1
|
Orth T, Pyanova A, Lux S, Kaiser P, Reinheimer I, Nielsen DL, Khalid JA, Rognant S, Jepps TA, Matchkov VV, Schubert R. Vascular smooth muscle BK channels limit ouabain-induced vasocontraction: Dual role of the Na/K-ATPase as a hub for Src-kinase and the Na/Ca-exchanger. FASEB J 2024; 38:e70046. [PMID: 39259502 DOI: 10.1096/fj.202400628rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Large-conductance, calcium-activated potassium channels (BK channels) and the Na/K-ATPase are expressed universally in vascular smooth muscle. The Na/K-ATPase may act via changes in the intracellular Ca2+ concentration mediated by the Na/Ca exchanger (NCX) and via Src kinase. Both pathways are known to regulate BK channels. Whether BK channels functionally interact in vascular smooth muscle cells with the Na/K-ATPase remains to be elucidated. Thus, this study addressed the hypothesis that BK channels limit ouabain-induced vasocontraction. Rat mesenteric arteries were studied using isometric myography, FURA-2 fluorimetry and proximity ligation assay. The BK channel blocker iberiotoxin potentiated methoxamine-induced contractions. The cardiotonic steroid, ouabain (10-5 M), induced a contractile effect of IBTX at basal tension prior to methoxamine administration and enhanced the pro-contractile effect of IBTX on methoxamine-induced contractions. These facilitating effects of ouabain were prevented by the inhibition of either NCX or Src kinase. Furthermore, inhibition of NCX or Src kinase reduced the BK channel-mediated negative feedback regulation of arterial contraction. The effects of NCX and Src kinase inhibition were independent of each other. Co-localization of the Na/K-ATPase and the BK channel was evident. Our data suggest that BK channels limit ouabain-induced vasocontraction by a dual mechanism involving the NCX and Src kinase signaling. The data propose that the NCX and the Src kinase pathways, mediating the ouabain-induced activation of the BK channel, act in an independent manner.
Collapse
Affiliation(s)
- Tobias Orth
- Research Division Cardiovascular Physiology, European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anastasia Pyanova
- Physiology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Simon Lux
- Research Division Cardiovascular Physiology, European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter Kaiser
- Research Division Cardiovascular Physiology, European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Isabel Reinheimer
- Research Division Cardiovascular Physiology, European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Josef Ali Khalid
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark
| | - Salomé Rognant
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas A Jepps
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Rudolf Schubert
- Research Division Cardiovascular Physiology, European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Physiology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| |
Collapse
|
2
|
Rajanathan R, Pedersen TM, Guldbrandsen HO, Olesen LF, Thomsen MB, Bøtker HE, Matchkov VV. Augmented Ouabain-Induced Vascular Response Reduces Cardiac Efficiency in Mice with Migraine-Associated Mutation in the Na +, K +-ATPase α 2-Isoform. Biomedicines 2023; 11:biomedicines11020344. [PMID: 36830881 PMCID: PMC9953359 DOI: 10.3390/biomedicines11020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Heterozygous mice (α2+/G301R mice) for the migraine-associated mutation (G301R) in the Na+,K+-ATPase α2-isoform have decreased expression of cardiovascular α2-isoform. The α2+/G301R mice exhibit a pro-contractile vascular phenotype associated with decreased left ventricular ejection fraction. However, the integrated functional cardiovascular consequences of this phenotype remain to be addressed in vivo. We hypothesized that the vascular response to α2-isoform-specific inhibition of the Na+,K+-ATPase by ouabain is augmented in α2+/G301R mice leading to reduced cardiac efficiency. Thus, we aimed to assess the functional contribution of the α2-isoform to in vivo cardiovascular function of wild-type (WT) and α2+/G301R mice. Blood pressure, stroke volume, heart rate, total peripheral resistance, arterial dP/dt, and systolic time intervals were assessed in anesthetized WT and α2+/G301R mice. To address rate-dependent cardiac changes, cardiovascular variables were compared before and after intraperitoneal injection of ouabain (1.5 mg/kg) or vehicle during atrial pacing. The α2+/G301R mice showed an enhanced ouabain-induced increase in total peripheral resistance associated with reduced efficiency of systolic development compared to WT. When the hearts were paced, ouabain reduced stroke volume in α2+/G301R mice. In conclusion, the ouabain-induced vascular response was augmented in α2+/G301R mice with consequent suppression of cardiac function.
Collapse
Affiliation(s)
- Rajkumar Rajanathan
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Correspondence:
| | | | | | | | - Morten B. Thomsen
- Department of Biomedical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, 8000 Aarhus, Denmark
| | | |
Collapse
|
3
|
Razan MR, Akther F, Islam RA, Graham JL, Stanhope KL, Havel PJ, Rahimian R. 17β-Estradiol Treatment Improves Acetylcholine-Induced Relaxation of Mesenteric Arteries in Ovariectomized UC Davis Type 2 Diabetes Mellitus Rats in Prediabetic State. Front Physiol 2022; 13:900813. [PMID: 35784863 PMCID: PMC9248973 DOI: 10.3389/fphys.2022.900813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
We recently reported sex differences in mesenteric arterial function of the UC Davis type-2 diabetes mellitus (UCD-T2DM) rats as early as the prediabetic state. We reported that mesenteric arteries (MA) from prediabetic male rats exhibited a greater impairment compared to that in prediabetic females. However, when females became diabetic, they exhibited a greater vascular dysfunction than males. Thus, the aim of this study was to investigate whether the female sex hormone, estrogen preserves mesenteric arterial vasorelaxation in UCD-T2DM female rats at an early prediabetic state. Age-matched female Sprague Dawley and prediabetic (PD) UCD-T2DM rats were ovariectomized (OVX) and subcutaneously implanted with either placebo or 17β-estradiol (E2, 1.5 mg) pellets for 45 days. We assessed the contribution of endothelium-derived relaxing factors (EDRF) to acetylcholine (ACh)-induced vasorelaxation, using pharmacological inhibitors. Responses to sodium nitroprusside (SNP) and phenylephrine (PE) were also measured. Additionally, metabolic parameters and expression of some targets associated with vascular and insulin signaling were determined. We demonstrated that the responses to ACh and SNP were severely impaired in the prediabetic state (PD OVX) rats, while E2 treatment restored vasorelaxation in the PD OVX + E2. Moreover, the responses to PE was significantly enhanced in MA of PD OVX groups, regardless of placebo or E2 treatment. Overall, our data suggest that 1) the impairment of ACh responses in PD OVX rats may, in part, result from the elevated contractile responses to PE, loss of contribution of endothelium-dependent hyperpolarization (EDH) to vasorelaxation, and a decreased sensitivity of MA to nitric oxide (NO), and 2) the basis for the protective effects of E2 may be partly attributed to the elevation of the NO contribution to vasorelaxation and its interaction with MA as well as potential improvement of insulin signaling. Here, we provide the first evidence of the role of E2 in protecting MA from early vascular dysfunction in prediabetic female rats.
Collapse
Affiliation(s)
- Md Rahatullah Razan
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - Farjana Akther
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - Rifat A. Islam
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - James L. Graham
- Department of Molecular Biosciences, School of Veterinary Medicine, Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Kimber L. Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Peter J. Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Roshanak Rahimian
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
- *Correspondence: Roshanak Rahimian,
| |
Collapse
|
4
|
Staehr C, Rohde PD, Krarup NT, Ringgaard S, Laustsen C, Johnsen J, Nielsen R, Beck HC, Morth JP, Lykke‐Hartmann K, Jespersen NR, Abramochkin D, Nyegaard M, Bøtker HE, Aalkjaer C, Matchkov V. Migraine-Associated Mutation in the Na,K-ATPase Leads to Disturbances in Cardiac Metabolism and Reduced Cardiac Function. J Am Heart Assoc 2022; 11:e021814. [PMID: 35289188 PMCID: PMC9075430 DOI: 10.1161/jaha.121.021814] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022]
Abstract
Background Mutations in ATP1A2 gene encoding the Na,K-ATPase α2 isoform are associated with familial hemiplegic migraine type 2. Migraine with aura is a known risk factor for heart disease. The Na,K-ATPase is important for cardiac function, but its role for heart disease remains unknown. We hypothesized that ATP1A2 is a susceptibility gene for heart disease and aimed to assess the underlying disease mechanism. Methods and Results Mice heterozygous for the familial hemiplegic migraine type 2-associated G301R mutation in the Atp1a2 gene (α2+/G301R mice) and matching wild-type controls were compared. Reduced expression of the Na,K-ATPase α2 isoform and increased expression of the α1 isoform were observed in hearts from α2+/G301R mice (Western blot). Left ventricular dilation and reduced ejection fraction were shown in hearts from 8-month-old α2+/G301R mice (cardiac magnetic resonance imaging), and this was associated with reduced nocturnal blood pressure (radiotelemetry). Cardiac function and blood pressure of 3-month-old α2+/G301R mice were similar to wild-type mice. Amplified Na,K-ATPase-dependent Src kinase/Ras/Erk1/2 (p44/42 mitogen-activated protein kinase) signaling was observed in hearts from 8-month-old α2+/G301R mice, and this was associated with mitochondrial uncoupling (respirometry), increased oxidative stress (malondialdehyde measurements), and a heart failure-associated metabolic shift (hyperpolarized magnetic resonance). Mitochondrial membrane potential (5,5´,6,6´-tetrachloro-1,1´,3,3´-tetraethylbenzimidazolocarbocyanine iodide dye assay) and mitochondrial ultrastructure (transmission electron microscopy) were similar between the groups. Proteomics of heart tissue further suggested amplified Src/Ras/Erk1/2 signaling and increased oxidative stress and provided the molecular basis for systolic dysfunction in 8-month-old α2+/G301R mice. Conclusions Our findings suggest that ATP1A2 mutation leads to disturbed cardiac metabolism and reduced cardiac function mediated via Na,K-ATPase-dependent reactive oxygen species signaling through the Src/Ras/Erk1/2 pathway.
Collapse
Affiliation(s)
| | - Palle Duun Rohde
- Department of Chemistry and BioscienceAalborg UniversityAalborgDenmark
| | | | - Steffen Ringgaard
- MR Research CentreDepartment of Clinical MedicineAarhus UniversityAarhusDenmark
| | | | - Jacob Johnsen
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Rikke Nielsen
- Department of Biomedicine, HealthAarhus UniversityAarhusDenmark
| | - Hans Christian Beck
- Department for Clinical Biochemistry and PharmacologyOdense University HospitalOdenseDenmark
| | - Jens Preben Morth
- Department of Biotechnology and BiomedicineTechnical University of DenmarkKgs. LyngbyDenmark
| | - Karin Lykke‐Hartmann
- Department of Biomedicine, HealthAarhus UniversityAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Clinical GeneticsAarhus University HospitalAarhusDenmark
| | | | - Denis Abramochkin
- Department of Human and Animal PhysiologyBiological FacultyLomonosov Moscow State UniversityMoscowRussia
| | - Mette Nyegaard
- Department of Biomedicine, HealthAarhus UniversityAarhusDenmark
- Department of Health Science and TechnologyAalborg UniversityAalborgDenmark
| | | | - Christian Aalkjaer
- Department of Biomedicine, HealthAarhus UniversityAarhusDenmark
- Department of Biomedical SciencesCopenhagen UniversityCopenhagenDenmark
| | | |
Collapse
|
5
|
Boguslavskyi A, Tokar S, Prysyazhna O, Rudyk O, Sanchez-Tatay D, Lemmey HA, Dora KA, Garland CJ, Warren HR, Doney A, Palmer CN, Caulfield MJ, Vlachaki Walker J, Howie J, Fuller W, Shattock MJ. Phospholemman Phosphorylation Regulates Vascular Tone, Blood Pressure, and Hypertension in Mice and Humans. Circulation 2021; 143:1123-1138. [PMID: 33334125 PMCID: PMC7969167 DOI: 10.1161/circulationaha.119.040557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 12/09/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Although it has long been recognized that smooth muscle Na/K ATPase modulates vascular tone and blood pressure (BP), the role of its accessory protein phospholemman has not been characterized. The aim of this study was to test the hypothesis that phospholemman phosphorylation regulates vascular tone in vitro and that this mechanism plays an important role in modulation of vascular function and BP in experimental models in vivo and in humans. METHODS In mouse studies, phospholemman knock-in mice (PLM3SA; phospholemman [FXYD1] in which the 3 phosphorylation sites on serines 63, 68, and 69 are mutated to alanines), in which phospholemman is rendered unphosphorylatable, were used to assess the role of phospholemman phosphorylation in vitro in aortic and mesenteric vessels using wire myography and membrane potential measurements. In vivo BP and regional blood flow were assessed using Doppler flow and telemetry in young (14-16 weeks) and old (57-60 weeks) wild-type and transgenic mice. In human studies, we searched human genomic databases for mutations in phospholemman in the region of the phosphorylation sites and performed analyses within 2 human data cohorts (UK Biobank and GoDARTS [Genetics of Diabetes Audit and Research in Tayside]) to assess the impact of an identified single nucleotide polymorphism on BP. This single nucleotide polymorphism was expressed in human embryonic kidney cells, and its effect on phospholemman phosphorylation was determined using Western blotting. RESULTS Phospholemman phosphorylation at Ser63 and Ser68 limited vascular constriction in response to phenylephrine. This effect was blocked by ouabain. Prevention of phospholemman phosphorylation in the PLM3SA mouse profoundly enhanced vascular responses to phenylephrine both in vitro and in vivo. In aging wild-type mice, phospholemman was hypophosphorylated, and this correlated with the development of aging-induced essential hypertension. In humans, we identified a nonsynonymous coding variant, single nucleotide polymorphism rs61753924, which causes the substitution R70C in phospholemman. In human embryonic kidney cells, the R70C mutation prevented phospholemman phosphorylation at Ser68. This variant's rare allele is significantly associated with increased BP in middle-aged men. CONCLUSIONS These studies demonstrate the importance of phospholemman phosphorylation in the regulation of vascular tone and BP and suggest a novel mechanism, and therapeutic target, for aging-induced essential hypertension in humans.
Collapse
Affiliation(s)
- Andrii Boguslavskyi
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - Sergiy Tokar
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - Oleksandra Prysyazhna
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - Olena Rudyk
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - David Sanchez-Tatay
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - Hamish A.L. Lemmey
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - Kim A. Dora
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - Christopher J. Garland
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - Helen R. Warren
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - Alexander Doney
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - Colin N.A. Palmer
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - Mark J. Caulfield
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - Julia Vlachaki Walker
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - Jacqueline Howie
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - William Fuller
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| | - Michael J. Shattock
- British Heart Foundation Centre of Research Excellence, King’s College London, United Kingdom (A.B., S.T., O.P., O.R., D.S.-T., M.J.S.). Clinical Pharmacology, The William Harvey Research Institute (O.P., H.R.W., M.J.C.), National Institute for Health Research, Biomedical Research Centre (H.R.W., M.J.C.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Department of Pharmacology, University of Oxford, United Kingdom (H.A.L.L., K.A.D., C.J.G.). Medicines Monitoring Unit, School of Medicine (A.D.), Division of Cardiovascular and Diabetes Medicine (C.N.A.), University of Dundee, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (J.V.W., J.H., W.F.)
| |
Collapse
|
6
|
Abstract
Of the 21 members of the connexin family, 4 (Cx37, Cx40, Cx43, and Cx45) are expressed in the endothelium and/or smooth muscle of intact blood vessels to a variable and dynamically regulated degree. Full-length connexins oligomerize and form channel structures connecting the cytosol of adjacent cells (gap junctions) or the cytosol with the extracellular space (hemichannels). The different connexins vary mainly with regard to length and sequence of their cytosolic COOH-terminal tails. These COOH-terminal parts, which in the case of Cx43 are also translated as independent short isoforms, are involved in various cellular signaling cascades and regulate cell functions. This review focuses on channel-dependent and -independent effects of connexins in vascular cells. Channels play an essential role in coordinating and synchronizing endothelial and smooth muscle activity and in their interplay, in the control of vasomotor actions of blood vessels including endothelial cell reactivity to agonist stimulation, nitric oxide-dependent dilation, and endothelial-derived hyperpolarizing factor-type responses. Further channel-dependent and -independent roles of connexins in blood vessel function range from basic processes of vascular remodeling and angiogenesis to vascular permeability and interactions with leukocytes with the vessel wall. Together, these connexin functions constitute an often underestimated basis for the enormous plasticity of vascular morphology and function enabling the required dynamic adaptation of the vascular system to varying tissue demands.
Collapse
Affiliation(s)
- Ulrich Pohl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Germany; Biomedical Centre, Cardiovascular Physiology, LMU Munich, Planegg-Martinsried, Germany; German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
7
|
Blaustein MP, Hamlyn JM. Ouabain, endogenous ouabain and ouabain-like factors: The Na + pump/ouabain receptor, its linkage to NCX, and its myriad functions. Cell Calcium 2020; 86:102159. [PMID: 31986323 DOI: 10.1016/j.ceca.2020.102159] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/12/2022]
Abstract
In this brief review we discuss some aspects of the Na+ pump and its roles in mediating the effects of ouabain and endogenous ouabain (EO): i) in regulating the cytosolic Ca2+ concentration ([Ca2+]CYT) via Na/Ca exchange (NCX), and ii) in activating a number of protein kinase (PK) signaling cascades that control a myriad of cell functions. Importantly, [Ca2+]CYT and the other signaling pathways intersect at numerous points because of the influence of Ca2+ and calmodulin in modulating some steps in those other pathways. While both mechanisms operate in virtually all cells and tissues, this article focuses primarily on their functions in the cardiovascular system, the central nervous system (CNS) and the kidneys.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Staehr C, Hangaard L, Bouzinova EV, Kim S, Rajanathan R, Boegh Jessen P, Luque N, Xie Z, Lykke-Hartmann K, Sandow SL, Aalkjaer C, Matchkov VV. Smooth muscle Ca 2+ sensitization causes hypercontractility of middle cerebral arteries in mice bearing the familial hemiplegic migraine type 2 associated mutation. J Cereb Blood Flow Metab 2019; 39. [PMID: 29513112 PMCID: PMC6681533 DOI: 10.1177/0271678x18761712] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Familial hemiplegic migraine type 2 (FHM2) is associated with inherited point-mutations in the Na,K-ATPase α2 isoform, including G301R mutation. We hypothesized that this mutation affects specific aspects of vascular function, and thus compared cerebral and systemic arteries from heterozygote mice bearing the G301R mutation (Atp1a2+/-G301R) with wild type (WT). Middle cerebral (MCA) and mesenteric small artery (MSA) function was compared in an isometric myograph. Cerebral blood flow was assessed with Laser speckle analysis. Intracellular Ca2+ and membrane potential were measured simultaneously. Protein expression was semi-quantified by immunohistochemistry. Protein phosphorylation was analysed by Western blot. MSA from Atp1a2+/-G301R and WT showed similar contractile responses. The Atp1a2+/-G301R MCA constricted stronger to U46619, endothelin and potassium compared to WT. This was associated with an increased depolarization, although the Ca2+ change was smaller than in WT. The enhanced constriction of Atp1a2+/-G301R MCA was associated with increased cSrc activation, stronger sensitization to [Ca2+]i and increased MYPT1 phosphorylation. These differences were abolished by cSrc inhibition. Atp1a2+/-G301R mice had reduced resting blood flow through MCA in comparison with WT mice. FHM2-associated mutation leads to elevated contractility of MCA due to sensitization of the contractile machinery to Ca2+, which is mediated via Na,K-ATPase/Src-kinase/MYPT1 signalling.
Collapse
Affiliation(s)
| | - Lise Hangaard
- 1 Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Sukhan Kim
- 1 Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Nathan Luque
- 2 Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia
| | - Zijian Xie
- 3 Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV, USA
| | | | - Shaun L Sandow
- 2 Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia
| | | | | |
Collapse
|
9
|
Staehr C, Rajanathan R, Matchkov VV. Involvement of the Na + ,K + -ATPase isoforms in control of cerebral perfusion. Exp Physiol 2019; 104:1023-1028. [PMID: 30768809 DOI: 10.1113/ep087519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/11/2019] [Indexed: 12/11/2022]
Abstract
NEW FINDINGS What is the topic of this review? In this review, we consider the role of the Na+ ,K+ -ATPase in cerebrovascular function and how it might be changed in familial hemiplegic migraine type 2 (FHM2). The primary focus is involvement of the Na+ ,K+ -ATPase isoforms in regulation of cerebrovascular tone. What advances does it highlight? In this review, we discuss three overall distinct mechanisms whereby the Na+ ,K+ -ATPase might be capable of regulating cerebrovascular tone. Furthermore, we discuss how changes in the Na+ ,K+ -ATPase in cerebral arteries might affect brain perfusion and thereby be involved in the pathology of FHM2. ABSTRACT Familial hemiplegic migraine type 2 (FHM2) has been characterized by biphasic changes in cerebral blood flow during a migraine attack, with initial hypoperfusion followed by abnormal hyperperfusion of the affected hemisphere. We suggested that FHM2-associated loss-of-function mutation(s) in the Na+ ,K+ -ATPase α2 isoform might be responsible for these biphasic changes in several ways. We found that reduced expression of the α2 isoform leads to sensitization of the contractile machinery to [Ca2+ ]i via Src kinase-dependent signal transduction. This change in sensitivity might be the underlying mechanism for both abnormally potentiated vasoconstriction and exaggerated vasorelaxation. Moreover, the functional significance of the Na+ ,K+ -ATPase α2 isoform in astrocytes provides for the possibility of elevated extracellular potassium signalling from astrocytic endfeet to the vascular wall in neurovascular coupling.
Collapse
Affiliation(s)
- Christian Staehr
- Department of Biomedicine, Health, Aarhus University, Aarhus C, Denmark
| | | | | |
Collapse
|
10
|
Schubert R. The second life of ion transporters as signal transducers. Acta Physiol (Oxf) 2018; 224:e13155. [PMID: 29938912 DOI: 10.1111/apha.13155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- R Schubert
- Cardiovascular Physiology, Centre for Biomedicine and Medical Technology Mannheim (CBTM), European Center of Angioscience (ECAS), Ruprecht-Karls-University Heidelberg, Mannheim, Germany
| |
Collapse
|
11
|
The Na,K-ATPase-Dependent Src Kinase Signaling Changes with Mesenteric Artery Diameter. Int J Mol Sci 2018; 19:ijms19092489. [PMID: 30142894 PMCID: PMC6164810 DOI: 10.3390/ijms19092489] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 01/09/2023] Open
Abstract
Inhibition of the Na,K-ATPase by ouabain potentiates vascular tone and agonist-induced contraction. These effects of ouabain varies between different reports. In this study, we assessed whether the pro-contractile effect of ouabain changes with arterial diameter and the molecular mechanism behind it. Rat mesenteric small arteries of different diameters (150–350 µm) were studied for noradrenaline-induced changes of isometric force and intracellular Ca2+ in smooth muscle cells. These functional changes were correlated to total Src kinase and Src phosphorylation assessed immunohistochemically. High-affinity ouabain-binding sites were semi-quantified with fluorescent ouabain. We found that potentiation of noradrenaline-sensitivity by ouabain correlates positively with an increase in arterial diameter. This was not due to differences in intracellular Ca2+ responses but due to sensitization of smooth muscle cell contractile machinery to Ca2+. This was associated with ouabain-induced Src activation, which increases with increasing arterial diameter. Total Src expression was similar in arteries of different diameters but the density of high-affinity ouabain binding sites increased with increasing arterial diameters. We suggested that ouabain binding induces more Src kinase activity in mesenteric small arteries with larger diameter leading to enhanced sensitization of the contractile machinery to Ca2+.
Collapse
|
12
|
Nyvad J, Mazur A, Postnov DD, Straarup MS, Soendergaard AM, Staehr C, Brøndum E, Aalkjaer C, Matchkov VV. Intravital investigation of rat mesenteric small artery tone and blood flow. J Physiol 2017; 595:5037-5053. [PMID: 28568894 DOI: 10.1113/jp274604] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/24/2017] [Indexed: 01/07/2023] Open
Abstract
KEY POINTS Substantial information on rat mesenteric small artery physiology and pharmacology based on in vitro experiments is available. Little is known about the relevance of this for artery function in vivo. We here present an intravital model where rat mesenteric small artery diameters are studied under isolated and controlled conditions in situ with simultaneous measurement of blood flow. The responses of the isolated arteries vary with the anaesthetic used, and they are quantitatively but not qualitatively different from the responses seen in vitro. ABSTRACT Functional characteristics of rat mesenteric small arteries (internal diameter ∼150-200 μm) have been extensively studied in vitro using isometric and isobaric myographs. In vivo, precapillary arterioles (internal diameter < 50 μm) have been studied, but only a few studies have investigated the function of mesenteric small arteries. We here present a novel approach for intravital studies of rat mesenteric small artery segments (∼5 mm long) isolated in a chamber. The agonist-induced changes in arterial diameter and blood flow were studied using video imaging and laser speckle analysis in rats anaesthetized by isoflurane, pentobarbital, ketamine-xylazine, or by a combination of fentanyl, fluanison and midazolam (rodent mixture). The arteries had spontaneous tone. Noradrenaline added to the chamber constricted the artery in the chamber but not the downstream arteries in the intestinal wall. The constriction was smaller when rats were anaesthetized by rodent mixture in comparison with other anaesthetics, where responses were qualitatively similar to those reported in vitro. The contraction was associated with reduction of blood flow, but no flow reduction was seen in the downstream arteries in the intestinal wall. The magnitude of different endothelium-dependent relaxation pathways was dependent on the anaesthesia. Vasomotion was present under all forms of anaesthesia with characteristics similar to in vitro. We have established an intravital method for studying the tone and flow in rat mesenteric arteries. The reactivity of the arteries was qualitatively similar to the responses previously obtained under in vitro conditions, but the choice of anaesthetic affects the magnitude of responses.
Collapse
Affiliation(s)
- Jakob Nyvad
- Department of Biomedicine, Membranes, Aarhus University, Aarhus, Denmark
| | - Aleksandra Mazur
- Department of Biomedicine, Membranes, Aarhus University, Aarhus, Denmark
| | - Dmitry D Postnov
- Department of Biomedical Sciences, University of Copenhagen, Denmark
| | | | | | - Christian Staehr
- Department of Biomedicine, Membranes, Aarhus University, Aarhus, Denmark
| | - Emil Brøndum
- Department of Oto-Rhino-Laryngology, Aarhus University Hospital, Denmark
| | - Christian Aalkjaer
- Department of Biomedicine, Membranes, Aarhus University, Aarhus, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Denmark
| | | |
Collapse
|
13
|
Hangaard L, Bouzinova EV, Staehr C, Dam VS, Kim S, Xie Z, Aalkjaer C, Matchkov VV. Na-K-ATPase regulates intercellular communication in the vascular wall via cSrc kinase-dependent connexin43 phosphorylation. Am J Physiol Cell Physiol 2017; 312:C385-C397. [DOI: 10.1152/ajpcell.00347.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/10/2017] [Accepted: 01/14/2017] [Indexed: 12/23/2022]
Abstract
Communication between vascular smooth muscle cells (VSMCs) is dependent on gap junctions and is regulated by the Na-K-ATPase. The Na-K-ATPase is therefore important for synchronized VSMC oscillatory activity, i.e., vasomotion. The signaling between the Na-K-ATPase and gap junctions is unknown. We tested here the hypothesis that this signaling involves cSrc kinase. Intercellular communication was assessed by membrane capacitance measurements of electrically coupled VSMCs. Vasomotion in isometric myograph, input resistance, and synchronized [Ca2+]i transients were used as readout for intercellular coupling in rat mesenteric small arteries in vitro. Phosphorylation of cSrc kinase and connexin43 (Cx43) were semiquantified by Western blotting. Micromole concentration of ouabain reduced the amplitude of norepinephrine-induced vasomotion and desynchronized Ca2+ transients in VSMC in the arterial wall. Ouabain also increased input resistance in the arterial wall. These effects of ouabain were antagonized by inhibition of tyrosine phosphorylation with genistein, PP2, and by an inhibitor of the Na-K-ATPase-dependent cSrc activation, pNaKtide. Moreover, inhibition of cSrc phosphorylation increased vasomotion amplitude and decreased the resistance between cells in the vascular wall. Ouabain inhibited the electrical coupling between A7r5 cells, but pNaKtide restored the electrical coupling. Ouabain increased cSrc autophosphorylation of tyrosine 418 (Y418) required for full catalytic activity whereas pNaKtide antagonized it. This cSrc activation was associated with Cx43 phosphorylation of tyrosine 265 (Y265). Our findings demonstrate that Na-K-ATPase regulates intercellular communication in the vascular wall via cSrc-dependent Cx43 tyrosine phosphorylation.
Collapse
Affiliation(s)
- Lise Hangaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Vibeke S. Dam
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sukhan Kim
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Christian Aalkjaer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, University of Copenhagen, Copenhagen, Denmark; and
| | | |
Collapse
|
14
|
The role of Na+, K+-ATPase in the hypoxic vasoconstriction in isolated rat basilar artery. Vascul Pharmacol 2016; 81:53-60. [DOI: 10.1016/j.vph.2016.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 11/18/2022]
|
15
|
Matchkov VV, Krivoi II. Specialized Functional Diversity and Interactions of the Na,K-ATPase. Front Physiol 2016; 7:179. [PMID: 27252653 PMCID: PMC4879863 DOI: 10.3389/fphys.2016.00179] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022] Open
Abstract
Na,K-ATPase is a protein ubiquitously expressed in the plasma membrane of all animal cells and vitally essential for their functions. A specialized functional diversity of the Na,K-ATPase isozymes is provided by molecular heterogeneity, distinct subcellular localizations, and functional interactions with molecular environment. Studies over the last decades clearly demonstrated complex and isoform-specific reciprocal functional interactions between the Na,K-ATPase and neighboring proteins and lipids. These interactions are enabled by a spatially restricted ion homeostasis, direct protein-protein/lipid interactions, and protein kinase signaling pathways. In addition to its "classical" function in ion translocation, the Na,K-ATPase is now considered as one of the most important signaling molecules in neuronal, epithelial, skeletal, cardiac and vascular tissues. Accordingly, the Na,K-ATPase forms specialized sub-cellular multimolecular microdomains which act as receptors to circulating endogenous cardiotonic steroids (CTS) triggering a number of signaling pathways. Changes in these endogenous cardiotonic steroid levels and initiated signaling responses have significant adaptive values for tissues and whole organisms under numerous physiological and pathophysiological conditions. This review discusses recent progress in the studies of functional interactions between the Na,K-ATPase and molecular microenvironment, the Na,K-ATPase-dependent signaling pathways and their significance for diversity of cell function.
Collapse
Affiliation(s)
| | - Igor I Krivoi
- Department of General Physiology, St. Petersburg State University St. Petersburg, Russia
| |
Collapse
|
16
|
Kravtsova VV, Petrov AM, Matchkov VV, Bouzinova EV, Vasiliev AN, Benziane B, Zefirov AL, Chibalin AV, Heiny JA, Krivoi II. Distinct α2 Na,K-ATPase membrane pools are differently involved in early skeletal muscle remodeling during disuse. ACTA ACUST UNITED AC 2016; 147:175-88. [PMID: 26755774 PMCID: PMC4727944 DOI: 10.1085/jgp.201511494] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/22/2015] [Indexed: 11/29/2022]
Abstract
Location, location, location. The Na-K pump of skeletal muscle is regulated differently at neuromuscular junctions. The Na,K-ATPase is essential for the contractile function of skeletal muscle, which expresses the α1 and α2 subunit isoforms of Na,K-ATPase. The α2 isozyme is predominant in adult skeletal muscles and makes a greater contribution in working compared with noncontracting muscles. Hindlimb suspension (HS) is a widely used model of muscle disuse that leads to progressive atrophy of postural skeletal muscles. This study examines the consequences of acute (6–12 h) HS on the functioning of the Na,K-ATPase α1 and α2 isozymes in rat soleus (disused) and diaphragm (contracting) muscles. Acute disuse dynamically and isoform-specifically regulates the electrogenic activity, protein, and mRNA content of Na,K-ATPase α2 isozyme in rat soleus muscle. Earlier disuse-induced remodeling events also include phospholemman phosphorylation as well as its increased abundance and association with α2 Na,K-ATPase. The loss of α2 Na,K-ATPase activity results in reduced electrogenic pump transport and depolarized resting membrane potential. The decreased α2 Na,K-ATPase activity is caused by a decrease in enzyme activity rather than by altered protein and mRNA content, localization in the sarcolemma, or functional interaction with the nicotinic acetylcholine receptors. The loss of extrajunctional α2 Na,K-ATPase activity depends strongly on muscle use, and even the increased protein and mRNA content as well as enhanced α2 Na,K-ATPase abundance at this membrane region after 12 h of HS cannot counteract this sustained inhibition. In contrast, additional factors may regulate the subset of junctional α2 Na,K-ATPase pool that is able to recover during HS. Notably, acute, low-intensity muscle workload restores functioning of both α2 Na,K-ATPase pools. These results demonstrate that the α2 Na,K-ATPase in rat skeletal muscle is dynamically and acutely regulated by muscle use and provide the first evidence that the junctional and extrajunctional pools of the α2 Na,K-ATPase are regulated differently.
Collapse
Affiliation(s)
- Violetta V Kravtsova
- Department of General Physiology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Alexey M Petrov
- Department of Normal Physiology, Kazan State Medical University, Kazan 420012, Russia
| | | | - Elena V Bouzinova
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8240 Risskov, Denmark
| | - Alexander N Vasiliev
- Department of General Physiology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Boubacar Benziane
- Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Andrey L Zefirov
- Department of Normal Physiology, Kazan State Medical University, Kazan 420012, Russia
| | - Alexander V Chibalin
- Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Judith A Heiny
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Igor I Krivoi
- Department of General Physiology, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
17
|
Shattock MJ, Ottolia M, Bers DM, Blaustein MP, Boguslavskyi A, Bossuyt J, Bridge JHB, Chen-Izu Y, Clancy CE, Edwards A, Goldhaber J, Kaplan J, Lingrel JB, Pavlovic D, Philipson K, Sipido KR, Xie ZJ. Na+/Ca2+ exchange and Na+/K+-ATPase in the heart. J Physiol 2015; 593:1361-82. [PMID: 25772291 PMCID: PMC4376416 DOI: 10.1113/jphysiol.2014.282319] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/30/2014] [Indexed: 12/17/2022] Open
Abstract
This paper is the third in a series of reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation–contraction coupling and arrhythmias: Na+ channel and Na+ transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on cardiac Na+/Ca2+ exchange (NCX) and Na+/K+-ATPase (NKA). While the relevance of Ca2+ homeostasis in cardiac function has been extensively investigated, the role of Na+ regulation in shaping heart function is often overlooked. Small changes in the cytoplasmic Na+ content have multiple effects on the heart by influencing intracellular Ca2+ and pH levels thereby modulating heart contractility. Therefore it is essential for heart cells to maintain Na+ homeostasis. Among the proteins that accomplish this task are the Na+/Ca2+ exchanger (NCX) and the Na+/K+ pump (NKA). By transporting three Na+ ions into the cytoplasm in exchange for one Ca2+ moved out, NCX is one of the main Na+ influx mechanisms in cardiomyocytes. Acting in the opposite direction, NKA moves Na+ ions from the cytoplasm to the extracellular space against their gradient by utilizing the energy released from ATP hydrolysis. A fine balance between these two processes controls the net amount of intracellular Na+ and aberrations in either of these two systems can have a large impact on cardiac contractility. Due to the relevant role of these two proteins in Na+ homeostasis, the emphasis of this review is on recent developments regarding the cardiac Na+/Ca2+ exchanger (NCX1) and Na+/K+ pump and the controversies that still persist in the field.
Collapse
Affiliation(s)
- Michael J Shattock
- King's College London BHF Centre of Excellence, The Rayne Institute, St Thomas' Hospital, London, SE1 7EH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Extracellular Calcium-Dependent Modulation of Endothelium Relaxation in Rat Mesenteric Small Artery: The Role of Potassium Signaling. BIOMED RESEARCH INTERNATIONAL 2015; 2015:758346. [PMID: 26504829 PMCID: PMC4609518 DOI: 10.1155/2015/758346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/11/2015] [Accepted: 08/16/2015] [Indexed: 11/18/2022]
Abstract
The nature of NO- and COX-independent endothelial hyperpolarization (EDH) is not fully understood but activation of small- and intermittent-conductance Ca2+-activated K+ channels (SKCa and IKCa) is important. Previous studies have suggested that the significance of IKCa depends on [Ca2+]out. Also it has been suggested that K+ is important through localized [K+]out signaling causing activation of the Na+,K+-ATPase and inward-rectifying K+ channels (Kir). Here we tested the hypothesis that the modulating effect of [Ca2+]out on the EDH-like response depends on [K+]out. We addressed this possibility using isometric myography of rat mesenteric small arteries. When [K+]out was 4.2 mM, relaxation to acetylcholine (ACh) was stronger at 2.5 mM [Ca2+]out than at 1 mM [Ca2+]out. Inhibition of IKCa with TRAM34 suppressed the relaxations but did not change the relation between the relaxations at the low and high [Ca2+]out. This [Ca2+]out-dependence disappeared at 5.9 mM [K+]out and in the presence of ouabain or BaCl2. Our results suggest that IKCa are involved in the localized [K+]out signaling which acts through the Na+,K+-ATPase and Kir channels and that the significance of this endothelium-dependent pathway is modulated by [Ca2+]out.
Collapse
|
19
|
Kudryavtseva O, Herum KM, Dam VS, Straarup MS, Kamaev D, Briggs Boedtkjer DM, Matchkov VV, Aalkjær C. Downregulation of L-type Ca2+ channel in rat mesenteric arteries leads to loss of smooth muscle contractile phenotype and inward hypertrophic remodeling. Am J Physiol Heart Circ Physiol 2014; 306:H1287-301. [DOI: 10.1152/ajpheart.00503.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
L-type Ca2+ channels (LTCCs) are important for vascular smooth muscle cell (VSMC) contraction, as well as VSMC differentiation, as indicated by loss of LTCCs during VSMC dedifferentiation. However, it is not clear whether loss of LTCCs is a primary event underlying phenotypic modulation or whether loss of LTCCs has significance for vascular structure. We used small interference RNA (siRNA) transfection in vivo to investigate the role of LTCCs in VSMC phenotypic expression and structure of rat mesenteric arteries. siRNA reduced LTCC mRNA and protein expression in rat mesenteric arteries 3 days after siRNA transfection to 12.7 ± 0.7% and 47.3 ± 13%, respectively: this was associated with an increased resting intracellular Ca2+ concentration ([Ca2+]i). Despite the high [Ca2+]i, the contractility was reduced (tension development to norepinephrine was 3.5 ± 0.2 N/m and 0.8 ± 0.2 N/m for sham-transfected and downregulated arteries respectively; P < 0.05). Expression of contractile phenotype marker genes was reduced in arteries downregulated for LTCCs. Phenotypic changes were associated with a 45% increase in number of VSMCs and a consequent increase of media thickness and media area. Ten days after siRNA transfection arterial structure was again normalized. The contractile responses of LTCC-siRNA transfected arteries were elevated in comparison with matched controls 10 days after transfection. The study provides strong evidence for causal relationships between LTCC expression and VSMC contractile phenotype, as well as novel data addressing the complex relationship between VSMC contractility, phenotype, and vascular structure. These findings are relevant for understanding diseases, associated with phenotype changes of VSMC and vascular remodeling, such as atherosclerosis and hypertension.
Collapse
Affiliation(s)
- Olga Kudryavtseva
- Department of Biomedicine, Membranes, Aarhus University, Aarhus C, Denmark; and
| | - Kate Møller Herum
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Vibeke Secher Dam
- Department of Biomedicine, Membranes, Aarhus University, Aarhus C, Denmark; and
| | | | - Dmitry Kamaev
- Department of Biomedicine, Membranes, Aarhus University, Aarhus C, Denmark; and
| | | | | | - Christian Aalkjær
- Department of Biomedicine, Membranes, Aarhus University, Aarhus C, Denmark; and
| |
Collapse
|
20
|
Dam VS, Boedtkjer DMB, Nyvad J, Aalkjaer C, Matchkov V. TMEM16A knockdown abrogates two different Ca(2+)-activated Cl (-) currents and contractility of smooth muscle in rat mesenteric small arteries. Pflugers Arch 2013; 466:1391-409. [PMID: 24162234 PMCID: PMC4062836 DOI: 10.1007/s00424-013-1382-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/10/2013] [Accepted: 10/10/2013] [Indexed: 12/30/2022]
Abstract
The presence of Ca2+-activated Cl− channels (CaCCs) in vascular smooth muscle cells (SMCs) is well established. Their molecular identity is, however, elusive. Two distinct Ca2+-activated Cl− currents (ICl(Ca)) were previously characterized in SMCs. We have shown that the cGMP-dependent ICl(Ca) depends on bestrophin expression, while the “classical” ICl(Ca) is not. Downregulation of bestrophins did not affect arterial contraction but inhibited the rhythmic contractions, vasomotion. In this study, we have used in vivo siRNA transfection of rat mesenteric small arteries to investigate the role of a putative CaCC, TMEM16A. Isometric force, [Ca2+]i, and SMC membrane potential were measured in isolated arterial segments. ICl(Ca) and GTPγS-induced nonselective cation current were measured in isolated SMCs. Downregulation of TMEM16A resulted in inhibition of both the cGMP-dependent ICl(Ca) and the “classical” ICl(Ca) in SMCs. TMEM16A downregulation also reduced expression of bestrophins. TMEM16A downregulation suppressed vasomotion both in vivo and in vitro. Downregulation of TMEM16A reduced agonist (noradrenaline and vasopressin) and K+-induced contractions. In accordance with the depolarizing role of CaCCs, TMEM16A downregulation suppressed agonist-induced depolarization and elevation in [Ca2+]i. Surprisingly, K+-induced depolarization was unchanged but Ca2+ entry was reduced. We suggested that this is due to reduced expression of the L-type Ca2+ channels, as observed at the mRNA level. Thus, the importance of TMEM16A for contraction is, at least in part, independent from membrane potential. This study demonstrates the significance of TMEM16A for two SMCs ICl(Ca) and vascular function and suggests an interaction between TMEM16A and L-type Ca2+ channels.
Collapse
Affiliation(s)
- Vibeke Secher Dam
- Department of Biomedicine, MEMBRANES, Aarhus University, Ole Worms Alle bygn.4, 1163, Aarhus, C 8000, Denmark
| | | | | | | | | |
Collapse
|
21
|
Li Z, Wang Y, Man RYK, Vanhoutte PM. Upregulation of heme oxygenase-1 potentiates EDH-type relaxations in the mesenteric artery of the spontaneously hypertensive rat. Am J Physiol Heart Circ Physiol 2013; 305:H1471-83. [PMID: 24014672 DOI: 10.1152/ajpheart.00962.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heme oxygenase (HO) converts heme to carbon monoxide, bilirubin, and free iron. The present study investigated whether or not HO-1 induction improves vascular relaxations attributable to endothelium-dependent hyperpolarization (EDH). Thirty-six-week-old spontaneously hypertensive rats were treated with the HO-1 inducer hemin, the HO inhibitor zinc protoporphyrin IX (II) (ZnPP), the antioxidant apocynin, or combinations of these compounds. Isolated mesenteric arteries were prepared for measurement of isometric tension, protein presence, and production of reactive oxygen species (ROS). Hemin potentiated acetylcholine-evoked EDH-type relaxations in the presence of N(ω)-nitro-L-arginine methyl ester (l-NAME) and indomethacin, while the combined treatment with ZnPP plus hemin prevented these improvements. The intermediate conductance Ca(2+)-activated K(+) channel (IKCa) blocker TRAM-34 and the Na(+)-K(+)-ATPase blocker ouabain significantly impaired these hemin-potentiated relaxations. NS309-induced TRAM-34- and ouabain-sensitive relaxations were enhanced by hemin. K(+)-induced ouabain-sensitive relaxations and the expression of Na(+)-K(+)-ATPase were increased by hemin. Thus HO-1 induction improves EDH-type relaxations by augmented activation of IKCa and the downstream Na(+)-K(+)-ATPase. Treatment with apocynin showed a similar effect as hemin in impairing ROS production, enhancing K(+)-induced relaxations, and increasing Na(+)-K(+)-ATPase expression, without affecting the expression of HO-1. The effects of hemin and apocynin were not additive. These observations suggest that the effect of HO-1 induction on EDH-type relaxations is possibly due to its antioxidant properties. In vitro treatment with bilirubin, but not carbon monoxide, enhanced EDH-type relaxations and K(+)-induced ouabain-sensitive relaxations, suggesting that the production of bilirubin may be also involved. The present findings reveal that HO-1 may be a potential vascular-specific therapeutic strategy for endothelial dysfunction in hypertension.
Collapse
Affiliation(s)
- Zhuoming Li
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong SAR, China; and
| | | | | | | |
Collapse
|