawley (SD) or Fischer (CDF) rats with one dose of SU5416 (20 mg/kg) injection, followed by 3 weeks of hypoxia and additional 0-4 weeks of normoxia exposure. Control s rats were injected with vehicle and housed in normoxia. Echocardiography was performed to assess cardiac function. Exercise capacity was assessed by VO2 max. Skeletal muscle structural changes (atrophy, fiber type switching, and capillary density), mitochondrial function, isometric force, and fatigue profile were assessed. In SD rats, right ventricular systolic dysfunction is associated with reduced exercise capacity in PH rats at 7-week timepoint in comparison to control rats, while no changes were observed in skeletal muscle structure, mitochondrial function, isometric force, or fatigue profile. CDF rats at 4-week timepoint developed a more severe PH and, in addition to right ventricular dysfunction, the reduced exercise capacity in these rats is associated with skeletal muscle atrophy; however, mitochondrial function, isometric force, and fatigue profile in skeletal muscle remain unchanged. Our data suggest that cardiopulmonary impairments in PH are the primary cause of reduced exercise capacity, which occurs before intrinsic skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Peng Zhang
- Vascular Research LaboratoryProvidence VA Medical CenterProvidenceRhode IslandUSA
- Division of Cardiology, Department of MedicineAlpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Denielli Da Silva Goncalves Bos
- Vascular Research LaboratoryProvidence VA Medical CenterProvidenceRhode IslandUSA
- Division of Cardiology, Department of MedicineAlpert Medical School of Brown UniversityProvidenceRhode IslandUSA
- Pulmonary Division, Heart InstituteUniversity of São Paulo Medical SchoolSão PauloBrazil
| | - Alexander Vang
- Vascular Research LaboratoryProvidence VA Medical CenterProvidenceRhode IslandUSA
| | - Julia Feord
- Vascular Research LaboratoryProvidence VA Medical CenterProvidenceRhode IslandUSA
| | | | - Alexsandra Zimmer
- Vascular Research LaboratoryProvidence VA Medical CenterProvidenceRhode IslandUSA
- Division of Cardiology, Department of MedicineAlpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Natalie D'Silva
- Vascular Research LaboratoryProvidence VA Medical CenterProvidenceRhode IslandUSA
- Division of Cardiology, Department of MedicineAlpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Richard T. Clements
- Vascular Research LaboratoryProvidence VA Medical CenterProvidenceRhode IslandUSA
- Biomedical and Pharmaceutical SciencesUniversity of Rhode IslandKingstonRhode IslandUSA
| | - Gaurav Choudhary
- Vascular Research LaboratoryProvidence VA Medical CenterProvidenceRhode IslandUSA
- Division of Cardiology, Department of MedicineAlpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| |
Collapse
|
3
|
Mangner N, Winzer EB, Linke A, Adams V. Locomotor and respiratory muscle abnormalities in HFrEF and HFpEF. Front Cardiovasc Med 2023; 10:1149065. [PMID: 37965088 PMCID: PMC10641491 DOI: 10.3389/fcvm.2023.1149065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
Heart failure (HF) is a chronic and progressive syndrome affecting worldwide billions of patients. Exercise intolerance and early fatigue are hallmarks of HF patients either with a reduced (HFrEF) or a preserved (HFpEF) ejection fraction. Alterations of the skeletal muscle contribute to exercise intolerance in HF. This review will provide a contemporary summary of the clinical and molecular alterations currently known to occur in the skeletal muscles of both HFrEF and HFpEF, and thereby differentiate the effects on locomotor and respiratory muscles, in particular the diaphragm. Moreover, current and future therapeutic options to address skeletal muscle weakness will be discussed focusing mainly on the effects of exercise training.
Collapse
Affiliation(s)
- Norman Mangner
- Department of Internal Medicine and Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
| | - Ephraim B. Winzer
- Department of Internal Medicine and Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
| | - Axel Linke
- Department of Internal Medicine and Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
| | - Volker Adams
- Laboratory of Molecular and Experimental Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
- Dresden Cardiovascular Research Institute and Core Laboratories GmbH, Dresden, Germany
| |
Collapse
|
4
|
Drummond FR, Soares LL, Leal TF, Leite LB, Rezende LMT, Fidelis MR, Lavorato VN, Miranda DC, Carneiro-Júnior MA, Neves MM, Alberici LC, Carlo Reis EC, Neves CA, Natali AJ. Effects of voluntary running on the skeletal muscle of rats with pulmonary artery hypertension. Front Physiol 2023; 14:1206484. [PMID: 37469567 PMCID: PMC10352770 DOI: 10.3389/fphys.2023.1206484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
The effects of voluntary running on the skeletal muscle of rats with pulmonary arterial hypertension (PAH) were tested in the present study. PAH was induced in rats by a single injection of monocrotaline (MCT, 60 mg/kg). Rats in the sedentary hypertension (HS) group had their tolerance to physical exertion reduced throughout the experiment, while those in the sedentary control (SC), exercise control (EC), exercise hypertension (EH) and median exercise (EM) groups maintained or increased. Despite that, the muscular citrate synthase activity was not different between groups. The survival time was higher in the EH (32 days) than in the SH (28 days) (p = 0.0032). SH and EH groups showed a lower percentage of muscle fiber and a higher percentage of extracellular matrix compared to control groups (p < 0.0001). However, the EM and EH groups presented higher percentage of muscle fiber and lower percentage of extracellular matrix than SH group (p < 0.0001). Regarding muscular gene expression, the SH and EM groups showed a lower expression of PGC1-α (p = 0.0024) and a higher expression of VEGF (p = 0.0033) compared to SC, while PGC1-α was elevated in the EH. No difference between groups was found for the carbonylated protein levels (p > 0.05), while the TNF-α/IL-10 ratio was augmented in the EH (p = 0.0277). In conclusion, voluntary running augments the proportion of fiber and affects the gene expression of inflammatory and mitochondrial biogenesis' markers in the skeletal muscle of rats with MCT-induced PAH, which benefits their survival and tolerance to physical effort.
Collapse
Affiliation(s)
- Filipe Rios Drummond
- Department of General Biology, Laboratory of Structural Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Leôncio Lopes Soares
- Department of Physical Education, Laboratory of Exercise Biology Federal University of Viçosa, Viçosa, Brazil
| | - Tiago Ferreira Leal
- Department of Physical Education, Laboratory of Exercise Biology Federal University of Viçosa, Viçosa, Brazil
| | - Luciano Bernardes Leite
- Department of Physical Education, Laboratory of Exercise Biology Federal University of Viçosa, Viçosa, Brazil
| | | | - Meilene Ribeiro Fidelis
- Department of Physical Education, Laboratory of Exercise Biology Federal University of Viçosa, Viçosa, Brazil
| | - Victor Neiva Lavorato
- Department of Physical Education, Governador Ozanam Coelho University Center (UNIFAGOC), Ubá, Minas Gerais, Brazil
| | - Denise Coutinho Miranda
- Department of Physical Education, Governador Ozanam Coelho University Center (UNIFAGOC), Ubá, Minas Gerais, Brazil
| | | | - Mariana Machado Neves
- Department of General Biology, Laboratory of Structural Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Luciane Carla Alberici
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | | | - Clovis Andrade Neves
- Department of General Biology, Laboratory of Structural Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Antônio José Natali
- Department of Physical Education, Laboratory of Exercise Biology Federal University of Viçosa, Viçosa, Brazil
| |
Collapse
|
5
|
Pilotto AM, Adami A, Mazzolari R, Brocca L, Crea E, Zuccarelli L, Pellegrino MA, Bottinelli R, Grassi B, Rossiter HB, Porcelli S. Near-infrared spectroscopy estimation of combined skeletal muscle oxidative capacity and O 2 diffusion capacity in humans. J Physiol 2022; 600:4153-4168. [PMID: 35930524 PMCID: PMC9481735 DOI: 10.1113/jp283267] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/27/2022] [Indexed: 01/05/2023] Open
Abstract
The final steps of the O2 cascade during exercise depend on the product of the microvascular-to-intramyocyteP O 2 ${P}_{{{\rm{O}}}_{\rm{2}}}$ difference and muscle O2 diffusing capacity (D m O 2 $D{{\rm{m}}}_{{{\rm{O}}}_2}$ ). Non-invasive methods to determineD m O 2 $D{{\rm{m}}}_{{{\rm{O}}}_2}$ in humans are currently unavailable. Muscle oxygen uptake (mV ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ ) recovery rate constant (k), measured by near-infrared spectroscopy (NIRS) using intermittent arterial occlusions, is associated with muscle oxidative capacity in vivo. We reasoned that k would be limited byD m O 2 $D{{\rm{m}}}_{{{\rm{O}}}_2}$ when muscle oxygenation is low (kLOW ), and hypothesized that: (i) k in well oxygenated muscle (kHIGH ) is associated with maximal O2 flux in fibre bundles; and (ii) ∆k (kHIGH - kLOW ) is associated with capillary density (CD). Vastus lateralis k was measured in 12 participants using NIRS after moderate exercise. The timing and duration of arterial occlusions were manipulated to maintain tissue saturation index within a 10% range either below (LOW) or above (HIGH) half-maximal desaturation, assessed during sustained arterial occlusion. Maximal O2 flux in phosphorylating state was 37.7 ± 10.6 pmol s-1 mg-1 (∼5.8 ml min-1 100 g-1 ). CD ranged 348 to 586 mm-2 . kHIGH was greater than kLOW (3.15 ± 0.45 vs. 1.56 ± 0.79 min-1 , P < 0.001). Maximal O2 flux was correlated with kHIGH (r = 0.80, P = 0.002) but not kLOW (r = -0.10, P = 0.755). Δk ranged -0.26 to -2.55 min-1 , and correlated with CD (r = -0.68, P = 0.015). mV ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ k reflects muscle oxidative capacity only in well oxygenated muscle. ∆k, the difference in k between well and poorly oxygenated muscle, was associated with CD, a mediator ofD m O 2 $D{{\rm{m}}}_{{{\rm{O}}}_2}$ . Assessment of muscle k and ∆k using NIRS provides a non-invasive window on muscle oxidative and O2 diffusing capacity. KEY POINTS: We determined post-exercise recovery kinetics of quadriceps muscle oxygen uptake (mV ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ ) measured by near-infrared spectroscopy (NIRS) in humans under conditions of both non-limiting (HIGH) and limiting (LOW) O2 availability, for comparison with biopsy variables. The mV ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ recovery rate constant in HIGH O2 availability was hypothesized to reflect muscle oxidative capacity (kHIGH ) and the difference in k between HIGH and LOW O2 availability (∆k) was hypothesized to reflect muscle O2 diffusing capacity. kHIGH was correlated with phosphorylating oxidative capacity of permeabilized muscle fibre bundles (r = 0.80). ∆k was negatively correlated with capillary density (r = -0.68) of biopsy samples. NIRS provides non-invasive means of assessing both muscle oxidative and oxygen diffusing capacity in vivo.
Collapse
Affiliation(s)
- Andrea M. Pilotto
- Department of MedicineUniversity of UdineUdineItaly
- Department of Molecular MedicineInstitute of PhysiologyUniversity of PaviaPaviaItaly
| | - Alessandra Adami
- Department of KinesiologyUniversity of Rhode IslandKingstonRIUSA
| | - Raffaele Mazzolari
- Department of Molecular MedicineInstitute of PhysiologyUniversity of PaviaPaviaItaly
- Department of Physical Education and SportUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
| | - Lorenza Brocca
- Department of Molecular MedicineInstitute of PhysiologyUniversity of PaviaPaviaItaly
| | - Emanuela Crea
- Department of Molecular MedicineInstitute of PhysiologyUniversity of PaviaPaviaItaly
| | | | - Maria A. Pellegrino
- Department of Molecular MedicineInstitute of PhysiologyUniversity of PaviaPaviaItaly
- Interdipartimental Centre for Biology and Sport MedicineUniversity of PaviaPaviaItaly
| | - Roberto Bottinelli
- Department of Molecular MedicineInstitute of PhysiologyUniversity of PaviaPaviaItaly
- Interdipartimental Centre for Biology and Sport MedicineUniversity of PaviaPaviaItaly
| | - Bruno Grassi
- Department of MedicineUniversity of UdineUdineItaly
| | - Harry B. Rossiter
- Division of Respiratory and Critical Care Physiology and MedicineThe Lundquist Institute for Biomedical Innovation at Harbor–UCLA Medical CenterTorranceCAUSA
| | - Simone Porcelli
- Department of Molecular MedicineInstitute of PhysiologyUniversity of PaviaPaviaItaly
- Institute of Biomedical TechnologiesNational Research CouncilMilanItaly
| |
Collapse
|
6
|
de Goede P, Wüst RCI, Schomakers BV, Denis S, Vaz FM, Pras-Raves ML, van Weeghel M, Yi CX, Kalsbeek A, Houtkooper RH. Time-restricted feeding during the inactive phase abolishes the daily rhythm in mitochondrial respiration in rat skeletal muscle. FASEB J 2022; 36:e22133. [PMID: 35032416 DOI: 10.1096/fj.202100707r] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/26/2021] [Accepted: 12/17/2021] [Indexed: 01/06/2023]
Abstract
Shift-workers show an increased incidence of type 2 diabetes mellitus (T2DM). A possible mechanism is the disruption of the circadian timing of glucose homeostasis. Skeletal muscle mitochondrial function is modulated by the molecular clock. We used time-restricted feeding (TRF) during the inactive phase to investigate how mistimed feeding affects muscle mitochondrial metabolism. Rats on an ad libitum (AL) diet were compared to those that could eat only during the light (inactive) or dark (active) phase. Mitochondrial respiration, metabolic gene expressions, and metabolite concentrations were determined in the soleus muscle. Rats on AL feeding or dark-fed TRF showed a clear daily rhythm in muscle mitochondrial respiration. This rhythm in mitochondrial oxidative phosphorylation capacity was abolished in light-fed TRF animals and overall 24h respiration was lower. The expression of several genes involved in mitochondrial biogenesis and the fission/fusion machinery was altered in light-fed animals. Metabolomics analysis indicated that light-fed animals had lost rhythmic levels of α-ketoglutarate and citric acid. Contrastingly, lipidomics showed that light-fed animals abundantly gained rhythmicity in levels of triglycerides. Furthermore, while the RER shifted entirely with the food intake in the light-fed animals, many measured metabolic parameters (e.g., activity and mitochondrial respiration) did not strictly align with the shifted timing of food intake, resulting in a mismatch between expected metabolic supply/demand (as dictated by the circadian timing system and light/dark-cycle) and the actual metabolic supply/demand (as dictated by the timing of food intake). These data suggest that shift-work impairs mitochondrial metabolism and causes metabolic inflexibility, which can predispose to T2DM.
Collapse
Affiliation(s)
- Paul de Goede
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Hypothalamic Integration Mechanisms Group, Netherlands Institute for Neuroscience (NIN), an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Rob C I Wüst
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bauke V Schomakers
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Core Facility Metabolomics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Simone Denis
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Core Facility Metabolomics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mia L Pras-Raves
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Core Facility Metabolomics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Core Facility Metabolomics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Chun-Xia Yi
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Andries Kalsbeek
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Hypothalamic Integration Mechanisms Group, Netherlands Institute for Neuroscience (NIN), an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Cannon DT, Nogueira L, Gutierrez-Gonzalez AK, Gilmore NK, Bigby TD, Breen EC. Role of IL-33 receptor (ST2) deletion in diaphragm contractile and mitochondrial function in the Sugen5416/hypoxia model of pulmonary hypertension. Respir Physiol Neurobiol 2021; 295:103783. [PMID: 34508866 DOI: 10.1016/j.resp.2021.103783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/14/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease of the pulmonary vasculature that leads to right ventricular failure. Skeletal muscle maladaptations limit physical activity and may contribute to disease progression. The role of alarmin/inflammatory signaling in PAH respiratory muscle dysfunction is unknown. We hypothesized that diaphragm mitochondrial and contractile functions are impaired in SU5416/hypoxia-induced pulmonary hypertension due to increased systemic IL-33 signaling. We induced pulmonary hypertension in adult C57Bl/6 J (WT) and ST2 (IL1RL1) gene ablated mice by SU5416/hypoxia (SuHx). We measured diaphragm fiber mitochondrial respiration, inflammatory markers, and contractile function ex vivo. SuHx reduced coupled and uncoupled permeabilized myofiber respiration by ∼40 %. During coupled respiration with complex I substrates, ST2-/- attenuated SuHx inhibition of mitochondrial respiration (genotype × treatment interaction F[1,67] = 3.3, p = 0.07, η2 = 0.04). Flux control ratio and coupling efficiency were not affected by SuHx or genotype. A higher substrate control ratio for succinate was observed in SuHx fibers and attenuated in ST2-/- fibers (F[1,67] = 5.3, p < 0.05, η2 = 0.07). Diaphragm TNFα, but not IL-33 or NFkB, was increased in SuHx vs. DMSO in both genotypes (F[1,43] = 4.7, p < 0.05, η2 = 0.1). Diaphragm force-frequency relationships were right-shifted in SuHx vs. WT (F[3,440] = 8.4, p < 0.05, η2 = 0.0025). There was no effect of ST2-/- on the force-frequency relationship. Force decay during a fatigue protocol at 100 Hz, but not at 40 Hz, was attenuated by SuHx vs. DMSO in both genotypes (F[1,41] = 5.6, p < 0.05, η2 = 0.11). SuHx mice exhibit a modest compensation in diaphragm contractility and mitochondrial dysfunction during coupled respiration; the latter partially regulated through ST2 signaling.
Collapse
Affiliation(s)
- Daniel T Cannon
- School of Exercise & Nutritional Sciences, San Diego State University, United States.
| | - Leonardo Nogueira
- Department of Medicine, University of California, San Diego, United States; Instituto de Bioquímica Médica Leopoldo de Meis, Federal University of Rio de Janeiro, Brazil
| | | | - Natalie K Gilmore
- Department of Medicine, University of California, San Diego, United States
| | - Timothy D Bigby
- Department of Medicine, University of California, San Diego, United States
| | - Ellen C Breen
- Department of Medicine, University of California, San Diego, United States
| |
Collapse
|
8
|
Malenfant S, Lebret M, Breton-Gagnon É, Potus F, Paulin R, Bonnet S, Provencher S. Exercise intolerance in pulmonary arterial hypertension: insight into central and peripheral pathophysiological mechanisms. Eur Respir Rev 2021; 30:200284. [PMID: 33853885 PMCID: PMC9488698 DOI: 10.1183/16000617.0284-2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/08/2020] [Indexed: 11/05/2022] Open
Abstract
Exercise intolerance is a cardinal symptom of pulmonary arterial hypertension (PAH) and strongly impacts patients' quality of life (QoL). Although central cardiopulmonary impairments limit peak oxygen consumption (V' O2peak ) in patients with PAH, several peripheral abnormalities have been described over the recent decade as key determinants in exercise intolerance, including impaired skeletal muscle (SKM) morphology, convective O2 transport, capillarity and metabolism indicating that peripheral abnormalities play a greater role in limiting exercise capacity than previously thought. More recently, cerebrovascular alterations potentially contributing to exercise intolerance in patients with PAH were also documented. Currently, only cardiopulmonary rehabilitation has been shown to efficiently improve the peripheral components of exercise intolerance in patients with PAH. However, more extensive studies are needed to identify targeted interventions that would ultimately improve patients' exercise tolerance and QoL. The present review offers a broad and comprehensive analysis of the present literature about the complex mechanisms and their interactions limiting exercise in patients and suggests several gaps in knowledge that need to be addressed in the future for a better understanding of exercise intolerance in patients with PAH.
Collapse
Affiliation(s)
- Simon Malenfant
- Pulmonary Hypertension and Vascular Biology Research Group, Quebec Heart and Lung Institute Research Center, Quebec City, Canada
- Dept of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Marius Lebret
- Pulmonary Hypertension and Vascular Biology Research Group, Quebec Heart and Lung Institute Research Center, Quebec City, Canada
- Dept of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Émilie Breton-Gagnon
- Pulmonary Hypertension and Vascular Biology Research Group, Quebec Heart and Lung Institute Research Center, Quebec City, Canada
- Dept of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - François Potus
- Pulmonary Hypertension and Vascular Biology Research Group, Quebec Heart and Lung Institute Research Center, Quebec City, Canada
| | - Roxane Paulin
- Pulmonary Hypertension and Vascular Biology Research Group, Quebec Heart and Lung Institute Research Center, Quebec City, Canada
- Dept of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Sébastien Bonnet
- Pulmonary Hypertension and Vascular Biology Research Group, Quebec Heart and Lung Institute Research Center, Quebec City, Canada
- Dept of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Steeve Provencher
- Pulmonary Hypertension and Vascular Biology Research Group, Quebec Heart and Lung Institute Research Center, Quebec City, Canada
- Dept of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| |
Collapse
|
9
|
Ajime TT, Serré J, Wüst RCI, Messa GAM, Poffé C, Swaminathan A, Maes K, Janssens W, Troosters T, Degens H, Gayan-Ramirez G. Two Weeks of Smoking Cessation Reverse Cigarette Smoke-Induced Skeletal Muscle Atrophy and Mitochondrial Dysfunction in Mice. Nicotine Tob Res 2021; 23:143-151. [PMID: 31965191 DOI: 10.1093/ntr/ntaa016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Apart from its adverse effects on the respiratory system, cigarette smoking also induces skeletal muscle atrophy and dysfunction. Whether short-term smoking cessation can restore muscle mass and function is unknown. We, therefore, studied the impact of 1- and 2-week smoking cessation on skeletal muscles in a mouse model. METHODS Male mice were divided into four groups: Air-exposed (14 weeks); cigarette smoke (CS)-exposed (14 weeks); CS-exposed (13 weeks) followed by 1-week cessation; CS-exposed (12 weeks) followed by 2 weeks cessation to examine exercise capacity, physical activity levels, body composition, muscle function, capillarization, mitochondrial function and protein expression in the soleus, plantaris, and diaphragm muscles. RESULTS CS-induced loss of body and muscle mass was significantly improved within 1 week of cessation due to increased lean and fat mass. Mitochondrial respiration and protein levels of the respiratory complexes in the soleus were lower in CS-exposed mice, but similar to control values after 2 weeks of cessation. Exposing isolated soleus muscles to CS extracts reduced mitochondrial respiration that was reversed after removing the extract. While physical activity was reduced in all groups, exercise capacity, limb muscle force, fatigue resistance, fiber size and capillarization, and diaphragm cytoplasmic HIF-1α were unaltered by CS-exposure. However, CS-induced diaphragm atrophy and increased capillary density were not seen after 2 weeks of smoking cessation. CONCLUSION In male mice, 2 weeks of smoking cessation reversed smoking-induced mitochondrial dysfunction, limb muscle mass loss, and diaphragm muscle atrophy, highlighting immediate benefits of cessation on skeletal muscles. IMPLICATIONS Our study demonstrates that CS-induced skeletal muscle mitochondrial dysfunction and atrophy are significantly improved by 2 weeks of cessation in male mice. We show for the first time that smoking cessation as short as 1 to 2 weeks is associated with immediate beneficial effects on skeletal muscle structure and function with the diaphragm being particularly sensitive to CS-exposure and cessation. This could help motivate smokers to quit smoking as early as possible. The knowledge that smoking cessation has potential positive extrapulmonary effects is particularly relevant for patients referred to rehabilitation programs and those admitted to hospitals suffering from acute or chronic muscle deterioration yet struggling with smoking cessation.
Collapse
Affiliation(s)
- Tom Tanjeko Ajime
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU-Leuven, Leuven, Belgium.,Research Group for Rehabilitation in Internal Disorders, Department of Rehabilitation Sciences, KU-Leuven, Leuven, Belgium.,Department of Life Sciences, Research Center for Musculoskeletal Science and Sports Medicine, Manchester Metropolitan University, Manchester, UK
| | - Jef Serré
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU-Leuven, Leuven, Belgium
| | - Rob C I Wüst
- Laboratory of Myology, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Guy Anselme Mpaka Messa
- Department of Life Sciences, Research Center for Musculoskeletal Science and Sports Medicine, Manchester Metropolitan University, Manchester, UK
| | - Chiel Poffé
- Exercise Physiology Research Group, Department of Movement Sciences, KU-Leuven, Leuven, Belgium
| | | | - Karen Maes
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU-Leuven, Leuven, Belgium
| | - Wim Janssens
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU-Leuven, Leuven, Belgium
| | - Thierry Troosters
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU-Leuven, Leuven, Belgium.,Research Group for Rehabilitation in Internal Disorders, Department of Rehabilitation Sciences, KU-Leuven, Leuven, Belgium
| | - Hans Degens
- Department of Life Sciences, Research Center for Musculoskeletal Science and Sports Medicine, Manchester Metropolitan University, Manchester, UK.,Lithuanian Sports University, Kaunas, Lithuania
| | - Ghislaine Gayan-Ramirez
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU-Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Cui N, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Kawate H, Tanaka M, Tanaka M, Wei Y, Kakihara S, Zhao Y, Aruga K, Kawagishi H, Nakada T, Yamada M, Shindo T. Adrenomedullin-RAMP2 and -RAMP3 Systems Regulate Cardiac Homeostasis during Cardiovascular Stress. Endocrinology 2021; 162:6129198. [PMID: 33545715 DOI: 10.1210/endocr/bqab001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Indexed: 12/26/2022]
Abstract
Adrenomedullin (AM) is a peptide hormone with multiple physiological functions, which are regulated by its receptor activity-modifying proteins, RAMP2 and RAMP3. We previously reported that AM or RAMP2 knockout (KO) (AM-/-, RAMP2-/-) is embryonically lethal in mice, whereas RAMP3-/- mice are apparently normal. AM, RAMP2, and RAMP3 are all highly expressed in the heart; however, their functions there are not fully understood. Here, we analyzed the pathophysiological functions of the AM-RAMP2 and AM-RAMP3 systems in hearts subjected to cardiovascular stress. Cardiomyocyte-specific RAMP2-/- (C-RAMP2-/-) and RAMP3-/- showed no apparent heart failure at base line. After 1 week of transverse aortic constriction (TAC), however, C-RAMP2-/- exhibited significant cardiac hypertrophy, decreased ejection fraction, and increased fibrosis compared with wild-type mice. Both dP/dtmax and dP/dtmin were significantly reduced in C-RAMP2-/-, indicating reduced ventricular contractility and relaxation. Exposing C-RAMP2-/- cardiomyocytes to isoproterenol enhanced their hypertrophy and oxidative stress compared with wild-type cells. C-RAMP2-/- cardiomyocytes also contained fewer viable mitochondria and showed reduced mitochondrial membrane potential and respiratory capacity. RAMP3-/- also showed reduced systolic function and enhanced fibrosis after TAC, but those only became apparent after 4 weeks. A reduction in cardiac lymphatic vessels was the characteristic feature in RAMP3-/-. These observations indicate the AM-RAMP2 system is necessary for early adaptation to cardiovascular stress through regulation of cardiac mitochondria. AM-RAMP3 is necessary for later adaptation through regulation of lymphatic vessels. The AM-RAMP2 and AM-RAMP3 systems thus play separate critical roles in the maintenance of cardiovascular homeostasis against cardiovascular stress.
Collapse
Affiliation(s)
- Nanqi Cui
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takayuki Sakurai
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Life Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Akiko Kamiyoshi
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Life Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Yuka Ichikawa-Shindo
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hisaka Kawate
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Megumu Tanaka
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masaaki Tanaka
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yangxuan Wei
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shinji Kakihara
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yunlu Zhao
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kohsuke Aruga
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroyuki Kawagishi
- Department of Molecular Pharmacology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Biotechnology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Tsutomu Nakada
- Department of Instrumental Analysis, Research Center for Supports to Advanced Science, Shinshu University, Matsumoto, Japan
| | - Mitsuhiko Yamada
- Department of Molecular Pharmacology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takayuki Shindo
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Life Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| |
Collapse
|
11
|
Vieira JS, Cunha TF, Paixão NA, Dourado PM, Carrascoza LS, Bacurau AVN, Brum PC. Exercise intolerance establishment in pulmonary hypertension: Preventive effect of aerobic exercise training. Life Sci 2020; 261:118298. [PMID: 32822717 DOI: 10.1016/j.lfs.2020.118298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 10/23/2022]
Abstract
AIMS 1) Characterize the progression of exercise intolerance in monocrotaline-induced pulmonary hypertension (PH) in mice and 2) evaluate the therapeutic effect of aerobic exercise training (AET) on counteracting skeletal and cardiac dysfunction in PH. MAIN METHODS Wild type C57BL6/J mice were studied in two different time points: 2 months and 4 months. Exercise tolerance was evaluated by graded treadmill exercise test. The AET was performed in the last month of treatment of 4 months' time point. Cardiac function was evaluated by echocardiography. Skeletal muscle cross-sectional area was assessed by immunofluorescence. The diameter of cardiomyocytes and pulmonary edema were quantified by staining with hematoxylin-eosin. The variables were compared among the groups by two-way ANOVA or non-paired Student's t-test. Significance level was set at p < 0.05. KEY FINDINGS After 2 months of MCT treatment, mice presented pulmonary edema, right cardiac dysfunction and left ventricle hypertrophy. After 4 months of MCT treatment, mice showed pulmonary edema, right and left cardiac dysfunction and remodeling associated with exercise intolerance and skeletal muscle atrophy. AET was able to reverse cardiac left ventricle dysfunction and remodeling, prevent exercise intolerance and skeletal muscle dysfunction. Thus, our data provide evidence of skeletal muscle abnormalities on advanced PH. AET was efficient in inducing an anti-cardiac remodeling effect besides preventing exercise intolerance. SIGNIFICANCE Our study provides a robust model of PH in mice, as well as highlights the importance of AET as a preventive strategy for exercise intolerance and, skeletal and cardiac muscle abnormalities in PH.
Collapse
Affiliation(s)
- J S Vieira
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - T F Cunha
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - N A Paixão
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - P M Dourado
- Heart Institute, Medical School, University of São Paulo, São Paulo, Brazil
| | - L S Carrascoza
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - A V N Bacurau
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - P C Brum
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
12
|
Vaccari F, Passaro A, D'Amuri A, Sanz JM, Di Vece F, Capatti E, Magnesa B, Comelli M, Mavelli I, Grassi B, Fiori F, Bravo G, Avancini A, Parpinel M, Lazzer S. Effects of 3-month high-intensity interval training vs. moderate endurance training and 4-month follow-up on fat metabolism, cardiorespiratory function and mitochondrial respiration in obese adults. Eur J Appl Physiol 2020; 120:1787-1803. [PMID: 32514607 DOI: 10.1007/s00421-020-04409-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/25/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE The purpose of this study was to investigate, in obese adults, changes in body composition, physical capacities, fat oxidation and ex vivo mitochondrial respiration induced by a 3-month either moderate-intensity continuous training (MICT) or high-intensity interval training (HIIT); afterwards, the patients were followed for four months. METHODS Thirty-two patients (mean age 39 years; mean body mass index [BMI] 36 kg∙m-2) participated in this study attending ~ 34 sessions of training. At baseline (PRE), at the end of the program (POST) and after follow-up, body composition, peak O2 uptake (V'O2peak) and fat oxidation rate were measured. Vastus lateralis biopsies for the evaluation of mitochondrial respiration were performed only at PRE and POST. RESULTS At POST, body mass (BM) and fat mass (FM) decreased (- 6 and - 14%, respectively, P < 0.05) in MICT and HIIT; V'O2peak increased in both groups (+ 6 and + 16%, respectively, P < 0.05). Maximal fat oxidation rate increased only after HIIT (P < 0.001). Maximal ADP-stimulated mitochondrial respiration normalized by citrate synthase increased (P < 0.05) by 67% and 36% in MICT and HIIT, respectively, without significant difference. After follow-up, BM and FM were still lower (- 4 and - 20%, respectively, P < 0.050) compared with baseline in both groups. Only after HIIT, V'O2peak (+ 8%) and maximal fat oxidation rate were still higher (P < 0.05). CONCLUSIONS HIIT was more effective in improving and maintaining V'O2peak and fat oxidation. These results may be relevant for an appropriate prescription of training programs designed to optimize aerobic fitness in obese subjects.
Collapse
Affiliation(s)
- Filippo Vaccari
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100, Udine, Italy.
- School of Sport Sciences, University of Udine, Udine, Italy.
| | - Angelina Passaro
- Department of Medical Science, University of Ferrara, Ferrara, Italy
- Department of Medicine, Azienda Ospedaliera Universitaria di Ferrara, Ferrara, Italy
| | - Andrea D'Amuri
- Department of Medical Science, University of Ferrara, Ferrara, Italy
| | - Juana Maria Sanz
- Department of Medical Science, University of Ferrara, Ferrara, Italy
| | - Francesca Di Vece
- Department of Medicine, Azienda Ospedaliera Universitaria di Ferrara, Ferrara, Italy
| | - Eleonora Capatti
- Department of Medicine, Azienda Ospedaliera Universitaria di Ferrara, Ferrara, Italy
| | - Benedetta Magnesa
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100, Udine, Italy
| | - Marina Comelli
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100, Udine, Italy
| | - Irene Mavelli
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100, Udine, Italy
| | - Bruno Grassi
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100, Udine, Italy
| | - Federica Fiori
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100, Udine, Italy
| | - Giulia Bravo
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100, Udine, Italy
| | - Alice Avancini
- Biomedical, Clinical and Experimental Sciences, Department of Medicine, University of Verona, Verona, Italy
| | - Maria Parpinel
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100, Udine, Italy
| | - Stefano Lazzer
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100, Udine, Italy
- School of Sport Sciences, University of Udine, Udine, Italy
| |
Collapse
|
13
|
McCullough DJ, Kue N, Mancini T, Vang A, Clements RT, Choudhary G. Endurance exercise training in pulmonary hypertension increases skeletal muscle electron transport chain supercomplex assembly. Pulm Circ 2020; 10:2045894020925762. [PMID: 32523689 PMCID: PMC7235683 DOI: 10.1177/2045894020925762] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
Pulmonary hypertension is associated with pronounced exercise intolerance (decreased V ċ O2 max) that can significantly impact quality of life. The cause of exercise intolerance in pulmonary hypertension remains unclear. Mitochondrial supercomplexes are large respiratory assemblies of individual electron transport chain complexes which can promote more efficient respiration. In this study, we examined pulmonary hypertension and exercise-induced changes in skeletal muscle electron transport chain protein expression and supercomplex assembly. Pulmonary arterial hypertension was induced in rats with the Sugen/Hypoxia model (10% FiO2, three weeks). Pulmonary arterial hypertension and control rats were assigned to an exercise training protocol group or kept sedentary for one month. Cardiac function and V ċ O2 max were assessed at the beginning and end of exercise training. Red (Type 1—oxidative muscle) and white (Type 2—glycolytic muscle) gastrocnemius were assessed for changes in electron transport chain complex protein expression and supercomplex assembly via SDS- and Blue Native-PAGE. Results showed that pulmonary arterial hypertension caused a significant decrease in V ċ O2 max via treadmill testing that was improved with exercise (P < 0.01). Decreases in cardiac output and pulmonary acceleration time due to pulmonary arterial hypertension were not improved with exercise. Pulmonary arterial hypertension reduced expression in individual electron transport chain complex protein expression (NDUFB8 (CI), SDHB (CII), Cox IV (CIV), but not UQCRC2 (CIII), or ATP5a (CV)) in red gastrocnemius muscle. Both red gastrocnemius and white gastrocnemius electron transport chain expression was unaffected by exercise. However, non-denaturing Blue Native-PAGE analysis of mitochondrial supercomplexes demonstrated increases with exercise training in pulmonary arterial hypertension in the red gastrocnemius but not white gastrocnemius muscle. Pulmonary arterial hypertension-induced exercise intolerance is improved with exercise and is associated with muscle type specific alteration in mitochondrial supercomplex assembly and expression of mitochondrial electron transport chain proteins.
Collapse
Affiliation(s)
- Danielle J McCullough
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, USA.,Edward Via College of Osteopathic Medicine, Auburn Campus, Auburn, AL, USA
| | - Nouaying Kue
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, USA
| | - Thomas Mancini
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, USA
| | - Alexander Vang
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, USA
| | - Richard T Clements
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, USA.,Department of Surgery, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence RI, USA.,Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island College of Pharmacy, Kingston, RI, USA
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, USA.,Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
14
|
Riou M, Pizzimenti M, Enache I, Charloux A, Canuet M, Andres E, Talha S, Meyer A, Geny B. Skeletal and Respiratory Muscle Dysfunctions in Pulmonary Arterial Hypertension. J Clin Med 2020; 9:jcm9020410. [PMID: 32028638 PMCID: PMC7073630 DOI: 10.3390/jcm9020410] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/18/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease, which leads to the progressive loss and remodeling of the pulmonary vessels, right heart failure, and death. Different clinical presentations can be responsible for such a bad prognosis disease and the underlying mechanisms still need to be further examined. Importantly, skeletal and respiratory muscle abnormalities largely contribute to the decreased quality of life and exercise intolerance observed in patients with PAH. At the systemic level, impaired oxygen supply through reduced cardiac output and respiratory muscle dysfunctions, which potentially result in hypoxemia, is associated with altered muscles vascularization, inflammation, enhanced catabolic pathways, and impaired oxygen use through mitochondrial dysfunctions that are likely participate in PAH-related myopathy. Sharing new insights into the pathological mechanisms of PAH might help stimulate specific research areas, improving the treatment and quality of life of PAH patients. Indeed, many of these muscular impairments are reversible, strongly supporting the development of effective preventive and/or therapeutic approaches, including mitochondrial protection and exercise training.
Collapse
Affiliation(s)
- Marianne Riou
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 11 rue Humann, 67000 Strasbourg, France
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
- Pulmonology Service, University Hospital of Strasbourg, 1 place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Mégane Pizzimenti
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 11 rue Humann, 67000 Strasbourg, France
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Irina Enache
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 11 rue Humann, 67000 Strasbourg, France
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Anne Charloux
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 11 rue Humann, 67000 Strasbourg, France
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Mathieu Canuet
- Pulmonology Service, University Hospital of Strasbourg, 1 place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Emmanuel Andres
- Internal Medicine, Diabete and Metabolic Diseases Service, University Hospital of Strasbourg, 1 place de l’Hôpital, 67091 Strasbourg CEDEX, France;
| | - Samy Talha
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 11 rue Humann, 67000 Strasbourg, France
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Alain Meyer
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 11 rue Humann, 67000 Strasbourg, France
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Bernard Geny
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 11 rue Humann, 67000 Strasbourg, France
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
- Correspondence:
| |
Collapse
|
15
|
Garnham JO, Roberts LD, Caspi T, Al-Owais MM, Bullock M, Swoboda PP, Koshy A, Gierula J, Paton MF, Cubbon RM, Kearney MT, Bowen TS, Witte KK. Divergent skeletal muscle mitochondrial phenotype between male and female patients with chronic heart failure. J Cachexia Sarcopenia Muscle 2020; 11:79-88. [PMID: 31430834 PMCID: PMC7015245 DOI: 10.1002/jcsm.12488] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/23/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Previous studies in heart failure with reduced ejection fraction (HFrEF) suggest that skeletal muscle mitochondrial impairments are associated with exercise intolerance in men. However, the nature of this relationship in female patients remains to be elucidated. This study aimed to determine the relationship between skeletal muscle mitochondrial impairments and exercise intolerance in male and female patients with HFrEF. METHODS Mitochondrial respiration, enzyme activity, and gene expression were examined in pectoralis major biopsies from age-matched male (n = 45) and female (n = 11) patients with HFrEF and healthy-matched male (n = 24) and female (n = 11) controls. Mitochondrial variables were compared between sex and related to peak exercise capacity. RESULTS Compared with sex-matched controls, complex I mitochondrial oxygen flux was 17% (P = 0.030) and 29% (P = 0.013) lower in male and female patients with HFrEF, respectively, which correlated to exercise capacity (r = 0.71; P > 0.0001). Female HFrEF patients had a 32% (P = 0.023) lower mitochondrial content compared with controls. However, after adjusting for mitochondrial content, male patients demonstrated lower complex I function by 15% (P = 0.030). Expression of key mitochondrial genes regulating organelle dynamics and maintenance (i.e. optic atrophy 1, peroxisome proliferator-activated receptor γ coactivator-1α, NADH:ubiquinone oxidoreductase core subunit S1/S3, and superoxide dismutase 2) were selectively lower in female HFrEF patients. CONCLUSIONS These data provide novel evidence that HFrEF induces divergent sex-specific mitochondrial phenotypes in skeletal muscle that predispose towards exercise intolerance, impacting mitochondrial 'quantity' in female patients and mitochondrial 'quality' in male patients. Therapeutic strategies to improve exercise tolerance in HFrEF should consider targeting sex-specific mitochondrial abnormalities in skeletal muscle.
Collapse
Affiliation(s)
- Jack O Garnham
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Lee D Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Talia Caspi
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Moza M Al-Owais
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Max Bullock
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Peter P Swoboda
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Aaron Koshy
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - John Gierula
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Maria F Paton
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Richard M Cubbon
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - T Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Klaus K Witte
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
16
|
Grünig E, Eichstaedt C, Barberà JA, Benjamin N, Blanco I, Bossone E, Cittadini A, Coghlan G, Corris P, D'Alto M, D'Andrea A, Delcroix M, de Man F, Gaine S, Ghio S, Gibbs S, Gumbiene L, Howard LS, Johnson M, Jurevičienė E, Kiely DG, Kovacs G, MacKenzie A, Marra AM, McCaffrey N, McCaughey P, Naeije R, Olschewski H, Pepke-Zaba J, Reis A, Santos M, Saxer S, Tulloh RM, Ulrich S, Vonk Noordegraaf A, Peacock AJ. ERS statement on exercise training and rehabilitation in patients with severe chronic pulmonary hypertension. Eur Respir J 2018; 53:13993003.00332-2018. [DOI: 10.1183/13993003.00332-2018] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/12/2018] [Indexed: 12/17/2022]
Abstract
Objectives of this European Respiratory Society task force were to summarise current studies, to develop strategies for future research and to increase availability and awareness of exercise training for pulmonary hypertension (PH) patients.An evidence-based approach with clinical expertise of the task force members, based on both literature search and face-to-face meetings was conducted. The statement summarises current knowledge and open questions regarding clinical effects of exercise training in PH, training modalities, implementation strategies and pathophysiological mechanisms.In studies (784 PH patients in total, including six randomised controlled trials, three controlled trials, 10 prospective cohort studies and four meta-analyses), exercise training has been shown to improve exercise capacity, muscular function, quality of life and possibly right ventricular function and pulmonary haemodynamics. Nevertheless, further studies are needed to confirm these data, to investigate the impact on risk profiles and to identify the most advantageous training methodology and underlying pathophysiological mechanisms.As exercise training appears to be effective, cost-efficient and safe, but is scarcely reimbursed, support from healthcare institutions, commissioners of healthcare and research funding institutions is greatly needed. There is a strong need to establish specialised rehabilitation programmes for PH patients to enhance patient access to this treatment intervention.
Collapse
|
17
|
Yin X, Qian J, Wang Y, Yang C, Jia B, Cheng Y, Yu G, Wang Y. Short-term outcome and early effect on blood pressure of laparoscopic sleeve gastrectomy in morbidly obese patients. Clin Exp Hypertens 2018; 41:622-626. [PMID: 30373398 DOI: 10.1080/10641963.2018.1529775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Xiaoqiang Yin
- The Second Affiliated Hospital, Anhui Medical University, China
| | - Jin Qian
- The Second Affiliated Hospital, Anhui Medical University, China
| | - Yang Wang
- The Second Affiliated Hospital, Anhui Medical University, China
| | - Chuang Yang
- The Second Affiliated Hospital, Anhui Medical University, China
| | - Benli Jia
- The Second Affiliated Hospital, Anhui Medical University, China
| | - Yunsheng Cheng
- The Second Affiliated Hospital, Anhui Medical University, China
| | - Gang Yu
- The Second Affiliated Hospital, Anhui Medical University, China
| | - Yong Wang
- The Second Affiliated Hospital, Anhui Medical University, China
| |
Collapse
|
18
|
Abstract
BACKGROUND Patients treated with 5-FU can develop rare but potentially severe cardiac effects, including cardiomyopathy, angina pectoris, ventricular tachycardia, heart failure, acute myocardial infarction, and cardiogenic shock. The specific pathologies and mechanisms are not fully understood. Research found that mitochondrial dynamics are widely detected in many angiocardiopathies. Therefore, in the present study we studied the mitochondrial damage and explored the role of mitochondrial fusion/fission proteins on myocardium of rats treated with 5-fluorouracil (5-FU). MATERIAL AND METHODS Thirty male SD rats were randomly divided into 3 groups with 10 rats in each group: (1) control group, (2) low 5-FU group (25 mg/kg), (3) high 5-FU group (50 mg/kg). The animals received intraperitoneal injection for 5 consecutive days. We assessed alterations in mitochondrial morphology, ATP content, mitochondrial membrane potential, and mitochondria fusion/fission proteins expression in hearts of rats receiving intraperitoneal injection with different doses of 5-FU. RESULTS 5-FU intraperitoneal injection induced ultra-structural damage in hearts, such as mitochondrial swelling, cristae disorder, and vacuolization. These changes were accompanied by decreases of mitochondrial membrane potential. The low dose of 5-FU led to a slight increase in ATP content. However, the high 5-FU dose caused a more significant reduction compared with the control group. Furthermore, 5-FU intraperitoneal injection significantly increased specific mitochondrial fission proteins (Drp1 and Fis1) and decreased mitochondrial fusion proteins (Opa1, Mfn1, and Mfn2) in rat hearts. However, no changes in cardiac structure and function were detected by echocardiogram. The high dose caused more damage to mitochondrial function than the low dose. CONCLUSIONS Mitochondrial damage is a potentially important mechanism and early indicator for 5-FU-induced cardiovascular disease.
Collapse
Affiliation(s)
- Dongxia Zhang
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Jingtao Ma
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
19
|
Salvadego D, Keramidas ME, Kölegård R, Brocca L, Lazzer S, Mavelli I, Rittweger J, Eiken O, Mekjavic IB, Grassi B. PlanHab * : hypoxia does not worsen the impairment of skeletal muscle oxidative function induced by bed rest alone. J Physiol 2018; 596:3341-3355. [PMID: 29665013 DOI: 10.1113/jp275605] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/16/2018] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS Superposition of hypoxia on 21 day bed rest did not worsen the impairment of skeletal muscle oxidative function induced by bed rest alone. A significant impairment of maximal oxidative performance was identified downstream of cardiovascular O2 delivery, involving both the intramuscular matching between O2 supply and utilization and mitochondrial respiration. These chronic adaptations appear to be relevant in terms of exposure to spaceflights and reduced gravity habitats (Moon or Mars), as characterized by low gravity and hypoxia, in patients with chronic diseases characterized by hypomobility/immobility and hypoxia, as well as in ageing. ABSTRACT Skeletal muscle oxidative function was evaluated in 11 healthy males (mean ± SD age 27 ± 5 years) prior to (baseline data collection, BDC) and following a 21 day horizontal bed rest (BR), carried out in normoxia ( PIO2 = 133 mmHg; N-BR) and hypoxia ( PIO2 = 90 mmHg; H-BR). H-BR was aimed at simulating reduced gravity habitats. The effects of a 21 day hypoxic ambulatory confinement ( PIO2 = 90 mmHg; H-AMB) were also assessed. Pulmonary O2 uptake ( V̇O2 ), vastus lateralis fractional O2 extraction (changes in deoxygenated haemoglobin + myoglobin concentration, Δ[deoxy(Hb + Mb)]; near-infrared spectroscopy) and femoral artery blood flow (ultrasound Doppler) were evaluated during incremental one-leg knee-extension exercise (reduced constraints to cardiovascular O2 delivery) carried out to voluntary exhaustion in a normoxic environment. Mitochondrial respiration was evaluated ex vivo by high-resolution respirometry in permeabilized vastus lateralis fibres. V̇O2peak decreased (P < 0.05) after N-BR (0.98 ± 0.13 L min-1 ) and H-BR (0.96 ± 0.17 L min-1 ) vs. BDC (1.05 ± 0.14 L min-1 ). In the presence of a decreased (by ∼6-8%) thigh muscle volume, V̇O2peak normalized per unit of muscle mass was not affected by both interventions. Δ[deoxy(Hb + Mb)]peak decreased (P < 0.05) after N-BR (65 ± 13% of limb ischaemia) and H-BR (62 ± 12%) vs. BDC (73 ± 13%). H-AMB did not alter V̇O2peak or Δ[deoxy(Hb + Mb)]peak . An overshoot of Δ[deoxy(Hb + Mb)] was evident during the first minute of unloaded exercise after N-BR and H-BR. Arterial blood flow to the lower limb during both unloaded and peak knee extension was not affected by any intervention. Maximal ADP-stimulated mitochondrial respiration decreased (P < 0.05) after all interventions vs. control. In 21 day N-BR, a significant impairment of oxidative metabolism occurred downstream of cardiovascular O2 delivery, affecting both mitochondrial respiration and presumably the intramuscular matching between O2 supply and utilization. Superposition of H on BR did not worsen the impairment induced by BR alone.
Collapse
Affiliation(s)
- Desy Salvadego
- Department of Medicine, University of Udine, Udine, Italy
| | - Michail E Keramidas
- Department of Environmental Physiology, Swedish Aerospace Physiology Centre, Royal Institute of Technology, Stockholm, Sweden
| | - Roger Kölegård
- Department of Environmental Physiology, Swedish Aerospace Physiology Centre, Royal Institute of Technology, Stockholm, Sweden
| | - Lorenza Brocca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Stefano Lazzer
- Department of Medicine, University of Udine, Udine, Italy
| | - Irene Mavelli
- Department of Medicine, University of Udine, Udine, Italy
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Medical Faculty, University of Cologne, Cologne, Germany
| | - Ola Eiken
- Department of Environmental Physiology, Swedish Aerospace Physiology Centre, Royal Institute of Technology, Stockholm, Sweden
| | - Igor B Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia.,Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy.,Institute of Bioimaging and Molecular Physiology, National Research Council, Milano, Italy
| |
Collapse
|
20
|
van den Berg M, Hooijman PE, Beishuizen A, de Waard MC, Paul MA, Hartemink KJ, van Hees HWH, Lawlor MW, Brocca L, Bottinelli R, Pellegrino MA, Stienen GJM, Heunks LMA, Wüst RCI, Ottenheijm CAC. Diaphragm Atrophy and Weakness in the Absence of Mitochondrial Dysfunction in the Critically Ill. Am J Respir Crit Care Med 2017; 196:1544-1558. [PMID: 28787181 DOI: 10.1164/rccm.201703-0501oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RATIONALE The clinical significance of diaphragm weakness in critically ill patients is evident: it prolongs ventilator dependency and increases morbidity, duration of hospital stay, and health care costs. The mechanisms underlying diaphragm weakness are unknown, but might include mitochondrial dysfunction and oxidative stress. OBJECTIVES We hypothesized that weakness of diaphragm muscle fibers in critically ill patients is accompanied by impaired mitochondrial function and structure, and by increased markers of oxidative stress. METHODS To test these hypotheses, we studied contractile force, mitochondrial function, and mitochondrial structure in diaphragm muscle fibers. Fibers were isolated from diaphragm biopsies of 36 mechanically ventilated critically ill patients and compared with those isolated from biopsies of 27 patients with suspected early-stage lung malignancy (control subjects). MEASUREMENTS AND MAIN RESULTS Diaphragm muscle fibers from critically ill patients displayed significant atrophy and contractile weakness, but lacked impaired mitochondrial respiration and increased levels of oxidative stress markers. Mitochondrial energy status and morphology were not altered, despite a lower content of fusion proteins. CONCLUSIONS Critically ill patients have manifest diaphragm muscle fiber atrophy and weakness in the absence of mitochondrial dysfunction and oxidative stress. Thus, mitochondrial dysfunction and oxidative stress do not play a causative role in the development of atrophy and contractile weakness of the diaphragm in critically ill patients.
Collapse
Affiliation(s)
| | | | - Albertus Beishuizen
- 2 Department of Intensive Care, Medisch Spectrum Twente, Enschede, the Netherlands
| | | | - Marinus A Paul
- 4 Department of Cardiothoracic Surgery, Vrije Universiteit (VU) University Medical Center, Amsterdam, the Netherlands
| | - Koen J Hartemink
- 5 Department of Surgery, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | | | - Michael W Lawlor
- 7 Division of Pediatric Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Roberto Bottinelli
- 8 Department of Molecular Medicine.,10 Interdepartmental Center for Biology and Sport Medicine, and.,9 Fondazione Salvatore Maugeri (IRCCS), Scientific Institute of Pavia, Pavia, Italy
| | - Maria A Pellegrino
- 8 Department of Molecular Medicine.,10 Interdepartmental Center for Biology and Sport Medicine, and.,11 Interuniversity Institute of Myology, University of Pavia, Pavia, Italy
| | - Ger J M Stienen
- 1 Department of Physiology, Amsterdam Cardiovascular Sciences.,12 Faculty of Science, Department of Physics and Astronomy, VU Amsterdam, Amsterdam, the Netherlands
| | | | - Rob C I Wüst
- 1 Department of Physiology, Amsterdam Cardiovascular Sciences.,13 Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, the Netherlands; and
| | - Coen A C Ottenheijm
- 1 Department of Physiology, Amsterdam Cardiovascular Sciences.,14 Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
21
|
Grassi B, Majerczak J, Bardi E, Buso A, Comelli M, Chlopicki S, Guzik M, Mavelli I, Nieckarz Z, Salvadego D, Tyrankiewicz U, Skórka T, Bottinelli R, Zoladz JA, Pellegrino MA. Exercise training in Tgα q*44 mice during the progression of chronic heart failure: cardiac vs. peripheral (soleus muscle) impairments to oxidative metabolism. J Appl Physiol (1985) 2017; 123:326-336. [PMID: 28522765 DOI: 10.1152/japplphysiol.00342.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 12/16/2022] Open
Abstract
Cardiac function, skeletal (soleus) muscle oxidative metabolism, and the effects of exercise training were evaluated in a transgenic murine model (Tgαq*44) of chronic heart failure during the critical period between the occurrence of an impairment of cardiac function and the stage at which overt cardiac failure ensues (i.e., from 10 to 12 mo of age). Forty-eight Tgαq*44 mice and 43 wild-type FVB controls were randomly assigned to control groups and to groups undergoing 2 mo of intense exercise training (spontaneous running on an instrumented wheel). In mice evaluated at the beginning and at the end of training we determined: exercise performance (mean distance covered daily on the wheel); cardiac function in vivo (by magnetic resonance imaging); soleus mitochondrial respiration ex vivo (by high-resolution respirometry); muscle phenotype [myosin heavy chain (MHC) isoform content; citrate synthase (CS) activity]; and variables related to the energy status of muscle fibers [ratio of phosphorylated 5'-AMP-activated protein kinase (AMPK) to unphosphorylated AMPK] and mitochondrial biogenesis and function [peroxisome proliferative-activated receptor-γ coactivator-α (PGC-1α)]. In the untrained Tgαq*44 mice functional impairments of exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed. The impairment of mitochondrial respiration was related to the function of complex I of the respiratory chain, and it was not associated with differences in CS activity, MHC isoforms, p-AMPK/AMPK, and PGC-1α levels. Exercise training improved exercise performance and cardiac function, but it did not affect mitochondrial respiration, even in the presence of an increased percentage of type 1 MHC isoforms. Factors "upstream" of mitochondria were likely mainly responsible for the improved exercise performance.NEW & NOTEWORTHY Functional impairments in exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed in transgenic chronic heart failure mice, evaluated in the critical period between the occurrence of an impairment of cardiac function and the terminal stage of the disease. Exercise training improved exercise performance and cardiac function, but it did not affect the impaired mitochondrial respiration. Factors "upstream" of mitochondria, including an enhanced cardiovascular O2 delivery, were mainly responsible for the functional improvement.
Collapse
Affiliation(s)
- Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy; .,Institute of Bioimaging and Molecular Physiology, National Research Council, Milan, Italy
| | - Joanna Majerczak
- Department of Muscle Physiology, Faculty of Rehabilitation, University School of Physical Education, Krakow, Poland
| | - Eleonora Bardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Alessia Buso
- Department of Medicine, University of Udine, Udine, Italy
| | - Marina Comelli
- Department of Medicine, University of Udine, Udine, Italy
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University Medical College, Krakow, Poland.,Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Guzik
- Department of Muscle Physiology, Faculty of Rehabilitation, University School of Physical Education, Krakow, Poland
| | - Irene Mavelli
- Department of Medicine, University of Udine, Udine, Italy
| | - Zenon Nieckarz
- Institute of Physics, Jagiellonian University, Krakow, Poland; and
| | - Desy Salvadego
- Department of Medicine, University of Udine, Udine, Italy
| | - Urszula Tyrankiewicz
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Tomasz Skórka
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | | | - Jerzy A Zoladz
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University Medical College, Krakow, Poland
| | | |
Collapse
|
22
|
Himori K, Abe M, Tatebayashi D, Lee J, Westerblad H, Lanner JT, Yamada T. Superoxide dismutase/catalase mimetic EUK-134 prevents diaphragm muscle weakness in monocrotalin-induced pulmonary hypertension. PLoS One 2017; 12:e0169146. [PMID: 28152009 PMCID: PMC5289453 DOI: 10.1371/journal.pone.0169146] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 12/12/2016] [Indexed: 11/18/2022] Open
Abstract
Patients with pulmonary hypertension (PH) suffer from inspiratory insufficiency, which has been associated with intrinsic contractile dysfunction in diaphragm muscle. Here, we examined the role of redox stress in PH-induced diaphragm weakness by using the novel antioxidant, EUK-134. Male Wistar rats were randomly divided into control (CNT), CNT + EUK-134 (CNT + EUK), monocrotaline-induced PH (PH), and PH + EUK groups. PH was induced by a single intraperitoneal injection of monocrotaline (60 mg/kg body weight). EUK-134 (3 mg/kg body weight/day), a cell permeable mimetic of superoxide dismutase (SOD) and catalase, was daily intraperitoneally administered starting one day after induction of PH. After four weeks, diaphragm muscles were excised for mechanical and biochemical analyses. There was a decrease in specific tetanic force in diaphragm bundles from the PH group, which was accompanied by increases in: protein expression of NADPH oxidase 2/gp91phox, SOD2, and catalase; 3-nitrotyrosine content and aggregation of actin; glutathione oxidation. Treatment with EUK-134 prevented the force decrease and the actin modifications in PH diaphragm bundles. These data show that redox stress plays a pivotal role in PH-induced diaphragm weakness. Thus, antioxidant treatment can be a promising strategy for PH patients with inspiratory failure.
Collapse
Affiliation(s)
- Koichi Himori
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Masami Abe
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Daisuke Tatebayashi
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Jaesik Lee
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna T. Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
23
|
Fujita N, Fujino H, Sakamoto H, Takegaki J, Deie M. Time course of ubiquitin-proteasome and macroautophagy-lysosome pathways in skeletal muscle in rats with heart failure. Biomed Res 2016; 36:383-92. [PMID: 26700592 DOI: 10.2220/biomedres.36.383] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Patients with heart failure have limited exercise capacity due to not only the myocardial dysfunction but also skeletal muscle atrophy. However, the mechanisms and time course of protein degradation in skeletal muscle during heart failure remain unclear, and there is no established standard treatment. The purpose of the present study was to investigate the time course of major protein degradation pathways in skeletal muscle during heart failure. Four-week-old male Wistar rats were randomly assigned to heart failure induced by monocrotaline or control groups. At 14 and 21 days after monocrotaline injection, the lungs, heart, and gastrocnemius and soleus muscles were removed and analyzed. There was no significant difference in body weight between the groups at 14 days after monocrotaline injection. Although there were no morphological changes in the skeletal muscle of the monocrotaline group at this time point, ubiquitin-proteasome and macroautophagylysosome pathways were activated in the monocrotaline group. Additionally, the pathways were less strongly activated in the soleus muscle than in the gastrocnemius muscle. These results suggest that physical exercise that shifts to slow muscle characteristics should begin when there is no indication of skeletal muscle atrophy to prevent exercise intolerance with heart failure.
Collapse
Affiliation(s)
- Naoto Fujita
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedicine and Health Sciences, Hiroshima University
| | | | | | | | | |
Collapse
|
24
|
Ferguson SK, Holdsworth CT, Colburn TD, Wright JL, Craig JC, Fees A, Jones AM, Allen JD, Musch TI, Poole DC. Dietary nitrate supplementation: impact on skeletal muscle vascular control in exercising rats with chronic heart failure. J Appl Physiol (1985) 2016; 121:661-9. [PMID: 27445296 PMCID: PMC5142258 DOI: 10.1152/japplphysiol.00014.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/15/2016] [Indexed: 01/14/2023] Open
Abstract
Chronic heart failure (CHF) results in central and peripheral derangements that ultimately reduce skeletal muscle O2 delivery and impair exercise tolerance. Dietary nitrate (NO3 (-)) supplementation improves skeletal muscle vascular function and tolerance to exercise. We tested the hypothesis that NO3 (-) supplementation would elevate exercising skeletal muscle blood flow (BF) and vascular conductance (VC) in CHF rats. Myocardial infarction (MI) was induced (coronary artery ligation) in young adult male rats. After 21 days of recovery, rats randomly received 5 days of NO3 (-)-rich beetroot juice (CHF + BR, n = 10) or a placebo (CHF, n = 10). Mean arterial pressure (carotid artery catheter) and skeletal muscle BF (radiolabeled microspheres) were measured during treadmill exercise (20 m/min, 5% grade). CHF-induced dysfunction, as determined by myocardial infarction size (29 ± 3% and 33 ± 4% in CHF and CHF + BR, respectively) and left ventricular end-diastolic pressure (18 ± 2 and 18 ± 2 mmHg in CHF and CHF + BR, respectively), and exercising mean arterial pressure (131 ± 3 and 128 ± 4 mmHg in CHF and CHF + BR, respectively) were not different (P > 0.05) between groups. Total exercising hindlimb skeletal muscle BF (95 ± 5 and 116 ± 9 ml·min(-1)·100 g(-1) in CHF and CHF + BR, respectively) and VC (0.75 ± 0.05 and 0.90 ± 0.05 ml·min(-1)·100 g(-1)·mmHg(-1) in CHF and CHF + BR, respectively) were 22% and 20% greater in BR-supplemented rats, respectively (P < 0.05). During exercise, BF in 9 and VC in 10 hindlimb muscles and muscle portions were significantly greater in the CHF + BR group. These results provide strong evidence that dietary NO3 (-) supplementation improves skeletal muscle vascular function during exercise in rats with CHF and, thus, support the use of BR as a novel therapeutic modality for the treatment of CHF.
Collapse
Affiliation(s)
- Scott K Ferguson
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas; Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Clark T Holdsworth
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Trenton D Colburn
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Jennifer L Wright
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Jesse C Craig
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas; Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Alex Fees
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Andrew M Jones
- Sport and Health Sciences, University of Exeter, St. Luke's Campus, Exeter, United Kingdom; and
| | - Jason D Allen
- Institute of Sport Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
| | - Timothy I Musch
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas; Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - David C Poole
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas; Department of Kinesiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
25
|
Wüst RCI, de Vries HJ, Wintjes LT, Rodenburg RJ, Niessen HWM, Stienen GJM. Mitochondrial complex I dysfunction and altered NAD(P)H kinetics in rat myocardium in cardiac right ventricular hypertrophy and failure. Cardiovasc Res 2016; 111:362-72. [PMID: 27402402 DOI: 10.1093/cvr/cvw176] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 06/16/2016] [Indexed: 01/31/2023] Open
Abstract
AIMS In cardiac hypertrophy (CH) and heart failure (HF), alterations occur in mitochondrial enzyme content and activities but the origin and implications of these changes for mitochondrial function need to be resolved. METHODS AND RESULTS Right ventricular CH or HF was induced by monocrotaline injection, which causes pulmonary artery hypertension, in rats. Results were compared with saline injection (CON). NAD(P)H and FAD autofluorescence were recorded in thin intact cardiac trabeculae during transitions in stimulation frequency, to assess mitochondrial complex I and complex II function, respectively. Oxygen consumption, mitochondrial morphology, protein content, and enzymatic activity were assessed. NAD(P)H autofluorescence upon an increase in stimulation frequency showed a rapid decline followed by a slow recovery. FAD autofluorescence followed a similar time course, but in opposite direction. The amplitude of the early rapid change in NAD(P)H autofluorescence was severely depressed in CH and HF compared with CON. The rapid changes in FAD autofluorescence in CH and HF were reduced to a lesser extent. Complex I-coupled respiration showed an ∼3.5-fold reduction in CH and HF; complex II-coupled respiration was depressed two-fold in HF. Western blot analyses revealed modest reductions in complex I protein content in CH and HF and in complex I activity in supercomplexes in HF. Mitochondrial volume density was similar, but mitochondrial remodelling was evident from changes in ultrastructure and fusion/fission indices in CH and HF. CONCLUSION These results suggest that the alterations in mitochondrial function observed in right ventricular CH and HF can be mainly attributed to complex I dysfunction.
Collapse
Affiliation(s)
- Rob C I Wüst
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, O
- 2 Building, De Boelelaan 1118, Amsterdam 1081 HV, The Netherlands
| | - Heder J de Vries
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, O
- 2 Building, De Boelelaan 1118, Amsterdam 1081 HV, The Netherlands
| | - Liesbeth T Wintjes
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Richard J Rodenburg
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans W M Niessen
- Department of Pathology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam 1081 HV, The Netherlands
| | - Ger J M Stienen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, O
- 2 Building, De Boelelaan 1118, Amsterdam 1081 HV, The Netherlands Faculty of Science, Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Panagiotou M, Peacock AJ, Johnson MK. Respiratory and limb muscle dysfunction in pulmonary arterial hypertension: a role for exercise training? Pulm Circ 2015; 5:424-34. [PMID: 26401245 DOI: 10.1086/682431] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/04/2015] [Indexed: 11/03/2022] Open
Abstract
Respiratory and limb muscle dysfunction is emerging as an important pathophysiological abnormality in pulmonary arterial hypertension (PAH). Muscle abnormalities appear to occur frequently and promote dyspnea, fatigue, and exercise limitation in patients with PAH. Preliminary data suggest that targeted muscle training may be of benefit, although further evidence is required to consolidate these findings into specific recommendations for exercise training in patients with PAH. This article reviews the current evidence on prevalence, risk factors, and implications of respiratory and limb muscle dysfunction in patients with PAH. It also reviews the impact of exercise rehabilitation on morphologic, metabolic, and functional muscle profile and outcomes in PAH. Future research priorities are highlighted.
Collapse
Affiliation(s)
- Marios Panagiotou
- Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Clydebank, United Kingdom
| | - Andrew J Peacock
- Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Clydebank, United Kingdom
| | - Martin K Johnson
- Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Clydebank, United Kingdom
| |
Collapse
|
27
|
Gokyo Khumbu/Ama Dablam Trek 2012: effects of physical training and high-altitude exposure on oxidative metabolism, muscle composition, and metabolic cost of walking in women. Eur J Appl Physiol 2015; 116:129-44. [PMID: 26349745 DOI: 10.1007/s00421-015-3256-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/28/2015] [Indexed: 12/13/2022]
Abstract
PURPOSE We investigated the effects of moderate-intensity training at low and high altitude on VO2 and QaO2 kinetics and on myosin heavy-chain expression (MyHC) in seven women (36.3 yy ± 7.1; 65.8 kg ± 11.7; 165 cm ± 8) who participated in two 12- to 14-day trekking expeditions at low (598 m) and high altitude (4132 m) separated by 4 months of recovery. METHODS Breath-by-breath VO2 and beat-by-beat QaO2 at the onset of moderate-intensity cycling exercise and energy cost of walking (Cw) were assessed before and after trekking. MyHC expression of vastus lateralis was evaluated before and after low-altitude and after high-altitude trekking; muscle fiber high-resolution respirography was performed at the beginning of the study and after high-altitude trekking. RESULTS Mean response time of VO2 kinetics was faster (P = 0.002 and P = 0.001) and oxygen deficit was smaller (P = 0.001 and P = 0.0004) after low- and high-altitude trekking, whereas ˙ QaO2 kinetics and Cw did not change. Percentages of slow and fast isoforms of MyHC and mitochondrial mass were not affected by low- and high-altitude training. After training altitude, muscle fiber ADP-stimulated mitochondrial respiration was decreased as compared with the control condition (P = 0.016), whereas leak respiration was increased (P = 0.031), leading to a significant increase in the respiratory control ratio (P = 0.016). CONCLUSIONS Although training did not significantly modify muscle phenotype, it induced beneficial adaptations of the oxygen transport-utilization systems witnessed by faster VO2 kinetics at exercise onset.
Collapse
|
28
|
Kinugawa S, Takada S, Matsushima S, Okita K, Tsutsui H. Skeletal Muscle Abnormalities in Heart Failure. Int Heart J 2015; 56:475-84. [PMID: 26346520 DOI: 10.1536/ihj.15-108] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Exercise capacity is lowered in patients with heart failure, which limits their daily activities and also reduces their quality of life. Furthermore, lowered exercise capacity has been well demonstrated to be closely related to the severity and prognosis of heart failure. Skeletal muscle abnormalities including abnormal energy metabolism, transition of myofibers from type I to type II, mitochondrial dysfunction, reduction in muscular strength, and muscle atrophy have been shown to play a central role in lowered exercise capacity. The skeletal muscle abnormalities can be classified into the following main types: 1) low endurance due to mitochondrial dysfunction; and 2) low muscle mass and muscle strength due to imbalance of protein synthesis and degradation. The molecular mechanisms of these skeletal muscle abnormalities have been studied mainly using animal models. The current review including our recent study will focus upon the skeletal muscle abnormalities in heart failure.
Collapse
Affiliation(s)
- Shintaro Kinugawa
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine
| | | | | | | | | |
Collapse
|
29
|
Hirai DM, Musch TI, Poole DC. Exercise training in chronic heart failure: improving skeletal muscle O2 transport and utilization. Am J Physiol Heart Circ Physiol 2015; 309:H1419-39. [PMID: 26320036 DOI: 10.1152/ajpheart.00469.2015] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/23/2015] [Indexed: 01/13/2023]
Abstract
Chronic heart failure (CHF) impairs critical structural and functional components of the O2 transport pathway resulting in exercise intolerance and, consequently, reduced quality of life. In contrast, exercise training is capable of combating many of the CHF-induced impairments and enhancing the matching between skeletal muscle O2 delivery and utilization (Q̇mO2 and V̇mO2 , respectively). The Q̇mO2 /V̇mO2 ratio determines the microvascular O2 partial pressure (PmvO2 ), which represents the ultimate force driving blood-myocyte O2 flux (see Fig. 1). Improvements in perfusive and diffusive O2 conductances are essential to support faster rates of oxidative phosphorylation (reflected as faster V̇mO2 kinetics during transitions in metabolic demand) and reduce the reliance on anaerobic glycolysis and utilization of finite energy sources (thus lowering the magnitude of the O2 deficit) in trained CHF muscle. These adaptations contribute to attenuated muscle metabolic perturbations (e.g., changes in [PCr], [Cr], [ADP], and pH) and improved physical capacity (i.e., elevated critical power and maximal V̇mO2 ). Preservation of such plasticity in response to exercise training is crucial considering the dominant role of skeletal muscle dysfunction in the pathophysiology and increased morbidity/mortality of the CHF patient. This brief review focuses on the mechanistic bases for improved Q̇mO2 /V̇mO2 matching (and enhanced PmvO2 ) with exercise training in CHF with both preserved and reduced ejection fraction (HFpEF and HFrEF, respectively). Specifically, O2 convection within the skeletal muscle microcirculation, O2 diffusion from the red blood cell to the mitochondria, and muscle metabolic control are particularly susceptive to exercise training adaptations in CHF. Alternatives to traditional whole body endurance exercise training programs such as small muscle mass and inspiratory muscle training, pharmacological treatment (e.g., sildenafil and pentoxifylline), and dietary nitrate supplementation are also presented in light of their therapeutic potential. Adaptations within the skeletal muscle O2 transport and utilization system underlie improvements in physical capacity and quality of life in CHF and thus take center stage in the therapeutic management of these patients.
Collapse
Affiliation(s)
- Daniel M Hirai
- Department of Medicine, Queen's University, Kingston, Ontario, Canada; Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil; and
| | - Timothy I Musch
- Departments of Anatomy and Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| | - David C Poole
- Departments of Anatomy and Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
30
|
Manders E, Rain S, Bogaard HJ, Handoko ML, Stienen GJM, Vonk-Noordegraaf A, Ottenheijm CAC, de Man FS. The striated muscles in pulmonary arterial hypertension: adaptations beyond the right ventricle. Eur Respir J 2015; 46:832-42. [PMID: 26113677 DOI: 10.1183/13993003.02052-2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 05/19/2015] [Indexed: 11/05/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal lung disease characterised by progressive remodelling of the small pulmonary vessels. The daily-life activities of patients with PAH are severely limited by exertional fatigue and dyspnoea. Typically, these symptoms have been explained by right heart failure. However, an increasing number of studies reveal that the impact of the PAH reaches further than the pulmonary circulation. Striated muscles other than the right ventricle are affected in PAH, such as the left ventricle, the diaphragm and peripheral skeletal muscles. Alterations in these striated muscles are associated with exercise intolerance and reduced quality of life. In this Back to Basics article on striated muscle function in PAH, we provide insight into the pathophysiological mechanisms causing muscle dysfunction in PAH and discuss potential new therapeutic strategies to restore muscle dysfunction.
Collapse
Affiliation(s)
- Emmy Manders
- Dept of Pulmonology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands Dept of Physiology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands
| | - Silvia Rain
- Dept of Pulmonology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands
| | - Harm-Jan Bogaard
- Dept of Pulmonology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands
| | - M Louis Handoko
- Dept of Pulmonology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands Dept of Cardiology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands
| | - Ger J M Stienen
- Dept of Physiology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands Dept of Physics and Astronomy, VU University, Amsterdam, The Netherlands
| | - Anton Vonk-Noordegraaf
- Dept of Pulmonology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands
| | - Coen A C Ottenheijm
- Dept of Physiology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands
| | - Frances S de Man
- Dept of Pulmonology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Wüst RCI, Helmes M, Stienen GJM. Rapid changes in NADH and flavin autofluorescence in rat cardiac trabeculae reveal large mitochondrial complex II reserve capacity. J Physiol 2015; 593:1829-40. [PMID: 25640645 DOI: 10.1113/jphysiol.2014.286153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/27/2015] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS A photometry-based technique was developed to measure nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) autofluorescence and contractile properties simultaneously in intact rat trabeculae at a high time resolution. This provides insight into the function of mitochondrial complex I and II. Maximal complex I and complex II activities were determined in saponin-permeabilized right ventricular tissue by respirometry. In trabeculae, complex II function was considerably smaller than the maximal complex II activity, suggesting large complex II reserve capacity. Up-down asymmetry in NADH and FAD kinetics suggests a complex interaction between mitochondrial and contractile function. These data show that simultaneous measurement of contractile properties and NADH and FAD kinetics in cardiac trabeculae provides a mean to study the differences in complex I and II function in intact preparations in health and disease. ABSTRACT The functional properties of cardiac mitochondria in intact preparations have been mainly studied by measurements of nicotinamide adenine dinucleotide (NADH) autofluorescence, which reflects mitochondrial complex I function. To assess complex II function, we extended this method by measuring flavin adenine dinucleotide (FAD)-related autofluorescence in electrically stimulated cardiac trabeculae isolated from the right ventricle from the rat at 27°C. NADH and FAD autofluorescence and tension responses were measured when stimulation frequency was increased from 0.5 Hz to 1, 2 or 3 Hz for 3 min, and thereafter decreased to 0.5 Hz. Maximal complex I and complex II activity in vitro were determined in saponin-permeabilized right ventricular tissue by respirometry. NADH responses upon an increase in stimulation frequency showed a rapid decline, followed by a slow recovery towards the initial level. FAD responses followed a similar time course, but in the opposite direction. The amplitudes of early rapid changes in the NADH and FAD concentration correlated well with the change in tension time integral per second (R(2) = 0.833 and 0.660 for NADH and FAD, respectively), but with different slopes for the up and down transient. Maximal velocity of the increase in FAD concentration (16 ± 4 μm s(-1) ), measured upon an increase in stimulation frequency from 0.5 to 3 Hz was considerably smaller than that of the decrease in NADH (78 ± 13 μm s(-1) ). The respiration measurements indicated that the maximal velocity of NADH utilization (143 ± 14 μm s(-1) ) was 2 times smaller than that of FADH2 (291 ± 19 μm s(-1) ). This indicates that in cardiac mitochondria considerable complex II activity reserve is present.
Collapse
Affiliation(s)
- Rob C I Wüst
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, the Netherlands
| | | | | |
Collapse
|
32
|
Bowen TS, Rolim NPL, Fischer T, Baekkerud FH, Medeiros A, Werner S, Brønstad E, Rognmo O, Mangner N, Linke A, Schuler G, Silva GJJ, Wisløff U, Adams V. Heart failure with preserved ejection fraction induces molecular, mitochondrial, histological, and functional alterations in rat respiratory and limb skeletal muscle. Eur J Heart Fail 2015; 17:263-72. [DOI: 10.1002/ejhf.239] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/18/2014] [Accepted: 12/20/2014] [Indexed: 11/11/2022] Open
Affiliation(s)
- T. Scott Bowen
- Department of Internal Medicine and Cardiology; Leipzig University-Heart Centre; Strümpellstrasse 39 D-04289 Leipzig Germany
| | - Natale P. L. Rolim
- K.G. Jebsen Centre of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine; Norwegian University of Science and Technology; Trondheim Norway
| | - Tina Fischer
- Department of Internal Medicine and Cardiology; Leipzig University-Heart Centre; Strümpellstrasse 39 D-04289 Leipzig Germany
| | - Fredrik H. Baekkerud
- K.G. Jebsen Centre of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine; Norwegian University of Science and Technology; Trondheim Norway
| | | | - Sarah Werner
- Department of Internal Medicine and Cardiology; Leipzig University-Heart Centre; Strümpellstrasse 39 D-04289 Leipzig Germany
| | - Eivind Brønstad
- K.G. Jebsen Centre of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine; Norwegian University of Science and Technology; Trondheim Norway
| | - Oivind Rognmo
- K.G. Jebsen Centre of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine; Norwegian University of Science and Technology; Trondheim Norway
| | - Norman Mangner
- Department of Internal Medicine and Cardiology; Leipzig University-Heart Centre; Strümpellstrasse 39 D-04289 Leipzig Germany
| | - Axel Linke
- Department of Internal Medicine and Cardiology; Leipzig University-Heart Centre; Strümpellstrasse 39 D-04289 Leipzig Germany
| | - Gerhard Schuler
- Department of Internal Medicine and Cardiology; Leipzig University-Heart Centre; Strümpellstrasse 39 D-04289 Leipzig Germany
| | - Gustavo J. J. Silva
- K.G. Jebsen Centre of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine; Norwegian University of Science and Technology; Trondheim Norway
| | - Ulrik Wisløff
- K.G. Jebsen Centre of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine; Norwegian University of Science and Technology; Trondheim Norway
| | - Volker Adams
- Department of Internal Medicine and Cardiology; Leipzig University-Heart Centre; Strümpellstrasse 39 D-04289 Leipzig Germany
| | | |
Collapse
|
33
|
Marra AM, Arcopinto M, Bossone E, Ehlken N, Cittadini A, Grünig E. Pulmonary arterial hypertension-related myopathy: an overview of current data and future perspectives. Nutr Metab Cardiovasc Dis 2015; 25:131-139. [PMID: 25455722 DOI: 10.1016/j.numecd.2014.10.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 09/18/2014] [Accepted: 10/13/2014] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND AIM Exercise intolerance is one of the key features of pulmonary arterial hypertension (PAH). The main determinants of exercise impairment include hypoxemia, reduced right ventricular output, perfusion/ventilation mismatch, and weakness of skeletal and breathing muscles. The aim of the current review is to describe the findings in the existing literature about respiratory and muscle dysfunction in PAH. Animal and clinical studies regarding both respiratory and peripheral skeletal muscles and the effect of exercise training on muscle function in PAH patients are analyzed. DATA SYNTHESIS PAH myopathy is characterized by reduced skeletal muscle mass, reduced volitional and non-volitional contractility, reduced generated force, a fiber switch from type I to type II, increased protein degradation through ubiquitin-proteasome system (UPS) activation, reduced mitochondrial functioning, and impaired activation-contractility coupling. Increased inflammatory response, impaired anabolic signaling, hypoxemia, and abnormalities of mitochondrial function are involved in the pathophysiology of this process. Exercise training has been shown to improve exercise capacity, peak oxygen uptake, quality of life, and possibly clinical outcomes of PAH patients. CONCLUSIONS The skeletal muscles of PAH patients show a wide spectrum of cellular abnormalities that finally culminate in muscle atrophy and reduced contractility. Exercise training improves muscle function and bears a positive impact on the clinical outcomes of PAH patients.
Collapse
Affiliation(s)
- A M Marra
- Pulmonary Hypertension Unit, Thoraxclinic, University Hospital Heidelberg, Heidelberg, Germany; Department of Translational Medical Sciences, "Federico II" University School of Medicine, Naples, Italy
| | - M Arcopinto
- Department of Cardiac Surgery, IRCSS Policlinico San Donato, Milan, Italy
| | - E Bossone
- Department of Cardiology and Cardiac Surgery, University Hospital "Scuola Medica Salernitana", Salerno, Italy
| | - N Ehlken
- Pulmonary Hypertension Unit, Thoraxclinic, University Hospital Heidelberg, Heidelberg, Germany
| | - A Cittadini
- Department of Translational Medical Sciences, "Federico II" University School of Medicine, Naples, Italy; Interdisciplinary Research Centre in Biomedical Materials (CRIB), Federico II University, Naples, Italy.
| | - E Grünig
- Pulmonary Hypertension Unit, Thoraxclinic, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
34
|
Abstract
In recent years, a number of advancements have been made in the study of entire mitochondrial proteomes in both physiological and pathological conditions. Naturally occurring iodothyronines (i.e., T3 and T2) greatly influence mitochondrial oxidative capacity, directly or indirectly affecting the structure and function of the respiratory chain components. Blue native PAGE (BN-PAGE) can be used to isolate enzymatically active oxidative phosphorylation (OXPHOS) complexes in one step, allowing the clinical diagnosis of mitochondrial metabolism by monitoring OXPHOS catalytic and/or structural features. Protocols for isolating mammalian liver mitochondria and subsequent one-dimensional (1D) BN-PAGE will be described in relation to the impact of thyroid hormones on mitochondrial bioenergetics.
Collapse
|
35
|
Differential regulation of perineuronal nets in the brain and spinal cord with exercise training. Brain Res Bull 2014; 111:20-6. [PMID: 25526898 DOI: 10.1016/j.brainresbull.2014.12.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/13/2014] [Accepted: 12/01/2014] [Indexed: 11/20/2022]
Abstract
Perineuronal nets (PNNs) are lattice like structures which encapsulate the cell body and proximal dendrites of many neurons and are thought to be involved in regulating synaptic plasticity. It is believed that exercise can enhance the plasticity of the Central Nervous System (CNS) in healthy and dysfunctional states by shifting the balance between plasticity promoting and plasticity inhibiting factors in favor of the former. Recent work has focused on exercise effects on trophic factors but its effect on other plasticity regulators is poorly understood. In the present study we investigated how exercise regulates PNN expression in the lumbar spinal cord and areas of the brain associated with motor control and learning and memory. Adult, female Sprague-Dawley rats with free access to a running wheel for 6 weeks had significantly increased PNN expression in the spinal cord compared to sedentary rats (PNN thickness around motoneurons, exercise=15.75±0.63μm, sedentary=7.98±1.29μm, p<0.01). Conversely, in areas of the brain associated with learning and memory there was a significant reduction in perineuronal net expression (number of neurons with PNN in hippocampus CA1-exercise 21±0.56 and sedentary 24±0.34, p<0.01, thickness-exercised=2.37±0.13μm, sedentary=4.27±0.21μm; p<0.01). Our results suggest that in response to exercise, PNNs are differentially regulated in select regions of the CNS, with a general decreased expression in the brain and increased expression in the lumbar spinal cord. This differential expression may indicate different regulatory mechanisms associated with plasticity in the brain compared to the spinal cord.
Collapse
|
36
|
Al-Shammari AA, Gaffney EA, Egginton S. Modelling capillary oxygen supply capacity in mixed muscles: Capillary domains revisited. J Theor Biol 2014; 356:47-61. [DOI: 10.1016/j.jtbi.2014.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 04/11/2014] [Accepted: 04/15/2014] [Indexed: 12/24/2022]
|
37
|
Kostrominova TY, Reiner DS, Haas RH, Ingermanson R, McDonough PM. Automated methods for the analysis of skeletal muscle fiber size and metabolic type. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 306:275-332. [PMID: 24016528 DOI: 10.1016/b978-0-12-407694-5.00007-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
It is of interest to quantify the size, shape, and metabolic subtype of skeletal muscle fibers in many areas of biomedical research. To do so, skeletal muscle samples are sectioned transversely to the length of the muscle and labeled for extracellular or membrane proteins to delineate the fiber boundaries and additionally for biomarkers related to function or metabolism. The samples are digitally photographed and the fibers "outlined" for quantification of fiber cross-sectional area (CSA) using pointing devices interfaced to a computer, which is tedious, prone to error, and can be nonobjective. Here, we review methods for characterizing skeletal muscle fibers and describe new automated techniques, which rapidly quantify CSA and biomarkers. We discuss the applications of these methods to the characterization of mitochondrial dysfunctions, which underlie a variety of human afflictions, and we present a novel approach, utilizing images from the online Human Protein Atlas to predict relationships between fiber-specific protein expression, function, and metabolism.
Collapse
|
38
|
Skeletal muscle mitochondrial dysfunction precedes right ventricular impairment in experimental pulmonary hypertension. Mol Cell Biochem 2012; 373:161-70. [PMID: 23099843 DOI: 10.1007/s11010-012-1485-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 10/17/2012] [Indexed: 10/27/2022]
Abstract
We assessed the time courses of mitochondrial biogenesis factors and respiration in the right ventricle (RV), gastrocnemius (GAS), and left ventricle (LV) in a model of pulmonary-hypertensive rats. Monocrotaline (MT) rats and controls were studied 2 and 4 weeks after injection. Compensated and decompensated heart failure stages were defined according to obvious congestion signs. mRNA expression and protein level of peroxisome proliferator activated receptor gamma co-activator 1α (PGC-1α), citrate synthase (CS) mRNA and activity, and mitochondrial respiration were investigated. In addition, mRNA expression of sirtuin1, nuclear respiratory factor 1, and mitochondrial transcription factor A were studied. As early as 2 weeks, the expression of the studied genes was decreased in the MT GAS. At 4 weeks, the MT GAS and MT RV showed decreased mRNA levels whatever the stage of disease, but PGC-1α protein and CS activity were significantly reduced only at the decompensated stage. The functional result was a significant fall in mitochondrial respiration at the decompensated stage in the RV and GAS. The mRNA expression and mitochondrial respiration were not significantly modified in the MT LV. MT rats demonstrated an early decrease in expression of genes involved in mitochondrial biogenesis in a skeletal muscle, whereas reduced protein expression, and the resulting mitochondrial respiratory dysfunction appeared only in rats with overt heart failure, in the GAS and RV. Dissociations between mRNA and protein levels at the compensated stage deserve to be further studied.
Collapse
|
39
|
Lemieux H, Warren BE. An animal model to study human muscular diseases involving mitochondrial oxidative phosphorylation. J Bioenerg Biomembr 2012; 44:503-12. [DOI: 10.1007/s10863-012-9451-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 05/30/2012] [Indexed: 12/25/2022]
|