1
|
Odaka R, Sekiguchi K, Hamaguchi S, Namekata I, Tanaka H. Involvement of the Na +/Ca 2+ Exchanger in the Automaticity of the Cardiomyocytes from the Guinea Pig Pulmonary Vein but Not the Sinus Node. Biol Pharm Bull 2025; 48:151-161. [PMID: 39993746 DOI: 10.1248/bpb.b24-00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Fluorescence imaging analysis was performed in cardiomyocytes from the sinus node, the orthotopic pacemaker, and the pulmonary vein, a potential ectopic pacemaker that may cause atrial fibrillation, focusing on the role of the Na+/Ca2+ exchanger (NCX). Isolated cardiomyocytes from the guinea pig pulmonary vein and sinus node showing automaticity were loaded with fluorescence probes for analysis. Inhibition of NCX by SEA0400 decreased the Ca2+ transient frequency in the pulmonary vein cardiomyocytes but not in the sinus node. The basal intracellular Ca2+ concentration, as well as the number of Ca2+ sparks in the subsarcolemmal region, was higher in the pulmonary vein cardiomyocytes than in the sinus node. By contrast, the intracellular Na+ concentration was not different between the pulmonary vein and sinus node cardiomyocytes. The equilibrium potential for NCX (ENCX) was estimated to be less negative in the pulmonary vein cardiomyocytes than in the sinus node. In conclusion, the forward mode NCX is involved in spontaneous activity in the pulmonary vein cardiomyocytes but not in the sinus node; this is probably because the Ca2+ supply and the driving force for the forward mode NCX are both larger in the pulmonary vein cardiomyocytes than in the sinus node.
Collapse
Affiliation(s)
- Ryosuke Odaka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Kana Sekiguchi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Shogo Hamaguchi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Iyuki Namekata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Hikaru Tanaka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
2
|
Zawieja SD, Pea GA, Broyhill SE, Patro A, Bromert KH, Li M, Norton CE, Castorena-Gonzalez JA, Hancock EJ, Bertram CD, Davis MJ. IP3R1 underlies diastolic ANO1 activation and pressure-dependent chronotropy in lymphatic collecting vessels. J Gen Physiol 2023; 155:e202313358. [PMID: 37851027 PMCID: PMC10585095 DOI: 10.1085/jgp.202313358] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/11/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023] Open
Abstract
Pressure-dependent chronotropy of murine lymphatic collecting vessels relies on the activation of the Ca2+-activated chloride channel encoded by Anoctamin 1 (Ano1) in lymphatic muscle cells. Genetic ablation or pharmacological inhibition of ANO1 results in a significant reduction in basal contraction frequency and essentially complete loss of pressure-dependent frequency modulation by decreasing the rate of the diastolic depolarization phase of the ionic pacemaker in lymphatic muscle cells (LMCs). Oscillating Ca2+ release from sarcoendoplasmic reticulum Ca2+ channels has been hypothesized to drive ANO1 activity during diastole, but the source of Ca2+ for ANO1 activation in smooth muscle remains unclear. Here, we investigated the role of the inositol triphosphate receptor 1 (Itpr1; Ip3r1) in this process using pressure myography, Ca2+ imaging, and membrane potential recordings in LMCs of ex vivo pressurized inguinal-axillary lymphatic vessels from control or Myh11CreERT2;Ip3r1fl/fl (Ip3r1ismKO) mice. Ip3r1ismKO vessels had significant reductions in contraction frequency and tone but an increased contraction amplitude. Membrane potential recordings from LMCs of Ip3r1ismKO vessels revealed a depressed diastolic depolarization rate and an elongation of the plateau phase of the action potential (AP). Ca2+ imaging of LMCs using the genetically encoded Ca2+ sensor GCaMP6f demonstrated an elongation of the Ca2+ flash associated with an AP-driven contraction. Critically, diastolic subcellular Ca2+ transients were absent in LMCs of Ip3r1ismKO mice, demonstrating the necessity of IP3R1 activity in controlling ANO1-mediated diastolic depolarization. These findings indicate a critical role for IP3R1 in lymphatic vessel pressure-dependent chronotropy and contractile regulation.
Collapse
Affiliation(s)
- Scott D. Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Grace A. Pea
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Sarah E. Broyhill
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Advaya Patro
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Karen H. Bromert
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Min Li
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Charles E. Norton
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | | | - Edward J. Hancock
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia
| | | | - Michael J. Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
3
|
Segal S, Yaniv Y. Ca 2+-Driven Selectivity of the Effect of the Cardiotonic Steroid Marinobufagenin on Rabbit Sinoatrial Node Function. Cells 2023; 12:1881. [PMID: 37508546 PMCID: PMC10378090 DOI: 10.3390/cells12141881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/19/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The synergy between Na+-K+ pumps, Na+-Ca2+ exchangers, membrane currents and the sarcoplasmic reticulum (SR) generates the coupled-clock system, which governs the spontaneous electrical activity of heart sinoatrial node cells (SANCs). Ca2+ mediates the degree of clock coupling via local Ca2+ release (LCR) from the SR and activation of cAMP/PKA signaling. Marinobufagenin (MBG) is a natural Na+-K+ pump inhibitor whose effect on SANCs has not been measured before. The following two hypotheses were tested to determine if and how MBG mediates between the Na+-K+ pump and spontaneous SAN activity: (i) MBG has a distinct effect on beat interval (BI) due to variable effects on LCR characteristics, and (ii) Ca2+ is an important mediator between MBG and SANC activity. Ca2+ transients were measured by confocal microscopy during application of increasing concentrations of MBG. To further support the hypothesis that Ca2+ mediates between MBG and SANC activity, Ca2+ was chelated by the addition of BAPTA. Dose response tests found that 100 nM MBG led to no change in BI in 6 SANCs (no BI change group), and to BI prolongation in 10 SANCs (BI change group). At the same concentration, the LCR period was prolonged in both groups, but more significantly in the BI change group. BAPTA-AM prolonged the BI in 12 SANCs. In the presence of BAPTA, 100 nM MBG had no effect on SANC BI or on the LCR period. In conclusion, the MBG effects on SANC function are mediated by the coupled clock system, and Ca2+ is an important regulator of these effects.
Collapse
Affiliation(s)
- Sofia Segal
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-IIT, Haifa 3200003, Israel
| | - Yael Yaniv
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-IIT, Haifa 3200003, Israel
| |
Collapse
|
4
|
Ricci E, Bartolucci C, Severi S. The virtual sinoatrial node: What did computational models tell us about cardiac pacemaking? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:55-79. [PMID: 36374743 DOI: 10.1016/j.pbiomolbio.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
Since its discovery, the sinoatrial node (SAN) has represented a fascinating and complex matter of research. Despite over a century of discoveries, a full comprehension of pacemaking has still to be achieved. Experiments often produced conflicting evidence that was used either in support or against alternative theories, originating intense debates. In this context, mathematical descriptions of the phenomena underlying the heartbeat have grown in importance in the last decades since they helped in gaining insights where experimental evaluation could not reach. This review presents the most updated SAN computational models and discusses their contribution to our understanding of cardiac pacemaking. Electrophysiological, structural and pathological aspects - as well as the autonomic control over the SAN - are taken into consideration to reach a holistic view of SAN activity.
Collapse
Affiliation(s)
- Eugenio Ricci
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena (FC), Italy
| | - Chiara Bartolucci
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena (FC), Italy
| | - Stefano Severi
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena (FC), Italy.
| |
Collapse
|
5
|
Tóth N, Loewe A, Szlovák J, Kohajda Z, Bitay G, Levijoki J, Papp JG, Varró A, Nagy N. The reverse mode of the Na +/Ca 2+ exchanger contributes to the pacemaker mechanism in rabbit sinus node cells. Sci Rep 2022; 12:21830. [PMID: 36528651 PMCID: PMC9759562 DOI: 10.1038/s41598-022-25574-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Sinus node (SN) pacemaking is based on a coupling between surface membrane ion-channels and intracellular Ca2+-handling. The fundamental role of the inward Na+/Ca2+ exchanger (NCX) is firmly established. However, little is known about the reverse mode exchange. A simulation study attributed important role to reverse NCX activity, however experimental evidence is still missing. Whole-cell and perforated patch-clamp experiments were performed on rabbit SN cells supplemented with fluorescent Ca2+-tracking. We established 2 and 8 mM pipette NaCl groups to suppress and enable reverse NCX. NCX was assessed by specific block with 1 μM ORM-10962. Mechanistic simulations were performed by Maltsev-Lakatta minimal computational SN model. Active reverse NCX resulted in larger Ca2+-transient amplitude with larger SR Ca2+-content. Spontaneous action potential (AP) frequency increased with 8 mM NaCl. When reverse NCX was facilitated by 1 μM strophantin the Ca2+i and spontaneous rate increased. ORM-10962 applied prior to strophantin prevented Ca2+i and AP cycle change. Computational simulations indicated gradually increasing reverse NCX current, Ca2+i and heart rate with increasing Na+i. Our results provide further evidence for the role of reverse NCX in SN pacemaking. The reverse NCX activity may provide additional Ca2+-influx that could increase SR Ca2+-content, which consequently leads to enhanced pacemaking activity.
Collapse
Affiliation(s)
- Noémi Tóth
- grid.9008.10000 0001 1016 9625Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, P.O. Box 427, Szeged, 6720 Hungary
| | - Axel Loewe
- grid.7892.40000 0001 0075 5874Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jozefina Szlovák
- grid.9008.10000 0001 1016 9625Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, P.O. Box 427, Szeged, 6720 Hungary
| | - Zsófia Kohajda
- ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - Gergő Bitay
- grid.9008.10000 0001 1016 9625Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, P.O. Box 427, Szeged, 6720 Hungary
| | - Jouko Levijoki
- grid.419951.10000 0004 0400 1289Orion Pharma, Espoo, Finland
| | - Julius Gy. Papp
- grid.9008.10000 0001 1016 9625Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, P.O. Box 427, Szeged, 6720 Hungary ,ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - András Varró
- grid.9008.10000 0001 1016 9625Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, P.O. Box 427, Szeged, 6720 Hungary ,ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - Norbert Nagy
- grid.9008.10000 0001 1016 9625Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, P.O. Box 427, Szeged, 6720 Hungary ,ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| |
Collapse
|
6
|
Maltsev AV, Stern MD, Lakatta EG, Maltsev VA. Functional Heterogeneity of Cell Populations Increases Robustness of Pacemaker Function in a Numerical Model of the Sinoatrial Node Tissue. Front Physiol 2022; 13:845634. [PMID: 35574456 PMCID: PMC9091312 DOI: 10.3389/fphys.2022.845634] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/15/2022] [Indexed: 11/19/2022] Open
Abstract
Each heartbeat is initiated by specialized pacemaker cells operating within the sinoatrial node (SAN). While individual cells within SAN tissue exhibit substantial heterogeneity of their electrophysiological parameters and Ca cycling, the role of this heterogeneity for cardiac pacemaker function remains mainly unknown. Here we investigated the problem numerically in a 25 × 25 square grid of connected coupled-clock Maltsev-Lakatta cell models. The tissue models were populated by cells with different degree of heterogeneity of the two key model parameters, maximum L-type Ca current conductance (gCaL) and sarcoplasmic reticulum Ca pumping rate (Pup). Our simulations showed that in the areas of Pup-gCaL parametric space at the edge of the system stability, where action potential (AP) firing is absent or dysrhythmic in SAN tissue models populated with identical cells, rhythmic AP firing can be rescued by populating the tissues with heterogeneous cells. This robust SAN function is synergistic with respect to heterogeneity in gCaL and Pup and can be further strengthened by clustering of cells with similar properties. The effect of cell heterogeneity is not due to a simple summation of activity of intrinsically firing cells naturally present in heterogeneous SAN; rather AP firing cells locally and critically interact with non-firing/dormant cells. When firing cells prevail, they recruit many dormant cells to fire, strongly enhancing overall SAN function; and vice versa, prevailing dormant cells suppress AP firing in cells with intrinsic automaticity and halt SAN function. The transitions between firing and non-firing states of the system are sharp, resembling phase transitions in statistical physics. Furthermore, robust function of heterogeneous SAN tissue requires weak cell coupling, a known property of the central area of SAN where cardiac impulse emerges; stronger cell coupling reduces AP firing rate and ultimately halts SAN automaticity at the edge of stability.
Collapse
|
7
|
Sirenko ST, Zahanich I, Li Y, Lukyanenko YO, Lyashkov AE, Ziman BD, Tarasov KV, Younes A, Riordon DR, Tarasova YS, Yang D, Vinogradova TM, Maltsev VA, Lakatta EG. Phosphoprotein Phosphatase 1 but Not 2A Activity Modulates Coupled-Clock Mechanisms to Impact on Intrinsic Automaticity of Sinoatrial Nodal Pacemaker Cells. Cells 2021; 10:cells10113106. [PMID: 34831329 PMCID: PMC8623309 DOI: 10.3390/cells10113106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/02/2022] Open
Abstract
Spontaneous AP (action potential) firing of sinoatrial nodal cells (SANC) is critically dependent on protein kinase A (PKA) and Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent protein phosphorylation, which are required for the generation of spontaneous, diastolic local Ca2+ releases (LCRs). Although phosphoprotein phosphatases (PP) regulate protein phosphorylation, the expression level of PPs and phosphatase inhibitors in SANC and the impact of phosphatase inhibition on the spontaneous LCRs and other players of the oscillatory coupled-clock system is unknown. Here, we show that rabbit SANC express both PP1, PP2A, and endogenous PP inhibitors I-1 (PPI-1), dopamine and cyclic adenosine 3′,5′-monophosphate (cAMP)-regulated phosphoprotein (DARPP-32), kinase C-enhanced PP1 inhibitor (KEPI). Application of Calyculin A, (CyA), a PPs inhibitor, to intact, freshly isolated single SANC: (1) significantly increased phospholamban (PLB) phosphorylation (by 2–3-fold) at both CaMKII-dependent Thr17 and PKA-dependent Ser16 sites, in a time and concentration dependent manner; (2) increased ryanodine receptor (RyR) phosphorylation at the Ser2809 site; (3) substantially increased sarcoplasmic reticulum (SR) Ca2+ load; (4) augmented L-type Ca2+ current amplitude; (5) augmented LCR’s characteristics and decreased LCR period in intact and permeabilized SANC, and (6) increased the spontaneous basal AP firing rate. In contrast, the selective PP2A inhibitor okadaic acid (100 nmol/L) had no significant effect on spontaneous AP firing, LCR parameters, or PLB phosphorylation. Application of purified PP1 to permeabilized SANC suppressed LCR, whereas purified PP2A had no effect on LCR characteristics. Our numerical model simulations demonstrated that PP inhibition increases AP firing rate via a coupled-clock mechanism, including respective increases in the SR Ca2+ pumping rate, L-type Ca2+ current, and Na+/Ca2+-exchanger current. Thus, PP1 and its endogenous inhibitors modulate the basal spontaneous firing rate of cardiac pacemaker cells by suppressing SR Ca2+ cycling protein phosphorylation, the SR Ca2+ load and LCRs, and L-type Ca2+ current.
Collapse
|
8
|
Yang D, Morrell CH, Lyashkov AE, Tagirova Sirenko S, Zahanich I, Yaniv Y, Vinogradova TM, Ziman BD, Maltsev VA, Lakatta EG. Ca 2+ and Membrane Potential Transitions During Action Potentials Are Self-Similar to Each Other and to Variability of AP Firing Intervals Across the Broad Physiologic Range of AP Intervals During Autonomic Receptor Stimulation. Front Physiol 2021; 12:612770. [PMID: 34566668 PMCID: PMC8456031 DOI: 10.3389/fphys.2021.612770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/02/2021] [Indexed: 12/02/2022] Open
Abstract
Ca2+ and V m transitions occurring throughout action potential (AP) cycles in sinoatrial nodal (SAN) cells are cues that (1) not only regulate activation states of molecules operating within criticality (Ca2+ domain) and limit-cycle (V m domain) mechanisms of a coupled-clock system that underlies SAN cell automaticity, (2) but are also regulated by the activation states of the clock molecules they regulate. In other terms, these cues are both causes and effects of clock molecular activation (recursion). Recently, we demonstrated that Ca2+ and V m transitions during AP cycles in single SAN cells isolated from mice, guinea pigs, rabbits, and humans are self-similar (obey a power law) and are also self-similar to trans-species AP firing intervals (APFIs) of these cells in vitro, to heart rate in vivo, and to body mass. Neurotransmitter stimulation of β-adrenergic receptor or cholinergic receptor-initiated signaling in SAN cells modulates their AP firing rate and rhythm by impacting on the degree to which SAN clocks couple to each other, creating the broad physiologic range of SAN cell mean APFIs and firing interval variabilities. Here we show that Ca2+ and V m domain kinetic transitions (time to AP ignition in diastole and 90% AP recovery) occurring within given AP, the mean APFIs, and APFI variabilities within the time series of APs in 230 individual SAN cells are self-similar (obey power laws). In other terms, these long-range correlations inform on self-similar distributions of order among SAN cells across the entire broad physiologic range of SAN APFIs, regardless of whether autonomic receptors of these cells are stimulated or not and regardless of the type (adrenergic or cholinergic) of autonomic receptor stimulation. These long-range correlations among distributions of Ca2+ and V m kinetic functions that regulate SAN cell clock coupling during each AP cycle in different individual, isolated SAN cells not in contact with each other. Our numerical model simulations further extended our perspectives to the molecular scale and demonstrated that many ion currents also behave self-similar across autonomic states. Thus, to ensure rapid flexibility of AP firing rates in response to different types and degrees of autonomic input, nature "did not reinvent molecular wheels within the coupled-clock system of pacemaker cells," but differentially engaged or scaled the kinetics of gears that regulate the rate and rhythm at which the "wheels spin" in a given autonomic input context.
Collapse
Affiliation(s)
- Dongmei Yang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Christopher H. Morrell
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
- Department of Mathematics and Statistics, Loyola University Maryland, Baltimore, MD, United States
| | - Alexey E. Lyashkov
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Syevda Tagirova Sirenko
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Ihor Zahanich
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Yael Yaniv
- Biomedical Engineering Faculty, Technion–Israel Institute of Technology, Haifa, Israel
| | - Tatiana M. Vinogradova
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Bruce D. Ziman
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Victor A. Maltsev
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
9
|
Comelli M, Meo M, Cervantes DO, Pizzo E, Plosker A, Mohler PJ, Hund TJ, Jacobson JT, Meste O, Rota M. Rhythm dynamics of the aging heart: an experimental study using conscious, restrained mice. Am J Physiol Heart Circ Physiol 2020; 319:H893-H905. [PMID: 32886003 DOI: 10.1152/ajpheart.00379.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heart rate variability (HRV) is a measure of variation in time interval between heartbeats and reflects the influence of autonomic nervous system and circulating/locally released factors on sinoatrial node discharge. Here, we tested whether electrocardiograms (ECGs) obtained in conscious, restrained mice, a condition that affects sympathovagal balance, reveal alterations of heart rhythm dynamics with aging. Moreover, based on emergence of sodium channels as modulators of pacemaker activity, we addressed consequences of altered sodium channels on heart rhythm. C57Bl/6 mice and mice with enhanced late sodium current due to Nav1.5 mutation at Ser571 (S571E) at ~4 to ~24 mo of age, were studied. HRV was assessed using time- and frequency-domain and nonlinear parameters. For C57Bl/6 and S571E mice, standard deviation of RR intervals (SDRR), total power of RR interval variation, and nonlinear standard deviation 2 (SD2) were maximal at ~4 mo and decreased at ~18 and ~24 mo, together with attenuation of indexes of sympathovagal balance. Modulation of sympathetic and/or parasympathetic divisions revealed attenuation of autonomic tone at ~24 mo. At ~4 mo, S571E mice presented lower heart rate and higher SDRR, total power, and SD2 with respect to C57Bl/6, properties reversed by late sodium current inhibition. At ~24 mo, heart rate decreased in C57Bl/6 but increased in S571E, a condition preserved after autonomic blockade. Collectively, our data indicate that aging is associated with reduced HRV. Moreover, sodium channel function conditions heart rate and its age-related adaptations, but does not interfere with HRV decline occurring with age.NEW & NOTEWORTHY We have investigated age-associated alterations of heart rate properties in mice using conscious electrocardiographic recordings. Our findings support the notion that aging is coupled with altered sympathovagal balance with consequences on heart rate variability. Moreover, by using a genetically engineered mouse line, we provide evidence that sodium channels modulate heart rate and its age-related adaptations.
Collapse
Affiliation(s)
- Martina Comelli
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Marianna Meo
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Bordeaux University Foundation, F-33600 Pessac-Bordeaux, France, with Univ. Bordeaux and INSERM, CRCTB, U1045, Bordeaux, France
| | | | - Emanuele Pizzo
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Aaron Plosker
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Peter J Mohler
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio.,Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio
| | - Thomas J Hund
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio
| | - Jason T Jacobson
- Department of Physiology, New York Medical College, Valhalla, New York.,Division of Cardiology, Department of Medicine, Westchester Medical Center, New York Medical College, Valhalla, New York
| | - Olivier Meste
- Laboratoire d'Informatique, Signaux et Systèmes de Sophia Antipolis, Université Côte d'Azur, CNRS, I3S, France
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, New York
| |
Collapse
|
10
|
Kohajda Z, Loewe A, Tóth N, Varró A, Nagy N. The Cardiac Pacemaker Story-Fundamental Role of the Na +/Ca 2+ Exchanger in Spontaneous Automaticity. Front Pharmacol 2020; 11:516. [PMID: 32410993 PMCID: PMC7199655 DOI: 10.3389/fphar.2020.00516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/01/2020] [Indexed: 01/01/2023] Open
Abstract
The electrophysiological mechanism of the sinus node automaticity was previously considered exclusively regulated by the so-called "funny current". However, parallel investigations increasingly emphasized the importance of the Ca2+-homeostasis and Na+/Ca2+ exchanger (NCX). Recently, increasing experimental evidence, as well as insight through mechanistic in silico modeling demonstrates the crucial role of the exchanger in sinus node pacemaking. NCX had a key role in the exciting story of discovery of sinus node pacemaking mechanisms, which recently settled with a consensus on the coupled-clock mechanism after decades of debate. This review focuses on the role of the Na+/Ca2+ exchanger from the early results and concepts to recent advances and attempts to give a balanced summary of the characteristics of the local, spontaneous, and rhythmic Ca2+ releases, the molecular control of the NCX and its role in the fight-or-flight response. Transgenic animal models and pharmacological manipulation of intracellular Ca2+ concentration and/or NCX demonstrate the pivotal function of the exchanger in sinus node automaticity. We also highlight where specific hypotheses regarding NCX function have been derived from computational modeling and require experimental validation. Nonselectivity of NCX inhibitors and the complex interplay of processes involved in Ca2+ handling render the design and interpretation of these experiments challenging.
Collapse
Affiliation(s)
- Zsófia Kohajda
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Axel Loewe
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Noémi Tóth
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - András Varró
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Norbert Nagy
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
11
|
MacDonald EA, Rose RA, Quinn TA. Neurohumoral Control of Sinoatrial Node Activity and Heart Rate: Insight From Experimental Models and Findings From Humans. Front Physiol 2020; 11:170. [PMID: 32194439 PMCID: PMC7063087 DOI: 10.3389/fphys.2020.00170] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 02/13/2020] [Indexed: 12/22/2022] Open
Abstract
The sinoatrial node is perhaps one of the most important tissues in the entire body: it is the natural pacemaker of the heart, making it responsible for initiating each-and-every normal heartbeat. As such, its activity is heavily controlled, allowing heart rate to rapidly adapt to changes in physiological demand. Control of sinoatrial node activity, however, is complex, occurring through the autonomic nervous system and various circulating and locally released factors. In this review we discuss the coupled-clock pacemaker system and how its manipulation by neurohumoral signaling alters heart rate, considering the multitude of canonical and non-canonical agents that are known to modulate sinoatrial node activity. For each, we discuss the principal receptors involved and known intracellular signaling and protein targets, highlighting gaps in our knowledge and understanding from experimental models and human studies that represent areas for future research.
Collapse
Affiliation(s)
- Eilidh A. MacDonald
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Robert A. Rose
- Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - T. Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
12
|
Kohajda Z, Tóth N, Szlovák J, Loewe A, Bitay G, Gazdag P, Prorok J, Jost N, Levijoki J, Pollesello P, Papp JG, Varró A, Nagy N. Novel Na +/Ca 2+ Exchanger Inhibitor ORM-10962 Supports Coupled Function of Funny-Current and Na +/Ca 2+ Exchanger in Pacemaking of Rabbit Sinus Node Tissue. Front Pharmacol 2020; 10:1632. [PMID: 32063850 PMCID: PMC7000430 DOI: 10.3389/fphar.2019.01632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/13/2019] [Indexed: 01/01/2023] Open
Abstract
Background and Purpose The exact mechanism of spontaneous pacemaking is not fully understood. Recent results suggest tight cooperation between intracellular Ca2+ handling and sarcolemmal ion channels. An important player of this crosstalk is the Na+/Ca2+ exchanger (NCX), however, direct pharmacological evidence was unavailable so far because of the lack of a selective inhibitor. We investigated the role of the NCX current in pacemaking and analyzed the functional consequences of the If-NCX coupling by applying the novel selective NCX inhibitor ORM-10962 on the sinus node (SAN). Experimental Approach Currents were measured by patch-clamp, Ca2+-transients were monitored by fluorescent optical method in rabbit SAN cells. Action potentials (AP) were recorded from rabbit SAN tissue preparations. Mechanistic computational data were obtained using the Yaniv et al. SAN model. Key Results ORM-10962 (ORM) marginally reduced the SAN pacemaking cycle length with a marked increase in the diastolic Ca2+ level as well as the transient amplitude. The bradycardic effect of NCX inhibition was augmented when the funny-current (If) was previously inhibited and vice versa, the effect of If was augmented when the Ca2+ handling was suppressed. Conclusion and Implications We confirmed the contribution of the NCX current to cardiac pacemaking using a novel NCX inhibitor. Our experimental and modeling data support a close cooperation between If and NCX providing an important functional consequence: these currents together establish a strong depolarization capacity providing important safety factor for stable pacemaking. Thus, after individual inhibition of If or NCX, excessive bradycardia or instability cannot be expected because each of these currents may compensate for the reduction of the other providing safe and rhythmic SAN pacemaking.
Collapse
Affiliation(s)
- Zsófia Kohajda
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Noémi Tóth
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Jozefina Szlovák
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Axel Loewe
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Gergő Bitay
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Gazdag
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - János Prorok
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Norbert Jost
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | | | | | - Julius Gy Papp
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - András Varró
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Norbert Nagy
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
13
|
El Khoury N, Ross JL, Long V, Thibault S, Ethier N, Fiset C. Pregnancy and oestrogen regulate sinoatrial node calcium homeostasis and accelerate pacemaking. Cardiovasc Res 2019; 114:1605-1616. [PMID: 29800268 PMCID: PMC6148331 DOI: 10.1093/cvr/cvy129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 05/17/2018] [Indexed: 12/24/2022] Open
Abstract
Aims During pregnancy, there is a significant increase in heart rate (HR) potentially associated with an increased risk of arrhythmias or exacerbation of pre-existing cardiac conditions endangering both mother and foetus. Calcium homeostasis plays an important role in regulating automaticity of the sinoatrial node (SAN); however, its contribution to the accelerated HR during pregnancy remains unknown. Methods and results Using murine SAN cells, we showed that pregnancy increased L-type Ca2+ current (ICaL) and CaV1.3 mRNA expression, whereas T-type Ca2+ current (ICaT) and its underlying channel were unchanged. Analysis of SAN intra-cellular Ca2+ oscillations showed that the rate of spontaneous Ca2+ transients was significantly higher in pregnant mice along with a higher mRNA expression of ryanodine receptor. Assessment of supra-ventricular arrhythmias using programmed electrical stimulation protocols on anaesthetized mice revealed higher susceptibility in pregnancy. Of note, the modifications associated with pregnancy were reversible following delivery. Furthermore, chronic administration of 17β-estradiol (E2) to nodal-like human-induced pluripotent stem cell-derived cardiomyocytes (N-hiPSC-CM), control mice, oestrogen-receptor-β knockout (ERKOβ) but not ERKOα mice, accelerated cardiac automaticity, recapitulating the pregnancy phenotype in both mouse and human SAN cell models. Conclusion Together, these results indicate that pregnancy considerably alters intra-cellular Ca2+ homeostasis sustaining faster HR during pregnancy. Importantly, these changes were dependent on an oestrogen receptor α (ERα) mechanism that resulted in increased ICaL and spontaneous Ca2+ release from the sarcoplasmic reticulum, highlighting a novel role for oestrogen in regulating HR.
Collapse
Affiliation(s)
- Nabil El Khoury
- Montreal Heart Institute, Research Center, 5000 Bélanger, Montréal, Québec, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Jenna L Ross
- Montreal Heart Institute, Research Center, 5000 Bélanger, Montréal, Québec, Canada.,Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Valérie Long
- Montreal Heart Institute, Research Center, 5000 Bélanger, Montréal, Québec, Canada.,Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Simon Thibault
- Montreal Heart Institute, Research Center, 5000 Bélanger, Montréal, Québec, Canada.,Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Nathalie Ethier
- Montreal Heart Institute, Research Center, 5000 Bélanger, Montréal, Québec, Canada
| | - Céline Fiset
- Montreal Heart Institute, Research Center, 5000 Bélanger, Montréal, Québec, Canada.,Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
14
|
Segal S, Kirschner Peretz N, Arbel-Ganon L, Liang J, Li L, Marbach D, Yang D, Wang SQ, Yaniv Y. Eliminating contraction during culture maintains global and local Ca 2+ dynamics in cultured rabbit pacemaker cells. Cell Calcium 2018; 78:35-47. [PMID: 30594820 DOI: 10.1016/j.ceca.2018.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022]
Abstract
Pacemaker cells residing in the sinoatrial node generate the regular heartbeat. Ca2+ signaling controls the heartbeat rate-directly, through the effect on membrane molecules (NCX exchange, K+ channel), and indirectly, through activation of calmodulin-AC-cAMP-PKA signaling. Thus, the physiological role of signaling in pacemaker cells can only be assessed if the Ca2+ dynamics are in the physiological range. Cultured cells that can be genetically manipulated and/or virally infected with probes are required for this purpose. Because rabbit pacemaker cells in culture experience a decrease in their spontaneous action potential (AP) firing rate below the physiological range, Ca2+ dynamics are expected to be affected. However, Ca2+ dynamics in cultured pacemaker cells have not been reported before. We aim to a develop a modified culture method that sustains the global and local Ca2+ kinetics along with the AP firing rate of rabbit pacemaker cells. We used experimental and computational tools to test the viability of rabbit pacemaker cells in culture under various conditions. We tested the effect of culture dish coating, pH, phosphorylation, and energy balance on cultured rabbit pacemaker cells function. The cells were maintained in culture for 48 h in two types of culture media: one without the addition of a contraction uncoupler and one enriched with either 10 mM BDM (2,3-Butanedione 2-monoxime) or 25 μM blebbistatin. The uncoupler was washed out from the medium prior to the experiments. Cells were successfully infected with a GFP adenovirus cultured with either BDM or blebbistatin. Using either uncoupler during culture led to the cell surface area being maintained at the same level as fresh cells. Moreover, the phospholamban and ryanodine receptor densities and their phosphorylation level remained intact in culture when either blebbistatin or BDM were present. Spontaneous AP firing rate, spontaneous Ca2+ kinetics, and spontaneous local Ca2+ release parameters were similar in the cultured cells with blebbistatin as in fresh cells. However, BDM affects these parameters. Using experimental and a computational model, we showed that by eliminating contraction, phosphorylation activity is preserved and energy is reduced. However, the side-effects of BDM render it less effective than blebbistatin.
Collapse
Affiliation(s)
- Sofia Segal
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| | | | | | - Jinghui Liang
- College of Life Sciences, Peking University, Beijing, China
| | - Linlin Li
- College of Life Sciences, Peking University, Beijing, China
| | - Daphna Marbach
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| | - Dongmei Yang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Shi-Qiang Wang
- College of Life Sciences, Peking University, Beijing, China
| | - Yael Yaniv
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel.
| |
Collapse
|
15
|
Tsutsui K, Monfredi OJ, Sirenko-Tagirova SG, Maltseva LA, Bychkov R, Kim MS, Ziman BD, Tarasov KV, Tarasova YS, Zhang J, Wang M, Maltsev AV, Brennan JA, Efimov IR, Stern MD, Maltsev VA, Lakatta EG. A coupled-clock system drives the automaticity of human sinoatrial nodal pacemaker cells. Sci Signal 2018; 11:eaap7608. [PMID: 29895616 PMCID: PMC6138244 DOI: 10.1126/scisignal.aap7608] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The spontaneous rhythmic action potentials generated by the sinoatrial node (SAN), the primary pacemaker in the heart, dictate the regular and optimal cardiac contractions that pump blood around the body. Although the heart rate of humans is substantially slower than that of smaller experimental animals, current perspectives on the biophysical mechanisms underlying the automaticity of sinoatrial nodal pacemaker cells (SANCs) have been gleaned largely from studies of animal hearts. Using human SANCs, we demonstrated that spontaneous rhythmic local Ca2+ releases generated by a Ca2+ clock were coupled to electrogenic surface membrane molecules (the M clock) to trigger rhythmic action potentials, and that Ca2+-cAMP-protein kinase A (PKA) signaling regulated clock coupling. When these clocks became uncoupled, SANCs failed to generate spontaneous action potentials, showing a depolarized membrane potential and disorganized local Ca2+ releases that failed to activate the M clock. β-Adrenergic receptor (β-AR) stimulation, which increases cAMP concentrations and clock coupling in other species, restored spontaneous, rhythmic action potentials in some nonbeating "arrested" human SANCs by increasing intracellular Ca2+ concentrations and synchronizing diastolic local Ca2+ releases. When β-AR stimulation was withdrawn, the clocks again became uncoupled, and SANCs reverted to a nonbeating arrested state. Thus, automaticity of human pacemaker cells is driven by a coupled-clock system driven by Ca2+-cAMP-PKA signaling. Extreme clock uncoupling led to failure of spontaneous action potential generation, which was restored by recoupling of the clocks. Clock coupling and action potential firing in some of these arrested cells can be restored by β-AR stimulation-induced augmentation of Ca2+-cAMP-PKA signaling.
Collapse
Affiliation(s)
- Kenta Tsutsui
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Oliver J Monfredi
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
- Institute of Cardiovascular Sciences, University of Manchester, Manchester M13 9NT, UK
- Department of Cardiovascular Electrophysiology, Johns Hopkins Hospital, 1800 Orleans Street, Baltimore, MD 21287, USA
| | | | - Larissa A Maltseva
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Rostislav Bychkov
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Mary S Kim
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Bruce D Ziman
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Kirill V Tarasov
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Yelena S Tarasova
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Jing Zhang
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Alexander V Maltsev
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Jaclyn A Brennan
- Department of Biomedical Engineering, George Washington University, Washington, DC 20052, USA
| | - Igor R Efimov
- Department of Biomedical Engineering, George Washington University, Washington, DC 20052, USA
| | - Michael D Stern
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Victor A Maltsev
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA.
| |
Collapse
|
16
|
Campana C, Akar FG. Commentary: Atrial Fibrillation Dynamics and Ionic Block Effects in Six Heterogeneous Human 3D Virtual Atria with Distinct Repolarization Dynamics. Front Bioeng Biotechnol 2017; 5:59. [PMID: 29057224 PMCID: PMC5635327 DOI: 10.3389/fbioe.2017.00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/20/2017] [Indexed: 11/26/2022] Open
Affiliation(s)
- Chiara Campana
- Icahn School of Medicine at Mount Sinai, The Cardiovascular Institute, New York, NY, United States
| | - Fadi G. Akar
- Icahn School of Medicine at Mount Sinai, The Cardiovascular Institute, New York, NY, United States
| |
Collapse
|
17
|
Sirenko SG, Yang D, Maltseva LA, Kim MS, Lakatta EG, Maltsev VA. Spontaneous, local diastolic subsarcolemmal calcium releases in single, isolated guinea-pig sinoatrial nodal cells. PLoS One 2017; 12:e0185222. [PMID: 28945810 PMCID: PMC5612473 DOI: 10.1371/journal.pone.0185222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/10/2017] [Indexed: 11/30/2022] Open
Abstract
Uptake and release calcium from the sarcoplasmic reticulum (SR) (dubbed “calcium clock”), in the form of spontaneous, rhythmic, local diastolic calcium releases (LCRs), together with voltage-sensitive ion channels (membrane clock) form a coupled system that regulates the action potential (AP) firing rate. LCRs activate Sodium/Calcium exchanger (NCX) that accelerates diastolic depolarization and thus participating in regulation of the time at which the next AP will occur. Previous studies in rabbit SA node cells (SANC) demonstrated that the basal AP cycle length (APCL) is tightly coupled to the basal LCR period (time from the prior AP-induced Ca2+ transient to the diastolic LCR occurrence), and that this coupling is further modulated by autonomic receptor stimulation. Although spontaneous LCRs during diastolic depolarization have been reported in SANC of various species (rabbit, cat, mouse, toad), prior studies have failed to detect LCRs in spontaneously beating SANC of guinea-pig, a species that has been traditionally used in studies of cardiac pacemaker cell function. We performed a detailed investigation of whether guinea-pig SANC generate LCRs and whether they play a similar key role in regulation of the AP firing rate. We used two different approaches, 2D high-speed camera and classical line-scan confocal imaging. Positioning the scan-line beneath sarcolemma, parallel to the long axis of the cell, we found that rhythmically beating guinea-pig SANC do, indeed, generate spontaneous, diastolic LCRs beneath the surface membrane. The average key LCR characteristics measured in confocal images in guinea-pig SANC were comparable to rabbit SANC, both in the basal state and in the presence of β-adrenergic receptor stimulation. Moreover, the relationship between the LCR period and APCL was subtended by the same linear function. Thus, LCRs in guinea-pig SANC contribute to the diastolic depolarization and APCL regulation. Our findings indicate that coupled-clock system regulation of APCL is a general, species-independent, mechanism of pacemaker cell normal automaticity. Lack of LCRs in prior studies is likely explained by technical issues, as individual LCRs are small stochastic events occurring mainly near the cell border.
Collapse
Affiliation(s)
- Syevda G. Sirenko
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Dongmei Yang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Larissa A. Maltseva
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Mary S. Kim
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Victor A. Maltsev
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
18
|
López Garza G, Castellanos NP, Godínez R. Cell-to-cell modeling of the interface between atrial and sinoatrial anisotropic heterogeneous nets. Comput Biol Chem 2017; 68:245-259. [PMID: 28460307 DOI: 10.1016/j.compbiolchem.2017.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
Abstract
The transition between sinoatrial cells and atrial cells in the heart is not fully understood. Here we focus on cell-to-cell mathematical models involving typical sinoatrial cells and atrial cells connected with experimentally observed conductance values. We are interested mainly in the geometry of the microstructure of the conduction paths in the sinoatrial node. We show with some models that appropriate source-sink relationships between atrial and sinoatrial cells may occur according to certain geometric arrangements.
Collapse
Affiliation(s)
- Gabriel López Garza
- Mathematics Department, Universidad Autónoma Metropolitana, M. City, Mexico.
| | - Norma P Castellanos
- Electric Engineering Department, Universidad Autónoma Metropolitana, M. City, Mexico
| | - Rafael Godínez
- Electric Engineering Department, Universidad Autónoma Metropolitana, M. City, Mexico
| |
Collapse
|
19
|
Groschner K, Shrestha N, Fameli N. Cardiovascular and Hemostatic Disorders: SOCE in Cardiovascular Cells: Emerging Targets for Therapeutic Intervention. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:473-503. [PMID: 28900929 DOI: 10.1007/978-3-319-57732-6_24] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The discovery of the store-operated Ca2+ entry (SOCE) phenomenon is tightly associated with its recognition as a pathway of high (patho)physiological significance in the cardiovascular system. Early on, SOCE has been investigated primarily in non-excitable cell types, and the vascular endothelium received particular attention, while a role of SOCE in excitable cells, specifically cardiac myocytes and pacemakers, was initially ignored and remains largely enigmatic even to date. With the recent gain in knowledge on the molecular components of SOCE as well as their cellular organization within nanodomains, potential tissue/cell type-dependent heterogeneity of the SOCE machinery along with high specificity of linkage to downstream signaling pathways emerged for cardiovascular cells. The basis of precise decoding of cellular Ca2+ signals was recently uncovered to involve correct spatiotemporal organization of signaling components, and even minor disturbances in these assemblies trigger cardiovascular pathologies. With this chapter, we wish to provide an overview on current concepts of cellular organization of SOCE signaling complexes in cardiovascular cells with particular focus on the spatiotemporal aspects of coupling to downstream signaling and the potential disturbance of these mechanisms by pathogenic factors. The significance of these mechanistic concepts for the development of novel therapeutic strategies will be discussed.
Collapse
Affiliation(s)
- Klaus Groschner
- Institute of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/4, 8010, Graz, Austria.
| | - Niroj Shrestha
- Institute of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/4, 8010, Graz, Austria
| | - Nicola Fameli
- Institute of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/4, 8010, Graz, Austria
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|