1
|
Wang J, Ma L, Fang Y, Ye T, Li H, Lan P. Factors influencing glycocalyx degradation: a narrative review. Front Immunol 2025; 15:1490395. [PMID: 39885987 PMCID: PMC11779607 DOI: 10.3389/fimmu.2024.1490395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/30/2024] [Indexed: 02/01/2025] Open
Abstract
The glycocalyx is a layer of villus-like structure covering the luminal surface of vascular endothelial cells. Damage to the glycocalyx has been proven linked to the development of many diseases. However, the factors that promote damage to the glycocalyx are not fully elaborated. This review summarizes factors leading to the reduction of the glycocalyx in detail, including inflammatory factors, ischemia-reperfusion, oxidative stress, lipids, glucose, high sodium, female sex hormones and others. Additionally, the mechanisms underlying its degradation are discussed. To better prevent and treat related diseases induced by glycocalyx degradation, it is a meaningful measure to avoid these factors.
Collapse
Affiliation(s)
- Jing Wang
- Department of Cardiology, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Lan Ma
- Department of Neurology, Wenzhou Traditional Chinese Medicine (TCM) Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang, China
| | - Yu Fang
- Department of Cardiology, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Tengteng Ye
- Department of Cardiology, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Hongbo Li
- Department of Cardiology, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Peng Lan
- Department of Cardiology, Nanning Hospital of Traditional Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
2
|
Power G, Ferreira-Santos L, Martinez-Lemus LA, Padilla J. Integrating molecular and cellular components of endothelial shear stress mechanotransduction. Am J Physiol Heart Circ Physiol 2024; 327:H989-H1003. [PMID: 39178024 PMCID: PMC11482243 DOI: 10.1152/ajpheart.00431.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
The lining of blood vessels is constantly exposed to mechanical forces exerted by blood flow against the endothelium. Endothelial cells detect these tangential forces (i.e., shear stress), initiating a host of intracellular signaling cascades that regulate vascular physiology. Thus, vascular health is tethered to the endothelial cells' capacity to transduce shear stress. Indeed, the mechanotransduction of shear stress underlies a variety of cardiovascular benefits, including some of those associated with increased physical activity. However, endothelial mechanotransduction is impaired in aging and disease states such as obesity and type 2 diabetes, precipitating the development of vascular disease. Understanding endothelial mechanotransduction of shear stress, and the molecular and cellular mechanisms by which this process becomes defective, is critical for the identification and development of novel therapeutic targets against cardiovascular disease. In this review, we detail the primary mechanosensitive structures that have been implicated in detecting shear stress, including junctional proteins such as platelet endothelial cell adhesion molecule-1 (PECAM-1), the extracellular glycocalyx and its components, and ion channels such as piezo1. We delineate which molecules are truly mechanosensitive and which may simply be indispensable for the downstream transmission of force. Furthermore, we discuss how these mechanosensors interact with other cellular structures, such as the cytoskeleton and membrane lipid rafts, which are implicated in translating shear forces to biochemical signals. Based on findings to date, we also seek to integrate these cellular and molecular mechanisms with a view of deciphering endothelial mechanotransduction of shear stress, a tenet of vascular physiology.
Collapse
Affiliation(s)
- Gavin Power
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | | | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
| |
Collapse
|
3
|
Sabouri M, Zheng X, Irwin BJ, Machin DR. Effects of excess sodium consumption on arterial function in C57BL/6 mice. Am J Physiol Heart Circ Physiol 2024; 327:H896-H907. [PMID: 39150393 PMCID: PMC11482244 DOI: 10.1152/ajpheart.00242.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Excess sodium consumption contributes to arterial dysfunction in humans. The C57BL/6 strain of mice has been used to identify mechanisms by which arterial dysfunction occurs after excess sodium consumption. However, there are concerns that C57BL/6 mice have strain-specific resistance to high-sodium (HS) diet-induced hypertension. To address this concern, we performed a meta-analysis to determine if excess sodium consumption in C57BL/6 mice induces arterial dysfunction. Databases were searched for HS versus standard diet studies that measured arterial function [i.e., systolic blood pressure (BP), endothelium-dependent dilation (EDD), and central arterial stiffness] in C57BL/6 mice. A total of 39 studies were included, demonstrating that the HS condition resulted in higher systolic BP than control mice with a mean difference of 9.8 mmHg (95% confidence interval [CI] = [5.6, 14], P < 0.001). Subgroup analysis indicated that the systolic BP was higher in HS compared with the control condition when measured during night compared with daytime with telemetry (P < 0.001). We also identified that the difference in systolic BP between HS and control was ∼2.5-fold higher when administered through drinking water than through food (P < 0.001). A total of 12 studies were included, demonstrating that the HS condition resulted in lower EDD than control with a weighted mean difference of -12.0% (95% CI = [-20.0, -4.1], P = 0.003). It should be noted that there was considerable variability across studies with more than half of the studies showing no effect of the HS condition on systolic BP or EDD. In summary, excess sodium consumption elevates systolic BP and impairs EDD in C57BL/6 mice.NEW & NOTEWORTHY C57BL/6 mice are perceived as resistant to high-sodium diet-induced arterial dysfunction. This meta-analysis demonstrates that excess sodium consumption elevates blood pressure and impairs endothelium-dependent dilation in C57BL/6 mice. Nighttime measurements show more pronounced blood pressure elevation. In addition, sodium administration via drinking water, compared with food, induces a greater blood pressure elevation. These findings may be influenced by outlier studies, as the majority of studies showed no adverse effect of excess sodium consumption on arterial function.
Collapse
Affiliation(s)
- Mostafa Sabouri
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Xiangyu Zheng
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Bryan J Irwin
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States
| | - Daniel R Machin
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
4
|
Han Y, Duan J, Chen M, Huang S, Zhang B, Wang Y, Liu J, Li X, Yu W. Relationship between serum sodium level and sepsis-induced coagulopathy. Front Med (Lausanne) 2024; 10:1324369. [PMID: 38298508 PMCID: PMC10828971 DOI: 10.3389/fmed.2023.1324369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024] Open
Abstract
Purpose A discussion about the correlation between the level of serum sodium and sepsis-induced coagulopathy (SIC). Materials and methods A retrospective analysis was conducted on sepsis patients who were admitted to the Intensive Care Unit (ICU) of Nanjing Drum Tower Hospital from January 2021 to December 2022. Based on the presence of coagulation disorders, the patients were divided into two groups: sepsis-induced coagulopathy (SIC) and non-sepsis-induced coagulopathy (non-SIC) groups. We recorded demographic characteristics and laboratory indicators at the time of ICU admission, and analyzed relationship between serum sodium level and SIC. Results One hundred and twenty-five patients with sepsis were enrolled, among which, the SIC and the non-SIC groups included 62 and 63 patients, respectively. Compared to patients in the non-SIC group, the level of serum sodium of those in the SIC was significantly higher (p < 0.001). Multi-factor logistic regression showed serum sodium level was independently associated with SIC (or = 1.127, p = 0.001). Pearson's correlation analysis indicated that the higher the serum sodium level, the significantly higher the SIC score was (r = 0.373, p < 0.001). Additionally, the mortality rate of patients with sepsis in the ICU were significantly correlated with increased serum sodium levels (p = 0.014). Conclusion An increase in serum sodium level was independently associated with an increased occurrence of SIC and also associated with the poor prognosis for patients with sepsis.
Collapse
Affiliation(s)
- Yanyu Han
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianfeng Duan
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ming Chen
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shijie Huang
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Beiyuan Zhang
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yan Wang
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jiali Liu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaoyao Li
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenkui Yu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Machin DR, Sabouri M, Zheng X, Donato AJ. Therapeutic strategies targeting the endothelial glycocalyx. Curr Opin Clin Nutr Metab Care 2023; 26:543-550. [PMID: 37555800 PMCID: PMC10592259 DOI: 10.1097/mco.0000000000000973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
PURPOSE OF REVIEW This review will highlight recent studies that have examined the endothelial glycocalyx in a variety of health conditions, as well as potential glycocalyx-targeted therapies. RECENT FINDINGS A degraded glycocalyx is present in individuals that consume high sodium diet or have kidney disease, diabetes, preeclampsia, coronavirus disease 2019 (COVID-19), or sepsis. Specifically, these conditions are accompanied by elevated glycocalyx components in the blood, such as syndecan-1, syndecans-4, heparin sulfate, and enhanced heparinase activity. Impaired glycocalyx barrier function is accompanied by decreased nitric oxide bioavailability, increased leukocyte adhesion to endothelial cells, and vascular permeability. Glycocalyx degradation appears to play a key role in the progression of cardiovascular complications. However, studies that have used glycocalyx-targeted therapies to treat these conditions are scarce. Various therapeutics can restore the glycocalyx in kidney disease, diabetes, COVID-19, and sepsis. Exposing endothelial cells to glycocalyx components, such as heparin sulfate and hyaluronan protects the glycocalyx. SUMMARY We conclude that the glycocalyx is degraded in a variety of health conditions, although it remains to be determined whether glycocalyx degradation plays a causal role in disease progression and severity, and whether glycocalyx-targeted therapies improve patient health outcomes. Future studies are warranted to investigate therapeutic strategies that target the endothelial glycocalyx.
Collapse
Affiliation(s)
- Daniel R Machin
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Mostafa Sabouri
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Xiangyu Zheng
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Anthony J Donato
- Department of Internal Medicine, University of Utah, Utah
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, VA SLC
- Department of Nutrition and Integrative Physiology
- Department of Biochemistry
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
6
|
Zheng X, Machin DR. Patching up a degraded endothelial glycocalyx in sepsis. Am J Physiol Heart Circ Physiol 2023; 325:H673-H674. [PMID: 37594482 PMCID: PMC10659260 DOI: 10.1152/ajpheart.00499.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/19/2023]
Affiliation(s)
- Xiangyu Zheng
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Daniel R Machin
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
7
|
Machin DR, Trott DW, Gogulamudi VR, Islam MT, Bloom SI, Vink H, Lesniewski LA, Donato AJ. Glycocalyx-targeted therapy ameliorates age-related arterial dysfunction. GeroScience 2023; 45:2351-2365. [PMID: 36787090 PMCID: PMC10651573 DOI: 10.1007/s11357-023-00745-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/26/2023] [Indexed: 02/15/2023] Open
Abstract
Advanced age is accompanied by arterial dysfunction, as well as a diminished glycocalyx, which may be linked to reduced high molecular weight-hyaluronan (HMW-HA) synthesis. However, the impact of glycocalyx deterioration in age-related arterial dysfunction is unknown. We sought to determine if manipulations in glycocalyx properties would alter arterial function. Tamoxifen-induced hyaluronan synthase 2 (Has2) reduction was used to decrease glycocalyx properties. Three weeks post-tamoxifen treatment, glycocalyx thickness was lower in Has2 knockout compared to wild-type mice (P<0.05). Has2 reduction induced arterial dysfunction, demonstrated by impaired endothelium-dependent dilation (EDD) and elevated aortic stiffness (P<0.05). To augment glycocalyx properties, old mice received 10 weeks of a glycocalyx-targeted therapy via Endocalyx™ (old+ECX), which contains HMW-HA and other glycocalyx components. Compared to old control mice, glycocalyx properties and EDD were augmented, and aortic stiffness decreased in old+ECX mice (P<0.05). Old+ECX mice had a more youthful aortic phenotype, demonstrated by lower collagen content and higher elastin content than old control mice (P<0.05). Functional outcomes were repeated in old mice that underwent a diet supplemented solely with HMW-HA (old+HA). Compared to old controls, glycocalyx properties and EDD were augmented, and aortic stiffness was lower in old+HA mice (P<0.05). We did not observe any differences between old+HA and old+ECX mice (P>0.05). Has2 reduction phenocopies age-related arterial dysfunction, while 10 weeks of glycocalyx-targeted therapy that restores the glycocalyx also ameliorates age-related arterial dysfunction. These findings suggest that the glycocalyx may be a viable therapeutic target to ameliorate age-related arterial dysfunction.
Collapse
Affiliation(s)
- Daniel R Machin
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, 32306, USA.
| | - Daniel W Trott
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | | | - Md Torikul Islam
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Samuel I Bloom
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Hans Vink
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
- MicroVascular Health Solutions LLC, Alpine, UT, USA
| | - Lisa A Lesniewski
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- VA Salt Lake City, GRECC, Salt Lake City, UT, USA
| | - Anthony J Donato
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- VA Salt Lake City, GRECC, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
8
|
Rentería LI, Zheng X, Valera I, Machin DR, Garcia CK, Leon LR, Laitano O. Ovariectomy aggravates the pathophysiological response to exertional heat stroke in mice. J Appl Physiol (1985) 2023; 134:1224-1231. [PMID: 37022961 PMCID: PMC10151055 DOI: 10.1152/japplphysiol.00092.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Female mice have a greater capacity for exercising in the heat than male mice, reaching greater power output and longer times of heat exposure before succumbing to exertional heat stroke (EHS). Differences in body mass, size, or testosterone do not explain these distinct sex responses. Whether the ovaries could account for the superior exercise capacity in the heat in females remains unknown. Here, we determined the influence of ovariectomy (OVX) on exercise capacity in the heat, thermoregulation, intestinal damage, and heat shock response in a mouse EHS model. We performed bilateral OVX (n = 10) or sham (n = 8) surgeries in young adult (4 mo) female C57/BL6J mice. Upon recovery from surgeries, mice exercised on a forced wheel placed inside an environmental chamber set at 37.5 °C and 40% relative humidity until experiencing loss of consciousness (LOC). Terminal experiments were performed 3 h after LOC. OVX increased body mass by the time of EHS (sham = 3.8 ± 1.1, OVX = 8.3 ± 3.2 g, P < 0.05), resulted in shorter running distance (sham = 753 ± 189, OVX = 490 ± 87 m, P < 0.05), and shorter time to LOC (sham = 126.3 ± 21, OVX = 99.1 ± 19.8 min, P < 0.05). Histopathological assessment of the intestines revealed damage in the jejunum (sham = 0.2 ± 0.7, OVX = 2.1 ± 1.7 AU, P < 0.05) and ileum (sham = 0.3 ± 0.5, OVX = 1.8 ± 1.4 AU, P < 0.05). OVX increased mesenteric microvascular density (sham = 101 ± 25, OVX = 156 ± 66 10-2 mm/mm2, P < 0.05) and decreased concentration of circulatory heat shock protein 72 (HSP72) (sham = 26.7 ± 15.8, OVX = 10.3 ± 4.6 ng/mL, P < 0.05). No differences were observed in cytokines or chemokines between groups. Our findings indicate that OVX aggravates the pathophysiological response to EHS in mice.NEW & NOTEWORTHY Females outperform males in a mouse model of exertional heat stroke (EHS). Here, we show for the first time the impact of ovariectomy (OVX) on EHS pathophysiology. OVX resulted in a shorter exercise capacity in the heat, greater intestinal damage, and lower heat shock response following EHS.
Collapse
Affiliation(s)
- Liliana I Rentería
- College of Health and Human Sciences, Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Xiangyu Zheng
- College of Health and Human Sciences, Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Isela Valera
- College of Health and Human Sciences, Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Daniel R Machin
- College of Health and Human Sciences, Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Christian K Garcia
- College of Health and Human Sciences, Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Lisa R Leon
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Orlando Laitano
- College of Health and Human Sciences, Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
9
|
Zheng X, Berg Sen J, Li Z, Sabouri M, Samarah L, Deacon CS, Bernardo J, Machin DR. High-salt diet augments systolic blood pressure and induces arterial dysfunction in outbred, genetically diverse mice. Am J Physiol Heart Circ Physiol 2023; 324:H473-H483. [PMID: 36735405 PMCID: PMC10010918 DOI: 10.1152/ajpheart.00415.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Excess salt consumption contributes to hypertension and arterial dysfunction in humans living in industrialized societies. However, this arterial phenotype is not typically observed in inbred, genetically identical mouse strains that consume a high-salt (HS) diet. Therefore, we sought to determine the effects of HS diet consumption on systolic blood pressure (BP) and arterial function in UM-HET3 mice, an outbred, genetically diverse strain of mice. Male and female UM-HET3 mice underwent a low-salt [LS (1% NaCl)] or HS (4% NaCl) diet for 12 wk. Systolic BP and aortic stiffness, determined by pulse wave velocity (PWV), were increased in HS after 2 and 4 wk, respectively, compared with baseline and continued to increase through week 12 (P < 0.05). Systolic BP was higher from weeks 2-12 and PWV was higher from weeks 4-12 in HS compared with LS mice (P < 0.05). Aortic collagen content was ∼81% higher in HS compared with LS (P < 0.05), whereas aortic elastin content was similar between groups (P > 0.05). Carotid artery endothelium-dependent dilation (EDD) was ∼10% lower in HS compared with LS (P < 0.05), endothelium-independent dilation was similar between groups (P > 0.05). Finally, there was a strong relationship between systolic BP and PWV (r2 = 0.40, P < 0.05), as well as inverse relationship between EDD and systolic BP (r2 = 0.21, P < 0.05) or PWV (r2 = 0.20, P < 0.05). In summary, HS diet consumption in UM-HET3 mice increases systolic BP, which is accompanied by aortic stiffening and impaired EDD. These data suggest that outbred, genetically diverse mice may provide unique translational insight into arterial adaptations of humans that consume an HS diet.NEW & NOTEWORTHY Excess salt consumption is a contributor to hypertension and arterial dysfunction in humans living in industrialized societies, but this phenotype is not observed in inbred, genetically identical mice that consume a high-salt (HS) diet. This study reveals that a HS diet in outbred, genetically diverse mice progressively increases systolic blood pressure and induce arterial dysfunction. These data suggest that genetically diverse mice may provide translational insight into arterial adaptations in humans that consume an HS diet.
Collapse
Affiliation(s)
- Xiangyu Zheng
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Jennifer Berg Sen
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Zhuoxin Li
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Mostafa Sabouri
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Luaye Samarah
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Christina S Deacon
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Joseph Bernardo
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Daniel R Machin
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
10
|
Power G, Padilla J. (Re)modeling high-salt diet-induced hypertension in mice. Am J Physiol Heart Circ Physiol 2023; 324:H470-H472. [PMID: 36827228 DOI: 10.1152/ajpheart.00093.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Gavin Power
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States.,NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States.,NextGen Precision Health, University of Missouri, Columbia, Missouri, United States.,Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
| |
Collapse
|
11
|
Kerch G. Severe COVID-19-A Review of Suggested Mechanisms Based on the Role of Extracellular Matrix Stiffness. Int J Mol Sci 2023; 24:1187. [PMID: 36674700 PMCID: PMC9861790 DOI: 10.3390/ijms24021187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The severity of COVID-19 commonly depends on age-related tissue stiffness. The aim was to review publications that explain the effect of microenvironmental extracellular matrix stiffness on cellular processes. Platelets and endothelial cells are mechanosensitive. Increased tissue stiffness can trigger cytokine storm with the upregulated expression of pro-inflammatory cytokines, such as tumor necrosis factor alpha and interleukin IL-6, and tissue integrity disruption, leading to enhanced virus entry and disease severity. Increased tissue stiffness in critically ill COVID-19 patients triggers platelet activation and initiates plague formation and thrombosis development. Cholesterol content in cell membrane increases with aging and further enhances tissue stiffness. Membrane cholesterol depletion decreases virus entry to host cells. Membrane cholesterol lowering drugs, such as statins or novel chitosan derivatives, have to be further developed for application in COVID-19 treatment. Statins are also known to decrease arterial stiffness mitigating cardiovascular diseases. Sulfated chitosan derivatives can be further developed for potential use in future as anticoagulants in prevention of severe COVID-19. Anti-TNF-α therapies as well as destiffening therapies have been suggested to combat severe COVID-19. The inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cells pathway must be considered as a therapeutic target in the treatment of severe COVID-19 patients. The activation of mechanosensitive platelets by higher matrix stiffness increases their adhesion and the risk of thrombus formation, thus enhancing the severity of COVID-19.
Collapse
Affiliation(s)
- Garry Kerch
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, 1048 Riga, Latvia
| |
Collapse
|
12
|
Zheng X, Li Z, Berg Sen J, Samarah L, Deacon CS, Bernardo J, Machin DR. Western diet augments metabolic and arterial dysfunction in a sex-specific manner in outbred, genetically diverse mice. Front Nutr 2023; 9:1090023. [PMID: 36687716 PMCID: PMC9853899 DOI: 10.3389/fnut.2022.1090023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 01/07/2023] Open
Abstract
Western diet (WD), characterized by excess saturated fat and sugar intake, is a major contributor to obesity and metabolic and arterial dysfunction in humans. However, these phenotypes are not consistently observed in traditional inbred, genetically identical mice. Therefore, we sought to determine the effects of WD on visceral adiposity and metabolic/arterial function in UM-HET3 mice, an outbred, genetically diverse strain of mice. Male and female UM-HET3 mice underwent normal chow (NC) or WD for 12 weeks. Body mass and visceral adiposity were higher in WD compared to NC (P < 0.05). Female WD mice had greater visceral adiposity than male WD mice (P < 0.05). The results of glucose and insulin tolerance tests demonstrated that metabolic function was lower in WD compared to NC mice (P < 0.05). Metabolic dysfunction in WD as was driven by male mice, as metabolic function in female WD mice was unchanged (P > 0.05). Systolic blood pressure (BP) and aortic stiffness were increased in WD after 2 weeks compared to baseline and continued to increase through week 12 (P < 0.05). Systolic BP and aortic stiffness were higher from weeks 2-12 in WD compared to NC (P < 0.05). Aortic collagen content was higher in WD compared to NC (P < 0.05). Carotid artery endothelium-dependent dilation was lower in WD compared to NC (P < 0.05). These data suggest sex-related differences in visceral adiposity and metabolic dysfunction in response to WD. Despite this, arterial dysfunction was similar in male and female WD mice, indicating this model may provide unique translational insight into similar sex-related observations in humans that consume WD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daniel R. Machin
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
13
|
SenthilKumar G, Gutierrez-Huerta CA, Freed JK, Beyer AM, Fancher IS, LeBlanc AJ. New developments in translational microcirculatory research. Am J Physiol Heart Circ Physiol 2022; 323:H1167-H1175. [PMID: 36306213 PMCID: PMC9678417 DOI: 10.1152/ajpheart.00566.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 01/28/2023]
Abstract
Microvascular disease plays a critical role in systemic end-organ dysfunction, and treatment of microvascular pathologies may greatly reduce cardiovascular morbidity and mortality. The Call for Papers collection: New Developments in Translational Microcirculatory Research highlights key advances in our understanding of the role of microvessels in the development of chronic diseases as well as therapeutic strategies to enhance microvascular function. This Mini Review provides a concise summary of these advances and draws from other relevant research to provide the most up-to-date information on the influence of cutaneous, cerebrovascular, coronary, and peripheral microcirculation on the pathophysiology of obesity, hypertension, cardiovascular aging, peripheral artery disease, and cognitive impairment. In addition to these disease- and location-dependent research articles, this Call for Papers includes state-of-the-art reviews on coronary endothelial function and assessment of microvascular health in different organ systems, with an additional focus on establishing rigor and new advances in clinical trial design. These articles, combined with original research evaluating cellular, exosomal, pharmaceutical, exercise, heat, and dietary interventional therapies, establish the groundwork for translating microcirculatory research from bench to bedside. Although numerous studies in this collection are focused on human microcirculation, most used robust preclinical models to probe mechanisms of pathophysiology and interventional benefits. Future work focused on translating these findings to humans are necessary for finding clinical strategies to prevent and treat microvascular dysfunction.
Collapse
Affiliation(s)
- Gopika SenthilKumar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Cristhian A Gutierrez-Huerta
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Julie K Freed
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Andreas M Beyer
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ibra S Fancher
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, Delaware
| | - Amanda Jo LeBlanc
- Department of Cardiovascular and Thoracic Surgery, School of Medicine, University of Louisville, Louisville, Kentucky
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| |
Collapse
|
14
|
Heather LC, Hafstad AD, Halade GV, Harmancey R, Mellor KM, Mishra PK, Mulvihill EE, Nabben M, Nakamura M, Rider OJ, Ruiz M, Wende AR, Ussher JR. Guidelines on Models of Diabetic Heart Disease. Am J Physiol Heart Circ Physiol 2022; 323:H176-H200. [PMID: 35657616 PMCID: PMC9273269 DOI: 10.1152/ajpheart.00058.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetes is a major risk factor for cardiovascular diseases, including diabetic cardiomyopathy, atherosclerosis, myocardial infarction, and heart failure. As cardiovascular disease represents the number one cause of death in people with diabetes, there has been a major emphasis on understanding the mechanisms by which diabetes promotes cardiovascular disease, and how antidiabetic therapies impact diabetic heart disease. With a wide array of models to study diabetes (both type 1 and type 2), the field has made major progress in answering these questions. However, each model has its own inherent limitations. Therefore, the purpose of this guidelines document is to provide the field with information on which aspects of cardiovascular disease in the human diabetic population are most accurately reproduced by the available models. This review aims to emphasize the advantages and disadvantages of each model, and to highlight the practical challenges and technical considerations involved. We will review the preclinical animal models of diabetes (based on their method of induction), appraise models of diabetes-related atherosclerosis and heart failure, and discuss in vitro models of diabetic heart disease. These guidelines will allow researchers to select the appropriate model of diabetic heart disease, depending on the specific research question being addressed.
Collapse
Affiliation(s)
- Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anne D Hafstad
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ganesh V Halade
- Department of Medicine, The University of Alabama at Birmingham, Tampa, Florida, United States
| | - Romain Harmancey
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Erin E Mulvihill
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Miranda Nabben
- Departments of Genetics and Cell Biology, and Clinical Genetics, Maastricht University Medical Center, CARIM School of Cardiovascular Diseases, Maastricht, the Netherlands
| | - Michinari Nakamura
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Oliver J Rider
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthieu Ruiz
- Montreal Heart Institute, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Adam R Wende
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|