1
|
Fiorentù G, Bernardinello N, Giulianelli G, Cocconcelli E, Balestro E, Spagnolo P. Pulmonary Hypertension Associated with Interstitial Lung Disease (PH-ILD): Back to the Future. Adv Ther 2025; 42:1627-1641. [PMID: 39969780 PMCID: PMC11929637 DOI: 10.1007/s12325-025-03129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/27/2025] [Indexed: 02/20/2025]
Abstract
Pulmonary hypertension (PH) is a progressive syndrome characterized by increased pulmonary artery pressure. PH often complicates chronic lung diseases, thus contributing to a substantial disease burden and poor prognosis. The WHO Group 3 Pulmonary Hypertension has many subcategories, including sleep-hypoventilation PH, high altitude-PH, chronic obstructive pulmonary disease (COPD)-PH, and interstitial lung disease (PH-ILD), the latter carrying the worst prognosis. ILD is a heterogeneous group of disorders characterized by cough and shortness of breath and, in progressive forms, irreversible loss of function and respiratory failure. The development of PH in patients with ILD worsens exercise capacity and exertional dyspnea and impairs quality of life. Thus, suspicion and early detection of PH following thorough cardiologic evaluation (i.e., echocardiography, pro-BNP, and right heart catheterization) is paramount for appropriate patient management. For PH secondary to chronic respiratory diseases, current guidelines recommend optimizing the treatment of the underlying respiratory condition and offering long-term oxygen therapy. In recent years, several clinical trials have failed to identify drugs beneficial for group 3 PH. Conversely, the INCREASE trial of inhaled treprostinil has recently provided hope for treating PH-ILD. In this review, we summarize and critically discuss the present and future of the pharmacological management of PH-ILD.
Collapse
Affiliation(s)
- Giordano Fiorentù
- Departement of Cardiac, Thoracic, Vascular Science and Public Health, University of Padova, Padua, Italy
| | - Nicol Bernardinello
- Departement of Cardiac, Thoracic, Vascular Science and Public Health, University of Padova, Padua, Italy.
| | - Giacomo Giulianelli
- Departement of Cardiac, Thoracic, Vascular Science and Public Health, University of Padova, Padua, Italy
| | - Elisabetta Cocconcelli
- Departement of Cardiac, Thoracic, Vascular Science and Public Health, University of Padova, Padua, Italy
| | - Elisabetta Balestro
- Departement of Cardiac, Thoracic, Vascular Science and Public Health, University of Padova, Padua, Italy
| | - Paolo Spagnolo
- Departement of Cardiac, Thoracic, Vascular Science and Public Health, University of Padova, Padua, Italy
| |
Collapse
|
2
|
Wearing OH, Chesler NC, Colebank MJ, Hacker TA, Lorenz JN, Simpson JA, West CR. Guidelines for assessing ventricular pressure-volume relationships in rodents. Am J Physiol Heart Circ Physiol 2025; 328:H120-H140. [PMID: 39625460 DOI: 10.1152/ajpheart.00434.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
Ventricular catheterization with a pressure-volume (PV) catheter is the gold-standard method for assessing in vivo cardiac function in animal studies, providing valuable "load-independent" indices of systolic and diastolic heart performance. PV studies are commonly performed to elucidate mechanistic insights into cardiovascular disease using surgical and genetically engineered rat and mouse models, but there is considerable heterogeneity in how these studies are performed. Wide variation in protocol design, volume calibration, anesthesia, manipulation of cardiac loading conditions, how load-independent indices of cardiac function are derived, as well as in data analysis and reporting is constraining reliability and reproducibility in the field. The purpose of this manuscript is to combine our collective expertise in performing open- and closed-chest left and right ventricle PV studies in rodents to provide consensus guidelines on how to perform, analyze, and interpret these studies using either conductance or admittance PV catheters. We first review recent methodological reporting in rodent PV studies in this journal and discuss important details required to improve reproducibility within and across PV studies. We then recommend steps to obtain high-quality PV data, from volume calibration to choice of anesthetic agent and acquiring load-independent indices of both systolic and diastolic function. We also consider between- and within-animal variation and recommend how to perform data analysis and visualization. We hope that this consensus paper guides those performing PV studies in rodents and helps align the field with best practices in surgical/analytical methodologies and reporting, facilitating better reliability and reproducibility in the PV field.
Collapse
Affiliation(s)
- Oliver H Wearing
- Department of Cellular & Physiological Sciences, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Centre for Chronic Disease Prevention and Management, UBC Okanagan, Kelowna, British Columbia, Canada
- Centre for Heart, Lung & Vascular Health, UBC Okanagan, Kelowna, British Columbia, Canada
| | - Naomi C Chesler
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California Irvine, Irvine, California, United States
| | - Mitchel J Colebank
- Department of Mathematics, University of South Carolina, Columbia, South Carolina, United States
| | - Timothy A Hacker
- Cardiovascular Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - John N Lorenz
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati, Cincinnati, Ohio, United States
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| | - Christopher R West
- Department of Cellular & Physiological Sciences, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Centre for Chronic Disease Prevention and Management, UBC Okanagan, Kelowna, British Columbia, Canada
- Centre for Heart, Lung & Vascular Health, UBC Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
3
|
Jasińska-Stroschein M, Glajzner P. Searching for Old and New Small-Molecule Protein Kinase Inhibitors as Effective Treatments in Pulmonary Hypertension-A Systematic Review. Int J Mol Sci 2024; 25:12858. [PMID: 39684570 DOI: 10.3390/ijms252312858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Treatment options for pulmonary arterial hypertension (PAH) have improved substantially in the last 30 years, but there is still a need for novel molecules that can regulate the excessive accumulation of pulmonary artery smooth muscle cells (PASMCs) and consequent vascular remodeling. One set of possible candidates are protein kinases. The study provides an overview of existing preclinical and clinical data regarding small-molecule protein kinase inhibitors in PAH. Online databases were searched from 2001 to 2023 according to PRISMA. The corpus included preclinical studies demonstrating alterations in at least one PH-related parameter following chronic exposure to an individual protein kinase inhibitor, as well as prospective clinical reports including healthy adults or those with PAH, with primary outcomes defined as safety or efficacy of an individual small-molecule protein kinase inhibitor. Several models in preclinical protocols (93 papers) have been proposed for studying small-molecule protein kinase inhibitors in PAH. In total, 51 kinase inhibitors were tested. Meta-analysis of preclinical results demonstrated seralutinib, sorafenib, fasudil hydrochloride, and imatinib had the most comprehensive effects on PH with anti-inflammatory, anti-oxidant, and anti-proliferative potential. Fasudil demonstrated more than 70% animal survival with the longest experimental period, while dasatinib, nintedanib, and (R)-crizotinib could deteriorate PAH. The substances targeting the same kinases often varied considerably in their activity, and such heterogeneity may be due to the variety of causes. Recent studies have addressed the molecules that affect multiple networks such as PDG-FRα/β/CSF1R/c-KIT/BMPR2 or FKBP12/mTOR. They also focus on achieving a satisfactory safety profile using innovative inhalation formulations Many small-molecule protein kinase inhibitors are able to control migration, proliferation and survival in PASMCs in preclinical observations. Standardized animal models can successfully reduce inter-study heterogeneity and thereby facilitate successful identification of candidate drugs for further evaluations.
Collapse
Affiliation(s)
| | - Paulina Glajzner
- Department of Biopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
4
|
Novel Therapeutic Targets for the Treatment of Right Ventricular Remodeling: Insights from the Pulmonary Artery Banding Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168297. [PMID: 34444046 PMCID: PMC8391744 DOI: 10.3390/ijerph18168297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022]
Abstract
Right ventricular (RV) function is the main determinant of the outcome of patients with pulmonary hypertension (PH). RV dysfunction develops gradually and worsens progressively over the course of PH, resulting in RV failure and premature death. Currently, approved therapies for the treatment of left ventricular failure are not established for the RV. Furthermore, the direct effects of specific vasoactive drugs for treatment of pulmonary arterial hypertension (PAH, Group 1 of PH) on RV are not fully investigated. Pulmonary artery banding (PAB) allows to study the pathogenesis of RV failure solely, thereby testing potential therapies independently of pulmonary vascular changes. This review aims to discuss recent studies of the mechanisms of RV remodeling and RV-directed therapies based on the PAB model.
Collapse
|
5
|
Rajagopal K, Bryant AJ, Sahay S, Wareing N, Zhou Y, Pandit LM, Karmouty-Quintana H. Idiopathic pulmonary fibrosis and pulmonary hypertension: Heracles meets the Hydra. Br J Pharmacol 2021; 178:172-186. [PMID: 32128790 PMCID: PMC7910027 DOI: 10.1111/bph.15036] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/04/2019] [Accepted: 02/11/2020] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease where the additional presence of pulmonary hypertension (PH) reduces survival. In particular, the presence of coexistent pulmonary vascular disease in patients with advanced lung parenchymal disease results in worse outcomes than either diagnosis alone. This is true with respect to the natural histories of these diseases, outcomes with medical therapies, and even outcomes following lung transplantation. Consequently, there is a striking need for improved treatments for PH in the setting of IPF. In this review, we summarize existing therapies from the perspective of molecular mechanisms underlying lung fibrosis and vasoconstriction/vascular remodelling and discuss potential future targets for pharmacotherapy. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Keshava Rajagopal
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Andrew J. Bryant
- Division of Pulmonology, Department of Medicine, University of Florida, Gainesville, Florida
| | - Sandeep Sahay
- Houston Methodist Lung Center, Division of Pulmonary Medicine, Department of Internal Medicine, Houston Methodist Hospital, Houston, Texas
| | - Nancy Wareing
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Yang Zhou
- Division of Biology and Medicine, Brown University, Providence, Rhode Island
| | - Lavannya M. Pandit
- Department of Medicine, Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine–Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
6
|
Koudstaal T, van Hulst JAC, Das T, Neys SFH, Merkus D, Bergen IM, de Raaf MA, Bogaard HJ, Boon L, van Loo G, Aerts JGJV, Boomars KA, Kool M, Hendriks RW. DNGR1-Cre-mediated Deletion of Tnfaip3/A20 in Conventional Dendritic Cells Induces Pulmonary Hypertension in Mice. Am J Respir Cell Mol Biol 2020; 63:665-680. [PMID: 32755457 DOI: 10.1165/rcmb.2019-0443oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic perivascular inflammation is a prominent feature in the lungs of idiopathic pulmonary arterial hypertension. Although the proportions of conventional dendritic cells (cDCs) and plasmacytoid DCs are increased in idiopathic pulmonary arterial hypertension lungs, it remains unknown whether activated cDCs play a pathogenic role. The Tnfaip3 gene encodes the ubiquitin-binding protein A20, which is a negative regulator of NF-κB, critically involved in DC activation. Targeting of Tnfaip3/A20 in cDCs was achieved by Clec9a (DNGR1)-Cre-mediated excision of the Tnfaip3 gene in Tnfaip3DNGR1-KO mice. Mice were evaluated for signs of pulmonary hypertension (PH) using right heart catheterization, echocardiography, and measurement of the Fulton index. Inflammation was assessed by immunohistochemistry and flow cytometry. Pulmonary cDCs and monocyte-derived DCs from 31-week-old Tnfaip3DNGR1-KO mice showed modulated expression of cell surface activation markers compared with Tnfaip3DNGR1-WT mice. Tnfaip3DNGR1-KO mice developed elevated right ventricular systolic pressure and right ventricular hypertrophy. The lungs of these mice displayed increased vascular remodeling and perivascular and peribronchial immune cell infiltration resembling tertiary lymphoid organs. Proportions of activated T cells and expression of IL-1β, IL-6, and IL-10 were enhanced in the lungs of Tnfaip3DNGR1-KO mice. Autoreactive IgA and IgG1 was detected in BAL and autoreactive IgA recognizing pulmonary endothelial antigens was present in the serum of Tnfaip3DNGR1-KO mice. All signs of PH were ameliorated in Tnfaip3DNGR1-KO mice by anti-IL-6 antibody treatment. These results indicate that activation of the NF-κB pathway in DCs, through deletion of A20/Tnfaip3, leads to experimental PH with accompanied pulmonary inflammation in an IL-6-dependent fashion.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michiel A de Raaf
- Department of Neonatology, Erasmus Medical Centre, Rotterdam, the Netherlands.,VU Medical Centre, Amsterdam, the Netherlands
| | | | - Louis Boon
- Polpharma Biologics, Utrecht, the Netherlands
| | - Geert van Loo
- VIB Center for Inflammation Research, Ghent, Belgium; and.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | | | | | | |
Collapse
|
7
|
Weiss A, Boehm M, Egemnazarov B, Grimminger F, Savai Pullamsetti S, Kwapiszewska G, Schermuly RT. Kinases as potential targets for treatment of pulmonary hypertension and right ventricular dysfunction. Br J Pharmacol 2020; 178:31-53. [PMID: 31709514 DOI: 10.1111/bph.14919] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/07/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Pulmonary hypertension (PH) is a progressive pulmonary vasculopathy that causes chronic right ventricular pressure overload and often leads to right ventricular failure. Various kinase inhibitors have been studied in the setting of PH and either improved or worsened the disease, highlighting the importance of understanding the specific role of the respective kinases in a spatiotemporal cellular context. In this review, we will summarize the knowledge on the role of kinases in PH and focus on druggable targets for which certain criteria are met: (a) deregulation of the kinase in PH; (b) small-molecule inhibitors are available (e.g. from the oncology field); (c) preclinical studies have shown their efficacy in PH models; and (d) when available, therapeutic exploitation in human PH has been initiated. Along this line, clinical considerations such as personalized medicine approaches to predict therapy response and adverse side events such as cardiotoxicity together with their clinical management are discussed. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Astrid Weiss
- Department of Internal Medicine, Justus-Liebig University Giessen, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Mario Boehm
- Department of Internal Medicine, Justus-Liebig University Giessen, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | | | - Friedrich Grimminger
- Department of Internal Medicine, Justus-Liebig University Giessen, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | | | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Otto Loewi Center, Physiology, Medical University of Graz, Graz, Austria
| | - Ralph T Schermuly
- Department of Internal Medicine, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
8
|
Tello K, Seeger W, Naeije R, Vanderpool R, Ghofrani HA, Richter M, Tedford RJ, Bogaard HJ. Right heart failure in pulmonary hypertension: Diagnosis and new perspectives on vascular and direct right ventricular treatment. Br J Pharmacol 2019; 178:90-107. [PMID: 31517994 DOI: 10.1111/bph.14866] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/15/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022] Open
Abstract
Adaptation of right ventricular (RV) function to increased afterload-known as RV-arterial coupling-is a key determinant of prognosis in pulmonary hypertension. However, measurement of RV-arterial coupling is a complex, invasive process involving analysis of the RV pressure-volume relationship during preload reduction over multiple cardiac cycles. Simplified methods have therefore been proposed, including echocardiographic and cardiac MRI approaches. This review describes the available methods for assessment of RV function and RV-arterial coupling and the effects of pharmacotherapy on these variables. Overall, pharmacotherapies for pulmonary hypertension have shown beneficial effects on various measures of RV function, but it is often unclear if these are direct RV effects or indirect results of afterload reduction. Studies of the effects of pharmacotherapies on RV-arterial coupling are limited and mostly restricted to experimental models. Simplified methods to assess RV-arterial coupling should be validated and incorporated into routine clinical follow-up and future clinical trials. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Khodr Tello
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - Werner Seeger
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - Robert Naeije
- Physiology, Erasme University Hospital, Brussels, Belgium
| | | | - Hossein Ardeschir Ghofrani
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - Manuel Richter
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - Ryan J Tedford
- Division of Cardiology, Department of Medicine, Medical University of South Carolina (MUSC), Charleston, SC, USA
| | - Harm J Bogaard
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Tsutsumi T, Nagaoka T, Yoshida T, Wang L, Kuriyama S, Suzuki Y, Nagata Y, Harada N, Kodama Y, Takahashi F, Morio Y, Takahashi K. Nintedanib ameliorates experimental pulmonary arterial hypertension via inhibition of endothelial mesenchymal transition and smooth muscle cell proliferation. PLoS One 2019; 14:e0214697. [PMID: 31339889 PMCID: PMC6656344 DOI: 10.1371/journal.pone.0214697] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
Neointimal lesion and medial wall thickness of pulmonary arteries (PAs) are common pathological findings in pulmonary arterial hypertension (PAH). Platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) signaling contribute to intimal and medial vascular remodeling in PAH. Nintedanib is a tyrosine kinase inhibitor whose targets include PDGF and FGF receptors. Although the beneficial effects of nintedanib were demonstrated for human idiopathic pulmonary fibrosis, its efficacy for PAH is still unclear. Thus, we hypothesized that nintedanib is a novel treatment for PAH to inhibit the progression of vascular remodeling in PAs. We evaluated the inhibitory effects of nintedanib both in endothelial mesenchymal transition (EndMT)-induced human pulmonary microvascular endothelial cells (HPMVECs) and human pulmonary arterial smooth muscle cells (HPASMCs) stimulated by growth factors. We also tested the effect of chronic nintedanib administration on a PAH rat model induced by Sugen5416 (a VEGF receptor inhibitor) combined with chronic hypoxia. Nintedanib was administered from weeks 3 to 5 after Sugen5416 injection, and we evaluated pulmonary hemodynamics and PAs pathology. Nintedanib attenuated the expression of mesenchymal markers in EndMT-induced HPMVECs and HPASMCs proliferation. Phosphorylation of PDGF and FGF receptors was augmented in both intimal and medial lesions of PAs. Nintedanib blocked these phosphorylation, improved hemodynamics and reduced vascular remodeling involving neointimal lesions and medial wall thickening in PAs. Additionally, expressions Twist1, transcription factors associated with EndMT, in lung tissue was significantly reduced by nintedanib. These results suggest that nintedanib may be a novel treatment for PAH with anti-vascular remodeling effects.
Collapse
MESH Headings
- Animals
- Cell Proliferation/drug effects
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- HEK293 Cells
- Humans
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Indoles/pharmacology
- Muscle, Smooth/metabolism
- Muscle, Smooth/pathology
- Muscle, Smooth/physiopathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Rats
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Takeo Tsutsumi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Tetsutaro Nagaoka
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
- * E-mail:
| | - Takashi Yoshida
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Lei Wang
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Sachiko Kuriyama
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Yoshifumi Suzuki
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Yuichi Nagata
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Norihiro Harada
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Yuzo Kodama
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Yoshiteru Morio
- Department of Respiratory Medicine, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Shimomura I, Abe M, Li Y, Tsushima K, Sakao S, Tanabe N, Ikusaka M, Tatsumi K. Pulmonary Hypertension Exacerbated by Nintedanib Administration for Idiopathic Pulmonary Fibrosis. Intern Med 2019; 58:965-968. [PMID: 30568123 PMCID: PMC6478987 DOI: 10.2169/internalmedicine.1384-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The patient was a 71-year-old man with severe idiopathic pulmonary fibrosis (IPF) and who demonstrated a slow deterioration of his respiratory condition. After nintedanib administration, his forced vital capacity and chest high-resolution computed tomography (HRCT) findings were stable, but his dyspnea on exertion were worsened. He was diagnosed with pulmonary hypertension (PH) by right heart catheterization (mean pulmonary arterial pressure: 30 mmHg). In this case, we suspected that nintedanib caused his PH, as his IPF had not progressed.
Collapse
Affiliation(s)
- Iwao Shimomura
- Department of Respirology, Graduate School of Medicine, Chiba University, Japan
| | - Mitsuhiro Abe
- Department of Respirology, Graduate School of Medicine, Chiba University, Japan
| | - Yu Li
- Department of General Medicine, Chiba University Hospital, Japan
| | - Kenji Tsushima
- Department of Respirology, Graduate School of Medicine, Chiba University, Japan
| | - Seiichiro Sakao
- Department of Respirology, Graduate School of Medicine, Chiba University, Japan
| | - Nobuhiro Tanabe
- Department of Respirology, Graduate School of Medicine, Chiba University, Japan
| | - Masatomi Ikusaka
- Department of General Medicine, Chiba University Hospital, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Japan
| |
Collapse
|
11
|
Ambade AS, Jung B, Lee D, Doods H, Wu D. Triple-tyrosine kinase inhibition attenuates pulmonary arterial hypertension and neointimal formation. Transl Res 2019; 203:15-30. [PMID: 30142307 DOI: 10.1016/j.trsl.2018.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 12/29/2022]
Abstract
The present study examined the effects of simultaneous inhibition of vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) receptor signaling with BIBF1000, a novel triple tyrosine kinase inhibitor on preventing and reversing the progression of severe pulmonary arterial hypertension (PAH) in an experimental model in rats. Left pneumonectomized male Wistar rats were injected with monocrotaline to induce PAH. Treatment with BIBF1000 from day 1 to day 21 after monocrotaline injection attenuated PAH development, as evidenced by lower values for pulmonary artery pressure (mPAP), right ventricular pressure (RVSP), pulmonary arterial neointimal formation, and the ratio of right ventricular weight to left ventricular and septum weight [RV/(LV+S)] on day 21 compared to control rats. Treatment with BIBF1000 from day 21 to day 42 after monocrotaline injection reversed established PAH as shown by normalized values for mPAP and RVSP, RV/(LV+S) ratio, pulmonary arterial occlusion scores, levels of heart and lung fibrosis, as well as improved survival. Treatment with BIBF1000 reduced inflammatory cell recruitment in bronchoalveolar lavage and lung tissues, reduced CD-68 positive macrophages and expression of proliferating cell nuclear antigen in the perivascular areas, and reduced TNF-α and growth factor productions, and inhibited the phosphorylation of AKT and GSK3β in lungs. In addition, BIBF1000 inhibited pulmonary artery smooth muscle cells migration and proliferation from rat pulmonary artery explant cultures. Simultaneous inhibition of VEGF, PDGF, and FGF receptor signaling by BIBF1000 prevents and reverses the progression of severe pulmonary arterial hypertension and vascular remodeling in this experimental model.
Collapse
Affiliation(s)
- Anjira S Ambade
- Department of BIN Convergence Technology, Chonbuk National University, Jeonju, South Korea
| | - Birgit Jung
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Dongwon Lee
- Department of BIN Convergence Technology, Chonbuk National University, Jeonju, South Korea
| | - Henri Doods
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Dongmei Wu
- Department of BIN Convergence Technology, Chonbuk National University, Jeonju, South Korea; Department of Research, Mount Sinai Medical Center, Miami Beach, Florida.
| |
Collapse
|
12
|
Graziani F, Varone F, Crea F, Richeldi L. Treating heart failure with preserved ejection fraction: learning from pulmonary fibrosis. Eur J Heart Fail 2018; 20:1385-1391. [PMID: 30085383 DOI: 10.1002/ejhf.1286] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 12/16/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) has a poor prognosis, and an effective treatment is currently lacking. Increasing evidence suggests a prevailing pathogenic role of cardiac fibrosis in HFpEF, which generates the possibility of a mechanistic overlap with pulmonary fibrosis. Indeed, cardiac and pulmonary fibrosis share some characteristics and molecular pathways, such as that of transforming growth factor-β. If pulmonary and cardiac fibrosis share common pathways, we can hypothesize a beneficial effect of anti-fibrotic drugs used in idiopathic pulmonary fibrosis on cardiac outcomes. Of note, pirfenidone has been tested in animal models of cardiac fibrosis and was found to be effective in reducing ventricular remodelling. Yet, no results are hitherto available for humans. In this review article, we discuss the potential benefit of anti-fibrotic treatment in HFpEF. In particular, we propose to reappraise safety data collected in placebo-controlled trials of anti-fibrotic drugs in idiopathic pulmonary fibrosis, to explore the hypothesis that these might reduce cardiac fibrosis.
Collapse
Affiliation(s)
- Francesca Graziani
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Francesco Varone
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Luca Richeldi
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
13
|
Egemnazarov B, Crnkovic S, Nagy BM, Olschewski H, Kwapiszewska G. Right ventricular fibrosis and dysfunction: Actual concepts and common misconceptions. Matrix Biol 2018; 68-69:507-521. [PMID: 29343458 DOI: 10.1016/j.matbio.2018.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/25/2022]
Abstract
Fibrosis and remodeling of the right ventricle (RV) are associated with RV dysfunction and mortality of patients with pulmonary hypertension (PH) but it is unknown how much RV fibrosis contributes to RV dysfunction and mortality. RV fibrosis manifests as fibroblast accumulation and collagen deposition which may be excessive. Although extracellular matrix deposition leads to elevated ventricular stiffness, it is not known to which extent it affects RV function. Various animal models of pulmonary hypertension have been established to investigate the role of fibrosis in RV dysfunction and failure. However, they do not perfectly resemble the human disease. In the current review we describe the major characteristics of RV fibrosis, molecular mechanisms regulating the fibrotic process, and discuss how therapeutic targeting of fibrosis might affect RV function.
Collapse
Affiliation(s)
| | - Slaven Crnkovic
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Bence M Nagy
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Institute of Physiology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
14
|
Fülöp GÁ, Yabluchanskiy A. Cyp2c44-mediated decrease of 15-HETE exacerbates pulmonary hypertension. Am J Physiol Heart Circ Physiol 2017. [PMID: 28626080 DOI: 10.1152/ajpheart.00320.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Gábor Á Fülöp
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and.,Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andriy Yabluchanskiy
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and .,Translational Geroscience Laboratory, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
15
|
Deng Y, Wu W, Guo S, Chen Y, Liu C, Gao X, Wei B. Altered mTOR and Beclin-1 mediated autophagic activation during right ventricular remodeling in monocrotaline-induced pulmonary hypertension. Respir Res 2017; 18:53. [PMID: 28340591 PMCID: PMC5366117 DOI: 10.1186/s12931-017-0536-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/12/2017] [Indexed: 01/25/2023] Open
Abstract
Background Right ventricular structure and function is a major predictor of outcomes in pulmonary hypertension (PH), yet the underlying mechanisms remain poorly understood. Growing evidence suggests the importance of autophagy in cardiac remodeling; however, its dynamics in the process of right ventricle(RV) remodeling in PH has not been fully explored. We sought to study the time course of cardiomyocyte autophagy in the RV in PH and determine whether mammalian target of rapamycin (mTOR) and Beclin-1 hypoxia-related pro-autophagic pathways are underlying mechanisms. Methods Rats were studied at 2, 4, and 6 weeks after subcutaneous injection of 60 mg/kg monocrotaline (MCT) (MCT-2 W, 4 W, 6 W) or vehicle (CON-2 W, 4 W, 6 W). Cardiac hemodynamics and RV function were assessed in rats. Autophagy structures and markers were assessed using transmission electron microscope, RT-qPCR, immunohistochemistry staining, and western blot analyses. Western blot was also used to quantify the expression of mTOR and Beclin-1 mediated pro-autophagy signalings in the RV. Results Two weeks after MCT injection, pulmonary artery systolic pressure increased and mild RV hypertrophy without RV dilation was observed. RV enlargement presented at 4 weeks with moderately decreased function, whereas typical characteristics of RV decompensation and failure occurred at 6 weeks thus demonstrating the progression of RV remodeling in the MCT model. A higher LC3 (microtubule- associated protein light chain 3) II/I ratio, upregulated LC3 mRNA and protein levels, as well as accumulation of autophagosomes in RV of MCT rats indicated autophagy induction. Autophagy activation was coincident with increased pulmonary artery systolic pressure. Pro-autophagy signaling pathways were activated in a RV remodeling stage-dependent manner since phospho-AMPK (adenosine monophosphate-activated protein kinase)-α were primarily upregulated and phospho-mTOR suppressed in the RV at 2 and 4 weeks post-MCT injection, whearas, BNIP3 (Bcl2-interacting protein 3) and beclin-1 expression were relatively low during these stages, they were significantly upregulated after 6 weeks in this model. Conclusions Our findings provide evidence of sustained activation of autophagy in RV remodeling of MCT induced PH model, while pro-autophagic signaling pathways varied depending on the phase.
Collapse
Affiliation(s)
- Yan Deng
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Weifeng Wu
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, People's Republic of China.
| | - Shenglan Guo
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yuming Chen
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Chang Liu
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Xingcui Gao
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Bin Wei
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, People's Republic of China
| |
Collapse
|