1
|
Liu R, Wang W, Li W. Bezafibrate mitigates cardiac injury against coronary microembolization by preventing activation of p38 MAPK/NF-κB signaling. Aging (Albany NY) 2024; 16:12769-12780. [PMID: 39383058 PMCID: PMC11501380 DOI: 10.18632/aging.205707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 10/11/2024]
Abstract
Coronary microembolization (CME)-induced inflammatory response and cardiomyocyte apoptosis are the main contributors to CME-associated myocardial dysfunction. Bezafibrate, a peroxisome proliferator-activated receptors (PPARs) agonist, has displayed various benefits in different types of diseases. However, it is unknown whether Bezafibrate possesses a protective effect in myocardial dysfunction against CME. In this study, we aimed to investigate the pharmacological function of Bezafibrate in CME-induced insults in myocardial injury and progressive cardiac dysfunction and explore the underlying mechanism. A CME model was established in rats, and cardiac function was detected. The levels of injury biomarkers in serum including CK-MB, AST, and LDH were determined using commercial kits, and pro-inflammatory mediators including TNF-α and IL-6 were detected using ELISA kits. Our results indicate that Bezafibrate improved cardiac function after CME induction. Bezafibrate reduced the release of myocardial injury indicators such as CK-MB, AST, and LDH in CME rats. We also found that Bezafibrate ameliorated oxidative stress by increasing the levels of the antioxidant GPx and the activity of SOD and reducing the levels of TBARS and the activity of NOX. Bezafibrate inhibited the expression of pro-inflammatory cytokines such as TNF-α and IL-6. Importantly, Bezafibrate was found to mitigate CME-induced myocardial apoptosis by increasing the expression of Bcl-2 and reducing the levels of Bax and cleaved caspase-3. Mechanistically, Bezafibrate could prevent the activation of p38 MAPK/NF-κB signaling. These findings suggest that Bezafibrate may be a candidate therapeutic agent for cardioprotection against CME in clinical applications.
Collapse
Affiliation(s)
- Ruijie Liu
- Department of Cardiology, Dongguan Songshan Lake Central Hospital, Dongguan 523326, Guangdong Province, China
| | - Wenfang Wang
- Department of Cardiology, The First Affiliated Hospital of Ji’nan University, Guangzhou 510627, Guangdong Province, China
| | - Wenfeng Li
- Department of Cardiology, Chongyi People’s Hospital, Ganzhou 341399, Jiangxi Province, China
| |
Collapse
|
2
|
Mesquita PG, de Araujo LM, Neves FDAR, Borin MDF. Metabolites of endophytic fungi isolated from leaves of Bauhinia variegata exhibit antioxidant activity and agonist activity on peroxisome proliferator-activated receptors α, β/δ and γ. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1049690. [PMID: 37746194 PMCID: PMC10512301 DOI: 10.3389/ffunb.2022.1049690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/23/2022] [Indexed: 09/26/2023]
Abstract
Diabetes mellitus is a metabolic disorder that affects millions of people worldwide and is linked to oxidative stress and inflammation. Thiazolidinediones (TZD) improve insulin sensitization and glucose homeostasis mediated by the activation of peroxisome proliferator-activated receptors γ (PPARγ) in patients with type 2 diabetes. However, their use is associated with severe adverse effects such as loss of bone mass, retention of body fluids, liver and heart problems, and increased risk of bladder cancer. Partial PPARγ agonists can promote the beneficial effects of thiazolidinediones with fewer adverse effects. Endophytic fungi colonize plant tissues and have a particularly active metabolism caused by the interaction with them, which leads to the production of natural products with significant biological effects that may be like that of the colonized plant. Here, we identify seven endophytic fungi isolated from Bauhinia variegata leaves that have antioxidant activities. Also, one of the extracts presented pan-agonist activity on PPAR, and another showed activity in PPARα and PPARβ/δ. A better understanding of this relationship could help to comprehend the mechanism of action of antioxidants in treating diabetes and its complications. Moreover, compounds with these capabilities to reduce oxidative stress and activate the receptor that promotes glucose homeostasis are promising candidates in treatment of diabetes.
Collapse
Affiliation(s)
| | | | | | - Maria de Fátima Borin
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Faculty of Sciences Health, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
3
|
Swimming exercise activates peroxisome proliferator-activated receptor-alpha and mitigates age-related renal fibrosis in rats. Mol Cell Biochem 2022; 478:1109-1116. [PMID: 36219352 DOI: 10.1007/s11010-022-04581-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/28/2022] [Indexed: 10/17/2022]
Abstract
Aging results in progressive decline of renal function as well as histological alterations including glomerulosclerosis and interstitial fibrosis. The objective of current study was to test the benefits of moderate swimming exercise in aged rats on renal function and structure and investigate its molecular mechanisms. Aged rats of 21-months old were given moderate swimming exercise for 12 weeks. Swimming exercise in aged rats led to reduced plasma levels of creatinine and blood urea nitrogen. Periodic acid-Schiff staining results revealed reduced renal injury scores in aged rats after swimming exercise. Swimming exercise in aged rats mitigated renal fibrosis and downregulated the mRNA expression of Acta2, Fn, Col1a, Col4a, and Tgfb1 in kidneys. Swimming exercise in aged rats attenuated lipid accumulation and reduced levels of triglyceride in kidneys. Swimming exercise in aged rats abated oxidative stress, evidenced by reduced MDA levels and increased MnSOD activities in kidneys. Swimming exercise in aged rats inhibited NF-κB activities and reduced renal expression of pro-inflammatory cytokines including MCP-1, IL-1β and IL-6. Mechanistically, swimming exercise restored mRNA and protein expression of PPAR-α in kidney of aged rats. Furthermore, swimming exercise in aged rats increased expression of PPAR-α-targeting microRNAs including miR-21 and miR-34a. Collectively, swimming exercise activated PPAR-α, which partly explained the benefits of moderate swimming exercise in aging kidneys.
Collapse
|
4
|
Tempol Preserves Endothelial Progenitor Cells in Male Mice with Ambient Fine Particulate Matter Exposure. Biomedicines 2022; 10:biomedicines10020327. [PMID: 35203535 PMCID: PMC8869086 DOI: 10.3390/biomedicines10020327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/28/2022] Open
Abstract
Ambient fine particulate matter (PM) exposure associates with an increased risk of cardiovascular diseases (CVDs). Major sex differences between males and females exist in epidemiology, pathophysiology, and outcome of CVDs. Endothelial progenitor cells (EPCs) play a vital role in the development and progression of CVDs. PM exposure-induced reduction of EPCs is observed in male, not female, mice with increased reactive oxygen species (ROS) production and oxidative stress. The lung is considered an important source of ROS in mice with PM exposure. The aim of the present study was to investigate the sex differences in pulmonary superoxide dismutase (SOD) expression and ROS production, and to test the effect of SOD mimic Tempol on the populations of EPCs in mice with PM exposure. Both male and female C57BL/6 mice (8–10 weeks) were exposed to intranasal PM or vehicle for 6 weeks. Flow cytometry analysis demonstrated that PM exposure significantly decreased the levels of EPCs (CD34+/CD133+) in both blood and bone marrow with increased ROS production in males, but not in females. ELISA analysis showed higher levels of serum IL-6 and IL-1βin males than in females. Pulmonary expression of the antioxidant enzyme SOD1 was significantly decreased in males after PM exposure, but not in females. Administration of the SOD mimic Tempol in male mice with PM exposure attenuated the production of ROS and inflammatory cytokines, and preserved EPC levels. These data indicated that PM exposure-induced reduction of EPC population in male mice may be due to decreased expression of pulmonary SOD1 in male mice.
Collapse
|
5
|
Paredes A, Santos-Clemente R, Ricote M. Untangling the Cooperative Role of Nuclear Receptors in Cardiovascular Physiology and Disease. Int J Mol Sci 2021; 22:ijms22157775. [PMID: 34360540 PMCID: PMC8346021 DOI: 10.3390/ijms22157775] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
The heart is the first organ to acquire its physiological function during development, enabling it to supply the organism with oxygen and nutrients. Given this early commitment, cardiomyocytes were traditionally considered transcriptionally stable cells fully committed to contractile function. However, growing evidence suggests that the maintenance of cardiac function in health and disease depends on transcriptional and epigenetic regulation. Several studies have revealed that the complex transcriptional alterations underlying cardiovascular disease (CVD) manifestations such as myocardial infarction and hypertrophy is mediated by cardiac retinoid X receptors (RXR) and their partners. RXRs are members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors and drive essential biological processes such as ion handling, mitochondrial biogenesis, and glucose and lipid metabolism. RXRs are thus attractive molecular targets for the development of effective pharmacological strategies for CVD treatment and prevention. In this review, we summarize current knowledge of RXR partnership biology in cardiac homeostasis and disease, providing an up-to-date view of the molecular mechanisms and cellular pathways that sustain cardiomyocyte physiology.
Collapse
|
6
|
The Glitazars Paradox: Cardiotoxicity of the Metabolically Beneficial Dual PPARα and PPARγ Activation. J Cardiovasc Pharmacol 2021; 76:514-526. [PMID: 33165133 DOI: 10.1097/fjc.0000000000000891] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The most common complications in patients with type-2 diabetes are hyperglycemia and hyperlipidemia that can lead to cardiovascular disease. Alleviation of these complications constitutes the major therapeutic approach for the treatment of diabetes mellitus. Agonists of peroxisome proliferator-activated receptor (PPAR) alpha and PPARγ are used for the treatment of hyperlipidemia and hyperglycemia, respectively. PPARs belong to the nuclear receptors superfamily and regulate fatty acid metabolism. PPARα ligands, such as fibrates, reduce circulating triglyceride levels, and PPARγ agonists, such as thiazolidinediones, improve insulin sensitivity. Dual-PPARα/γ agonists (glitazars) were developed to combine the beneficial effects of PPARα and PPARγ agonism. Although they improved metabolic parameters, they paradoxically aggravated congestive heart failure in patients with type-2 diabetes via mechanisms that remain elusive. Many of the glitazars, such as muraglitazar, tesaglitazar, and aleglitazar, were abandoned in phase-III clinical trials. The objective of this review article pertains to the understanding of how combined PPARα and PPARγ activation, which successfully targets the major complications of diabetes, causes cardiac dysfunction. Furthermore, it aims to suggest interventions that will maintain the beneficial effects of dual PPARα/γ agonism and alleviate adverse cardiac outcomes in diabetes.
Collapse
|
7
|
Cai Y, Liu H, Song E, Wang L, Xu J, He Y, Zhang D, Zhang L, Cheng KKY, Jin L, Wu M, Liu S, Qi D, Zhang L, Lopaschuk GD, Wang S, Xu A, Xia Z. Deficiency of telomere-associated repressor activator protein 1 precipitates cardiac aging in mice via p53/PPARα signaling. Theranostics 2021; 11:4710-4727. [PMID: 33754023 PMCID: PMC7978321 DOI: 10.7150/thno.51739] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Telomere shortening and dysfunction may cause metabolic disorders, tissue damage and age-dependent pathologies. However, little is known about the association of telomere-associated protein Rap1 with mitochondrial energy metabolism and cardiac aging. Methods: Echocardiography was performed to detect cardiac structure and function in Rap1+/+ and Rap1-/- mice at different ages (3 months, 12 months and 20 months). Telomere length, DNA damage, cardiac senescence and cardiomyocyte size were analyzed using the real-time PCR, Western blotting, senescence associated β-galactosidase assay and wheat germ agglutinin staining, respectively. Western blotting was also used to determine the level of cardiac fatty acid metabolism related key enzymes in mouse and human myocardium. Chromatin immunoprecipitation assay was used to verify the direct link between p53 and PPARα. The p53 inhibitor, Pifithrin-α and PPARα activator WY14643 were utilized to identify the effects of Rap1/p53/PPARα signaling pathway. Results: Telomere was shortened concomitant with extensive DNA damage in aged Rap1-/- mouse hearts, evidenced by reduced T/S ratios and increased nuclear γH2AX. Meanwhile, the aging-associated phenotypes were pronounced as reflected by altered mitochondrial ultrastructure, enhanced senescence, cardiac hypertrophy and dysfunction. Mechanistically, acetylated p53 and nuclear p53 was enhanced in the Rap1-/- mouse hearts, concomitant with reduced PPARα. Importantly, p53 directly binds to the promoter of PPARα in mouse hearts and suppresses the transcription of PPARα. In addition, aged Rap1-/- mice exhibited reduced cardiac fatty acid metabolism. Pifithrin-α alleviated cardiac aging and enhanced fatty acid metabolism in the aged Rap1-/- mice. Activating PPARα with WY14643 in primarily cultured Rap1-/- cardiomyocytes restored maximal oxygen consumption rates. Reduced Rap1 expression and impaired p53/PPARα signaling also presented in aged human myocardium. Conclusion: In summary, Rap1 may link telomere biology to fatty acid metabolism and aging-related cardiac pathologies via modulating the p53/PPARα signaling pathway, which could represent a therapeutic target in preventing/attenuating cardiac aging.
Collapse
|
8
|
The 5-Lipoxygenase Inhibitor Zileuton Protects Pressure Overload-Induced Cardiac Remodeling via Activating PPAR α. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7536803. [PMID: 31781348 PMCID: PMC6874937 DOI: 10.1155/2019/7536803] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/08/2019] [Accepted: 08/17/2019] [Indexed: 12/14/2022]
Abstract
Zileuton has been demonstrated to be an anti-inflammatory agent due to its well-known ability to inhibit 5-lipoxygenase (5-LOX). However, the effects of zileuton on cardiac remodeling are unclear. In this study, the effects of zileuton on pressure overload-induced cardiac remodeling were investigated and the possible mechanisms were examined. Aortic banding was performed on mice to induce a cardiac remodeling model, and the mice were then treated with zileuton 1 week after surgery. We also stimulated neonatal rat cardiomyocytes with phenylephrine (PE) and then treated them with zileuton. Our data indicated that zileuton protected mice from pressure overload-induced cardiac hypertrophy, fibrosis, and oxidative stress. Zileuton also attenuated PE-induced cardiomyocyte hypertrophy in a time- and dose-dependent manner. Mechanistically, we found that zileuton activated PPARα, but not PPARγ or PPARθ, thus inducing Keap and NRF2 activation. This was confirmed with the PPARα inhibitor GW7647 and NRF2 siRNA, which abolished the protective effects of zileuton on cardiomyocytes. Moreover, PPARα knockdown abolished the anticardiac remodeling effects of zileuton in vivo. Taken together, our data indicate that zileuton protects against pressure overload-induced cardiac remodeling by activating PPARα/NRF2 signaling.
Collapse
|
9
|
Elucidating the Beneficial Role of PPAR Agonists in Cardiac Diseases. Int J Mol Sci 2018; 19:ijms19113464. [PMID: 30400386 PMCID: PMC6275024 DOI: 10.3390/ijms19113464] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/28/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that bind to DNA and regulate transcription of genes involved in lipid and glucose metabolism. A growing number of studies provide strong evidence that PPARs are the promising pharmacological targets for therapeutic intervention in various diseases including cardiovascular disorders caused by compromised energy metabolism. PPAR agonists have been widely used for decades as lipid-lowering and anti-inflammatory drugs. Existing studies are mainly focused on the anti-atherosclerotic effects of PPAR agonists; however, their role in the maintenance of cellular bioenergetics remains unclear. Recent studies on animal models and patients suggest that PPAR agonists can normalize lipid metabolism by stimulating fatty acid oxidation. These studies indicate the importance of elucidation of PPAR agonists as potential pharmacological agents for protection of the heart from energy deprivation. Here, we summarize and provide a comprehensive analysis of previous studies on the role of PPARs in the heart under normal and pathological conditions. In addition, the review discusses the PPARs as a therapeutic target and the beneficial effects of PPAR agonists, particularly bezafibrate, to attenuate cardiomyopathy and heart failure in patients and animal models.
Collapse
|
10
|
Cardiomyocyte dimethylarginine dimethylaminohydrolase1 attenuates left-ventricular remodeling after acute myocardial infarction: involvement in oxidative stress and apoptosis. Basic Res Cardiol 2018; 113:28. [DOI: 10.1007/s00395-018-0685-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/29/2018] [Indexed: 12/27/2022]
|
11
|
Zhao Q, Cui Z, Zheng Y, Li Q, Xu C, Sheng X, Tao M, Xu H. Fenofibrate protects against acute myocardial I/R injury in rat by suppressing mitochondrial apoptosis as decreasing cleaved caspase-9 activation. Cancer Biomark 2018; 19:455-463. [PMID: 28582851 DOI: 10.3233/cbm-170572] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND AIMS Peroxisome proliferator-activated receptor-α (PPAR-α) activation has been reported to reduce myocardial ischemia-reperfusion (I/R) injury by inhibiting cell apoptosis. However, the antiapoptotic mechanism of PPAR-α is still unknown. Fenofibrate is a PPAR-α agonist In the present study, we investigate the effects and relevant mechanism of fenofibrate on experimental myocardial ischemia-reperfusion (I/R) injury in rats. METHODS Adult male Wistar rats were pretreated with fenofibrate (80 mg/kg) daily for a period of 7 days. After the treatment period, myocardial I/R injury model was made by left anterior descending coronary artery ligation for 45 min and reperfusion for 120 min. Myocardial infarct size, malondialdehyde (MDA) cleaved-caspase-9 protein expression, PPARα and uncoupling protein 2 (UCP2) mRNA levels in myocardial tissue were detected Cell apoptosis was detected by Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL). Serum lactate dehydrogenase and creatine kinase activities were measured in rats pretreated with fenofibrate The ultrastructure of myocardial tissues was observed. RESULTS Significant increases in myocardial cell apoptosis, malondialdehyde (MDA) level and cleaved-caspase-9 protein expression level in myocardial tissue were observed, along with reductions of PPARα and uncoupling protein 2 (UCP2) mRNA levels in myocardial tissue of the experimental myocardial ischemia-reperfusion (I/R) injury in rats. Impaired mitochondria were also observed under electron microscopic. However, pretreatment of ischemia/reperfusion rats with fenofibrate brought the biochemical parameters and related genes expression levels to near normalcy, indicating the protective effect of fenofibrate against myocardial ischemia/reperfusion injury in rats. CONCLUSIONS The PPAR-α activator fenofibrate conferred cytoprotective effect against myocardial ischemia-reperfusion (I/R) injury in rats. Associated mechanisms involved decreased cleaved-caspase-9 expression and decreased cell apoptosis.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zheng Cui
- Department of Endoscope, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yan Zheng
- Department of Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qun Li
- Department of Endoscope, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Changyuan Xu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xueqi Sheng
- Department of Endoscope, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Mei Tao
- Department of Endoscope, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - HuiXin Xu
- Department of Endoscope, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
12
|
Sierra S, Luquin N, Navarro-Otano J. The endocannabinoid system in cardiovascular function: novel insights and clinical implications. Clin Auton Res 2017; 28:35-52. [PMID: 29222605 DOI: 10.1007/s10286-017-0488-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
RATIONALE Cardiovascular disease is now recognized as the number one cause of death in the world, and the size of the population at risk continues to increase rapidly. The dysregulation of the endocannabinoid (eCB) system plays a central role in a wide variety of conditions including cardiovascular disorders. Cannabinoid receptors, their endogenous ligands, as well as enzymes conferring their synthesis and degradation, exhibit overlapping distributions in the cardiovascular system. Furthermore, the pharmacological manipulation of the eCB system has effects on blood pressure, cardiac contractility, and endothelial vasomotor control. Growing evidence from animal studies supports the significance of the eCB system in cardiovascular disorders. OBJECTIVE To summarize the literature surrounding the eCB system in cardiovascular function and disease and the new compounds that may potentially extend the range of available interventions. RESULTS Drugs targeting CB1R, CB2R, TRPV1 and PPARs are proven effective in animal models mimicking cardiovascular disorders such as hypertension, atherosclerosis and myocardial infarction. Despite the setback of two clinical trials that exhibited unexpected harmful side-effects, preclinical studies are accelerating the development of more selective drugs with promising results devoid of adverse effects. CONCLUSION Over the last years, increasing evidence from basic and clinical research supports the role of the eCB system in cardiovascular function. Whereas new discoveries are paving the way for the identification of novel drugs and therapeutic targets, the close cooperation of researchers, clinicians and pharmaceutical companies is needed to achieve successful outcomes.
Collapse
Affiliation(s)
- Salvador Sierra
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Physiology and Biophysics, Molecular Medicine Research Building, Virginia Commonwealth University, 1220 East Broad Street, Richmond, VA, 23298, USA.
| | - Natasha Luquin
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, Australia
| | - Judith Navarro-Otano
- Neurology Service, Electromyography, Motor Control and Neuropathic Pain Unit, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Zhao M, Jiang Q, Geng M, Zhu L, Xia Y, Khanal A, Wang C. The role of PPAR alpha in perfluorooctanoic acid induced developmental cardiotoxicity and l-carnitine mediated protection-Results of in ovo gene silencing. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:136-144. [PMID: 28934691 DOI: 10.1016/j.etap.2017.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/04/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent organic pollutant. This study established an in ovo peroxisome proliferator-activated receptor alpha (PPAR alpha) silencing model in chicken embryo heart, and investigated the role of PPAR alpha in PFOA induced developmental cardiotoxicity. The in ovo silencing was achieved by introducing lentivirus expressing PPAR alpha siRNA into ED2 chicken embryo via microinjection (0.05ul/g egg weight). Transfection efficacy was confirmed by fluorescent microscopy and western blotting. To assess the developmental cardiotoxicity, cardiac function (heart rate) and morphology (right ventricular wall thickness) were measured in D1 hatchling chickens. 2mg/kg (egg weight) PFOA exposure at ED0 induced significant elevation of heart rate and thinning of right ventricular wall thickness in D1 hatchling chickens. PPAR alpha silencing did not prevent PFOA-induced elevation of heart rate; however, it did significantly increase the right ventricular wall thickness as compared to PFOA exposed animals. Meanwhile, PPAR alpha silencing did not abolish the protective effects exerted by exposure to 100mg/kg (egg weight) l-carnitine. In conclusion, PFOA-induced heart rate elevation is likely PPAR alpha independent, while the right ventricular wall thinning seems to be PPAR alpha dependent. The protective effects of l-carnitine do not require PPAR alpha.
Collapse
Affiliation(s)
- Meng Zhao
- Qingdao University Medical College, China
| | | | - Min Geng
- Qingdao University Medical College, China
| | - Li Zhu
- The Affiliated Hospital of Qingdao University, China
| | - Yunqiu Xia
- Qingdao University Medical College, China
| | | | | |
Collapse
|
14
|
Picroside II protects the blood-brain barrier by inhibiting the oxidative signaling pathway in cerebral ischemia-reperfusion injury. PLoS One 2017; 12:e0174414. [PMID: 28388666 PMCID: PMC5384762 DOI: 10.1371/journal.pone.0174414] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/08/2017] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND AND PURPOSE Thrombolysis is used to improve cerebral circulation; at the same time, neuroprotective drugs such as antioxidants should also be used. The aim of these experiments was to explore the protective mechanism of an antioxidant, picroside II, on the blood-brain barrier (BBB) after cerebral ischemia-reperfusion (CI/R) injury. METHODS To observe the antagonistic effect of picroside II on CI/R damage, the neurological deficit score and the infarct volume were measured. To detect the protective effect of picroside II on nerve cells and the BBB, the morphology and structure of cortical brain tissue were observed, respectively. To investigate the antioxidant effect and mechanism of picroside II, reactive oxygen species (ROS) content, the activity of Nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase), and the protein levels of Nox2 and Rac-1 were detected. To investigate the protective mechanism of picroside II on the BBB, the levels of ROCK, MLCK, MMP-2 and claudin-5 were tested. RESULTS A higher neurological score, bigger cortex infarction, more damaged neuron structure and injured BBB, increased content of ROS and activity of NADPH oxidase, higher protein levels of Nox2, Rac-1, ROCK, MLCK and MMP-2 and lower levels of claudin-5 were observed in the model group. In the picroside group, the neurological score, neuronal damage, BBB injury, ROS content and NADPH oxidase activity were reduced (P<0.05), and the protein levels of Rac-1, Nox2, ROCK, MLCK and MMP-2 were down-regulated (P<0.05), while the expression of claudin-5 was up-regulated (P<0.05). CONCLUSIONS Picroside II could protect the nervous system possibly through reducing the content of ROS by down-regulating the expression of Rac-1 and Nox2 and could protect the BBB through reducing the expression of ROCK, MLCK, and MMP-2, while enhancing the expression of claudin-5.
Collapse
|
15
|
Hemmeryckx B, Hohensinner P, Swinnen M, Heggermont W, Wojta J, Lijnen HR. Antioxidant Treatment Improves Cardiac Dysfunction in a Murine Model of Premature Aging. J Cardiovasc Pharmacol 2016; 68:374-382. [PMID: 27824722 DOI: 10.1097/fjc.0000000000000423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bmal1-(brain and muscle ARNT-like protein-1) deficient (Bmal1) mice prematurely age because of an increased reactive oxygen species (ROS) production. These mice also show a decline in cardiac function with age. We investigated whether an antioxidant treatment can ameliorate the declining cardiac function in prematurely aged Bmal1 mice. Male Bmal1 and wild-type (Bmal1) mice were exposed for 15 weeks to a high fat and high cholesterol diet with or without the antioxidant 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPOL; 5 mmol/L; in drinking water during the last 10 weeks). Echocardiographic analysis revealed that TEMPOL treatment of Bmal1 mice normalized cardiac function, as evidenced by a decrease in left ventricular diastolic and systolic internal diameters, and by an increase in fractional shortening and ejection fraction. The antioxidant did not affect cardiac function in Bmal1 mice. Although TEMPOL did not influence cardiac ROS levels in Bmal1 mice, it significantly protected Bmal1 cardiac telomeres from oxidation, as evidenced by a reduction in the telomere damage score (0.11 ± 0.012% vs. 0.16 ± 0.015%; P = 0.028). Thus, antioxidant treatment normalized cardiac function of Bmal1 mice, probably in part by scavenging ROS.
Collapse
Affiliation(s)
- Bianca Hemmeryckx
- *Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; †Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria; ‡Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; §Department of Internal Medicine, Service of Cardiology, University Hospitals Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
16
|
Drosatos K. Fatty old hearts: role of cardiac lipotoxicity in age-related cardiomyopathy. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2016; 6:32221. [PMID: 27558317 PMCID: PMC4996860 DOI: 10.3402/pba.v6.32221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 12/11/2022]
Abstract
Age-related cardiomyopathy accounts for a significant part of heart failure cases. Imbalance of the energetic equilibrium of the heart along with mitochondrial dysfunction and impaired β-adrenergic receptor signaling contributes in the aggravation of cardiac function in the elderly. In this review article, studies that correlate cardiac aging with lipotoxicity are summarized. The involvement of inhibition of peroxisome proliferator-activated receptor-α, β-adrenergic receptor desensitization, and mitochondrial dysfunction as underlying mechanisms for the lipid-driven age-related cardiomyopathy are presented with the aim to indicate potential therapeutic targets for cardiac aging.
Collapse
Affiliation(s)
- Konstantinos Drosatos
- Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA;
| |
Collapse
|
17
|
PPARs: Protectors or Opponents of Myocardial Function? PPAR Res 2015; 2015:835985. [PMID: 26713088 PMCID: PMC4680114 DOI: 10.1155/2015/835985] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/05/2015] [Accepted: 11/08/2015] [Indexed: 12/15/2022] Open
Abstract
Over 5 million people in the United States suffer from the complications of heart failure (HF), which is a rapidly expanding health complication. Disorders that contribute to HF include ischemic cardiac disease, cardiomyopathies, and hypertension. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family. There are three PPAR isoforms: PPARα, PPARγ, and PPARδ. They can be activated by endogenous ligands, such as fatty acids, as well as by pharmacologic agents. Activators of PPARs are used for treating several metabolic complications, such as diabetes and hyperlipidemia that are directly or indirectly associated with HF. However, some of these drugs have adverse effects that compromise cardiac function. This review article aims to summarize the current basic and clinical research findings of the beneficial or detrimental effects of PPAR biology on myocardial function.
Collapse
|
18
|
Mussbacher M, Stessel H, Wölkart G, Haemmerle G, Zechner R, Mayer B, Schrammel A. Role of the ubiquitin-proteasome system in cardiac dysfunction of adipose triglyceride lipase-deficient mice. J Mol Cell Cardiol 2014; 77:11-9. [PMID: 25285770 PMCID: PMC4263609 DOI: 10.1016/j.yjmcc.2014.09.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 12/12/2022]
Abstract
Systemic deletion of the gene encoding for adipose triglyceride lipase (ATGL) in mice leads to severe cardiac dysfunction due to massive accumulation of neutral lipids in cardiomyocytes. Recently, impaired peroxisome proliferator-activated receptor α (PPARα) signaling has been described to substantially contribute to the observed cardiac phenotype. Disturbances of the ubiquitin-proteasome system (UPS) have been implicated in numerous cardiac diseases including cardiomyopathy, ischemic heart disease, and heart failure. The objective of the present study was to investigate the potential role of UPS in cardiac ATGL deficiency. Our results demonstrate prominent accumulation of ubiquitinated proteins in hearts of ATGL-deficient mice, an effect that was abolished upon cardiomyocyte-directed overexpression of ATGL. In parallel, cardiac protein expression of the ubiquitin-activating enzyme E1a, which catalyzes the first step of the ubiquitination cascade, was significantly upregulated in ATGL-deficient hearts. Dysfunction of the UPS was accompanied by activation of NF-κB signaling. Moreover, the endoplasmic reticulum (ER)-resident chaperon protein disulfide isomerase was significantly upregulated in ATGL-deficient hearts. Chronic treatment of ATGL-deficient mice with the PPARα agonist Wy14,643 improved proteasomal function, prevented NF-κB activation and decreased oxidative stress. In summary, our data point to a hitherto unrecognized link between proteasomal function, PPARα signaling and cardiovascular disease.
Collapse
Affiliation(s)
- Marion Mussbacher
- Department of Pharmacology and Toxicology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria.
| | - Heike Stessel
- Department of Pharmacology and Toxicology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria.
| | - Gerald Wölkart
- Department of Pharmacology and Toxicology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria.
| | - Guenter Haemmerle
- Department of Molecular Biosciences, University of Graz, Heinrichstrasse 31, A-8010 Graz, Austria.
| | - Rudolf Zechner
- Department of Molecular Biosciences, University of Graz, Heinrichstrasse 31, A-8010 Graz, Austria.
| | - Bernd Mayer
- Department of Pharmacology and Toxicology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria.
| | - Astrid Schrammel
- Department of Pharmacology and Toxicology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria.
| |
Collapse
|