1
|
Shao B, Fu H, Aprahamian I. A molecular anion pump. Science 2024; 385:544-549. [PMID: 39088617 DOI: 10.1126/science.adp3506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/02/2024] [Indexed: 08/03/2024]
Abstract
Pumping ions against a concentration gradient through protein-based transporters is a cornerstone of numerous biological processes. Mimicking this function by using artificial receptors remains a daunting challenge, mainly because of the difficulties in balancing between the requirement for high binding affinities and precise and on-demand ion capture and release properties. We report a trimeric hydrazone photoswitch-based receptor that converts light energy into work by actively transporting chloride anion against a gradient through a dichloromethane liquid membrane, functioning as a molecular pump. The system manifests ease of synthesis, bistability, excellent photoswitching properties, and superb ON-OFF binding properties (difference of up to six orders of magnitude).
Collapse
Affiliation(s)
- Baihao Shao
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Heyifei Fu
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
2
|
Sun H, Paudel O, Sham JSK. Increased intracellular Cl - concentration in pulmonary arterial myocytes is associated with chronic hypoxic pulmonary hypertension. Am J Physiol Cell Physiol 2021; 321:C297-C307. [PMID: 34161154 DOI: 10.1152/ajpcell.00172.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chloride channels play an important role in regulating smooth muscle contraction and proliferation, and contribute to the enhanced constriction of pulmonary arteries (PAs) in pulmonary hypertension (PH). The intracellular Cl- concentration ([Cl-]i), tightly regulated by various Cl- transporters, determines the driving force for Cl- conductance, thereby the functional outcome of Cl- channel activation. This study characterizes for the first time the expression profile of Cl- transporters/exchangers in PA smooth muscle and provides the first evidence that the intracellular Cl- homeostasis is altered in PA smooth muscle cells (PASMCs) associated with chronic hypoxic PH (CHPH). Quantitative RT-PCR revealed that the endothelium-denuded intralobar PA of rats expressed Slc12a gene family-encoded Na-K-2Cl cotransporter 1 (NKCC1), K-Cl cotransporters (KCC) 1, 3, and 4, and Slc4a gene family-encoded Na+-independent and Na+-dependent Cl-/HCO3- exchangers. Exposure of rats to chronic hypoxia (10% O2, 3 wk) caused CHPH and selectively increased the expression of Cl--accumulating NKCC1 and reduced the Cl--extruding KCC4. The intracellular Cl- concentration ([Cl-]i) averaged at 45 mM and 47 mM in normoxic PASMCs as determined by fluorescent indicator MEQ and by gramicidin-perforated patch-clamp technique, respectively. The ([Cl-]i was increased by ∼10 mM in PASMCs of rats with CHPH. Future studies are warranted to further establish the hypothesis that the altered intracellular Cl- homeostasis contributes to the pathogenesis of CHPH.
Collapse
Affiliation(s)
- Hui Sun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Omkar Paudel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - James S K Sham
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
3
|
Meor Azlan NF, Zhang J. Role of the Cation-Chloride-Cotransporters in Cardiovascular Disease. Cells 2020; 9:2293. [PMID: 33066544 PMCID: PMC7602155 DOI: 10.3390/cells9102293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 02/05/2023] Open
Abstract
The SLC12 family of cation-chloride-cotransporters (CCCs) is comprised of potassium chloride cotransporters (KCCs), which mediate Cl- extrusion and sodium-potassium chloride cotransporters (N[K]CCs), which mediate Cl- loading. The CCCs play vital roles in cell volume regulation and ion homeostasis. The functions of CCCs influence a variety of physiological processes, many of which overlap with the pathophysiology of cardiovascular disease. Although not all of the cotransporters have been linked to Mendelian genetic disorders, recent studies have provided new insights into their functional role in vascular and renal cells in addition to their contribution to cardiovascular diseases. Particularly, an imbalance in potassium levels promotes the pathogenesis of atherosclerosis and disturbances in sodium homeostasis are one of the causes of hypertension. Recent findings suggest hypothalamic signaling as a key signaling pathway in the pathophysiology of hypertension. In this review, we summarize and discuss the role of CCCs in cardiovascular disease with particular emphasis on knowledge gained in recent years on NKCCs and KCCs.
Collapse
Affiliation(s)
- Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, Hatherly Laboratories, University of Exeter, Exeter EX4 4PS, UK;
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, Hatherly Laboratories, University of Exeter, Exeter EX4 4PS, UK;
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen 361004, Fujian, China
| |
Collapse
|
4
|
Dbouk HA, Huang CL, Cobb MH. Hypertension: the missing WNKs. Am J Physiol Renal Physiol 2016; 311:F16-27. [PMID: 27009339 PMCID: PMC4967160 DOI: 10.1152/ajprenal.00358.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 03/16/2016] [Indexed: 12/23/2022] Open
Abstract
The With no Lysine [K] (WNK) family of enzymes are central in the regulation of blood pressure. WNKs have been implicated in hereditary hypertension disorders, mainly through control of the activity and levels of ion cotransporters and channels. Actions of WNKs in the kidney have been heavily investigated, and recent studies have provided insight into not only the regulation of these enzymes but also how mutations in WNKs and their interacting partners contribute to hypertensive disorders. Defining the roles of WNKs in the cardiovascular system will provide clues about additional mechanisms by which WNKs can regulate blood pressure. This review summarizes recent developments in the regulation of the WNK signaling cascade and its role in regulation of blood pressure.
Collapse
Affiliation(s)
- Hashem A Dbouk
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Chou-Long Huang
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| |
Collapse
|
5
|
Recruitment of Specificity Protein 1 by CpG hypomethylation upregulates Na+-K+-2Cl− cotransporter 1 in hypertensive rats. J Hypertens 2013; 31:1406-13; discussion 1413. [DOI: 10.1097/hjh.0b013e3283610fed] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Orlov SN, Koltsova SV, Tremblay J, Baskakov MB, Hamet P. NKCC1 and hypertension: role in the regulation of vascular smooth muscle contractions and myogenic tone. Ann Med 2012; 44 Suppl 1:S111-8. [PMID: 22713139 DOI: 10.3109/07853890.2011.653395] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
High-ceiling diuretics (HCD), known potent inhibitors of housekeeping Na(+),K(+),2Cl cotransporter (NKCC1) and renal-specific NKCC2, decrease [Cl(-)](i), hyperpolarize vascular smooth muscle cells (VSMC), and suppress contractions evoked by modest depolarization, phenylephrine, angiotensin II, and UTP. These actions are absent in nkcc1 (/) knock-out mice, indicating that HCD interact with NKCC1 rather than with other potential targets. These findings also suggest that VSMC-specific inhibitors of NKCC1 may be considered potential pharmacological therapeutic tools in treatment of hypertension. It should be underlined that side by side with attenuation of peripheral resistance and systemic blood pressure, HCD blocked myogenic tone (MT) in renal afferent arterioles. Keeping this in mind, attenuation of MT might be a mechanism underlying the prevalence of end-stage renal disease documented in hypertensive African-Americans with decreased NKCC1 activity and in hypertensive patients subjected to chronic HCD treatment. The role of NKCC1-mediated MT in protection of the brain, heart, and other encapsulated organs deserves further investigation.
Collapse
Affiliation(s)
- Sergei N Orlov
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM)-Technôpole Angus, and Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|
7
|
Cho HM, Lee DY, Kim HY, Lee HA, Seok YM, Kim IK. Upregulation of the Na+-K+-2Cl− cotransporter 1 via histone modification in the aortas of angiotensin II-induced hypertensive rats. Hypertens Res 2012; 35:819-24. [DOI: 10.1038/hr.2012.37] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Cho HM, Lee HA, Kim HY, Han HS, Kim IK. Expression of Na+-K+ -2Cl- cotransporter 1 is epigenetically regulated during postnatal development of hypertension. Am J Hypertens 2011; 24:1286-93. [PMID: 21814290 DOI: 10.1038/ajh.2011.136] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The expression of Na(+)-K(+)-2Cl(-) cotransporter 1 (NKCC1) is upregulated in spontaneously hypertensive rat (SHR). We investigated whether expression of NKCC1 is epigenetically regulated during postnatal development of hypertension. METHODS The mesenteric arteries from 5-, 10-, and 18-week-old Wistar-Kyoto rats (WKY) and SHRs were subjected to vascular contraction. We determined expression levels of Nkcc1 mRNA and protein, methylation status, and histone modification of Nkcc1 promoter, and DNA methyltransferase (DNMT) activity. RESULTS The inhibition of dose-response curves by bumetanide, an inhibitor of NKCC1, as well as the expression of Nkcc1 mRNA and protein was comparable between 5-week-old SHR and age-matched WKY, but greater in 18-week-old SHR than in age-matched WKY. Nkcc1 promoter in WKY was getting methylated with age whereas that in SHR mostly remained hypomethylated after development of hypertension. DNMT3B was highly associated with the promoter of WKY, whereas the CXXC finger protein 1 (Cfp1) was highly bound to the promoter of SHR. At the age of 18 weeks, the DNMT activity in aorta of WKY was about threefold higher than that of SHR. The transcription-activating histone code acetyl H3 was higher in SHR than in WKY, whereas suppressive histone code dimethyl H3K9 was greater in WKY than in SHR. CONCLUSION It is concluded that expression of NKCC1 is epigenetically upregulated during postnatal development of hypertension. Our data indicate that maintenance of hypomethylation in Nkcc1 promoter of SHR resulting from low DNMT activity plays an important role in the upregulation of NKCC1 during development of spontaneous hypertension.
Collapse
|
9
|
Bergaya S, Faure S, Baudrie V, Rio M, Escoubet B, Bonnin P, Henrion D, Loirand G, Achard JM, Jeunemaitre X, Hadchouel J. WNK1 regulates vasoconstriction and blood pressure response to α 1-adrenergic stimulation in mice. Hypertension 2011; 58:439-45. [PMID: 21768522 DOI: 10.1161/hypertensionaha.111.172429] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Gain-of-function mutations in the human WNK1 (with-no-lysine[K]1) gene are responsible for a monogenic form of arterial hypertension, and WNK1 polymorphisms have been associated with common essential hypertension. The role of WNK1 in renal ionic reabsorption has been established, but no investigation of its possible influence on vascular tone, an essential determinant of blood pressure, has been performed until now. WNK1 complete inactivation in the mouse is embryonically lethal. We, thus, examined in Wnk1(+/-) haploinsufficient adult mice whether WNK1 could regulate in vivo vascular tone and whether this was correlated with blood pressure variation. Wnk1(+/-) mice displayed a pronounced decrease in blood pressure responses in vivo and in vascular contractions ex vivo following α(1)-adrenergic receptor activation with no change in basal blood pressure and renal function. We also observed a major loss of the pressure-induced contractile (myogenic) response in Wnk1(+/-) arteries associated with a specific alteration of the smooth muscle cell contractile function. These alterations in vascular tone were associated with a decreased phosphorylation level of the WNK1 substrate SPAK (STE20/SPS1-related proline/alanine-rich kinase) and its target NKCC1 (Na(+)-K(+)-2Cl(-) cotransporter 1) in Wnk1(+/-) arteries. Our study identifies a novel and major role for WNK1 in maintaining in vivo blood pressure and vasoconstriction responses specific to α(1)-adrenergic receptor activation. Our findings uncover a vascular signaling pathway linking α(1)-adrenergic receptors and pressure to WNK1, SPAK, and NKCC1 and may, thus, significantly broaden the comprehension of the regulatory mechanisms of vascular tone in arterial hypertension.
Collapse
Affiliation(s)
- Sonia Bergaya
- INSERM U970, Paris Cardiovascular Research Center PARCC, 56 rue Leblanc, 75015 Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Alzheimer’s disease: Cerebral glaucoma? Med Hypotheses 2010; 74:973-7. [DOI: 10.1016/j.mehy.2009.12.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 12/16/2009] [Indexed: 10/20/2022]
|
11
|
Promoter hypomethylation upregulates Na+-K+-2Cl- cotransporter 1 in spontaneously hypertensive rats. Biochem Biophys Res Commun 2010; 396:252-7. [PMID: 20406621 DOI: 10.1016/j.bbrc.2010.04.074] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 04/13/2010] [Indexed: 12/16/2022]
Abstract
The Na(+)-K(+)-2Cl(-) cotransporter 1 (NKCC1) is one of several transporters that have been implicated for development of hypertension since NKCC1 activity is elevated in hypertensive aorta and vascular contractions are inhibited by bumetanide, an inhibitor of NKCC1. We hypothesized that promoter hypomethylation upregulates the NKCC1 in spontaneously hypertensive rats (SHR). Thoracic aortae and mesenteric arteries were excised, cut into rings, mounted in organ baths and subjected to vascular contraction. The expression levels of nkcc1 mRNA and protein in aortae and heart tissues were measured by real-time PCR and Western blot, respectively. The methylation status of nkcc1 promoter region was analyzed by combined bisulfite restriction assay (COBRA) and bisulfite sequencing. Phenylephrine-induced vascular contraction in a dose-dependent manner, which was inhibited by bumetanide. The inhibition of dose-response curves by bumetanide was much greater in SHR than in Wistar Kyoto (WKY) normotensive rats. The expression levels of nkcc1 mRNA and of NKCC1 protein in aortae and heart tissues were higher in SHR than in WKY. Nkcc1 gene promoter was hypomethylated in aortae and heart than those of WKY. These results suggest that promoter hypomethylation upregulates the NKCC1 expression in aortae and heart of SHR.
Collapse
|
12
|
Wostyn P, Audenaert K, De Deyn PP. Alzheimer's disease-related changes in diseases characterized by elevation of intracranial or intraocular pressure. Clin Neurol Neurosurg 2007; 110:101-9. [PMID: 18061341 DOI: 10.1016/j.clineuro.2007.10.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 10/16/2007] [Accepted: 10/17/2007] [Indexed: 11/15/2022]
Abstract
In this review, we focus on the coexistence of Alzheimer's disease-related changes in brain diseases, such as normal pressure hydrocephalus and traumatic brain injury, and in glaucoma at the level of the retinal ganglion cells. This is a group of diseases that affect central nervous system tissue and are characterized by elevation of intracranial or intraocular pressure and/or local shear stress and strain. In considering possible mechanisms underlying Alzheimer-type changes in these diseases, we briefly summarize recent evidence indicating that caspase activation and abnormal processing of beta-amyloid precursor protein, which are important events in Alzheimer's disease, may play a role both in glaucoma and following traumatic brain injury. With regard to normal pressure hydrocephalus, evidence suggests that changes in cerebrospinal fluid circulatory dynamics ultimately may result in reduced clearance of neurotoxins, such as beta-amyloid peptides and tau protein, that play a role in the pathogenesis of Alzheimer's disease. Data presented in this review could be interpreted to suggest that Alzheimer-type changes in these diseases may result at least in part from exposure of central nervous system tissue to increased levels of mechanical stress. Evidence for such a relationship is of major importance because it may support an association between elevated mechanical load and the development of Alzheimer-type lesions. Further studies are warranted, however, especially to elucidate the role of elevated mechanical forces in Alzheimer's disease neuropathogenesis.
Collapse
Affiliation(s)
- Peter Wostyn
- Department of Psychiatry, PC Sint-Amandus, Reigerlostraat 10, 8730 Beernem, Belgium.
| | | | | |
Collapse
|
13
|
Garg P, Martin CF, Elms SC, Gordon FJ, Wall SM, Garland CJ, Sutliff RL, O'Neill WC. Effect of the Na-K-2Cl cotransporter NKCC1 on systemic blood pressure and smooth muscle tone. Am J Physiol Heart Circ Physiol 2007; 292:H2100-5. [PMID: 17259435 PMCID: PMC1871614 DOI: 10.1152/ajpheart.01402.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies in rat aorta have shown that the Na-K-2Cl cotransporter NKCC1 is activated by vasoconstrictors and inhibited by nitrovasodilators, contributes to smooth muscle tone in vitro, and is upregulated in hypertension. To determine the role of NKCC1 in systemic vascular resistance and hypertension, blood pressure was measured in rats before and after inhibition of NKCC1 with bumetanide. Intravenous infusion of bumetanide sufficient to yield a free plasma concentration above the IC(50) for NKCC1 produced an immediate drop in blood pressure of 5.2% (P < 0.001). The reduction was not prevented when the renal arteries were clamped, indicating that it was not due to a renal effect of bumetanide. Bumetanide did not alter blood pressure in NKCC1-null mice, demonstrating that it was acting specifically through NKCC1. In third-order mesenteric arteries, bumetanide-inhibitable efflux of (86)Rb was acutely stimulated 133% by phenylephrine, and bumetanide reduced the contractile response to phenylephrine, indicating that NKCC1 influences tone in resistance vessels. The hypotensive effect of bumetanide was proportionately greater in rats made hypertensive by a 7-day infusion of norepinephrine (12.7%, P < 0.001 vs. normotensive rats) but much less so when hypertension was produced by a fixed aortic coarctation (8.0%), again consistent with an effect of bumetanide on resistance vessels rather than other determinants of blood pressure. We conclude that NKCC1 influences blood pressure through effects on smooth muscle tone in resistance vessels and that this effect is augmented in hypertension.
Collapse
Affiliation(s)
- Puneet Garg
- Renal Division, Emory University Hospital, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Palacios J, Espinoza F, Munita C, Cifuentes F, Michea L. Na+ -K+ -2Cl- cotransporter is implicated in gender differences in the response of the rat aorta to phenylephrine. Br J Pharmacol 2006; 148:964-72. [PMID: 16799647 PMCID: PMC1751927 DOI: 10.1038/sj.bjp.0706818] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Inhibition of the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) with bumetanide reduced contractile responses to phenylephrine (PE) in male rat aortas (129+/-4% of 60 mM KCl-induced contraction control vs 108+/-7% bumetanide; PE 10(-5) M; P<0.01) but did not change equivalent responses in female rat aortas. Removal of the endothelium blunted the effect of NKCC1 inhibition on the response to PE (10(-5) M) in males, whereas in denuded aorta from female rats, bumetanide reduced this response (162+/-5% control vs 146+/-3% bumetanide; P<0.05). NKCC1 basal activity did not show gender differences in intact aortic rings, but in the presence of PE, bumetanide-sensitive (86)Rb(+)/K(+) uptake increased more in male than female aortas (179+/-8 in males vs 158+/-5 nmol (86)Rb(+)/K(+) min(-1) (g aorta)(-1) in females; P<0.05). PE did not stimulate NKCC1 activity in denuded aorta from male rats. However, in female rats, PE increased NKCC1 activity similarly in both denuded (169+/-11 nmol (86)Rb(+)/K(+) min(-1) (g aorta)(-1)) and intact aortas. Ovariectomy increased the bumetanide-sensitive (86)Rb(+)/K(+) uptake increase elicited by PE (223+/-17 nmol (86)Rb(+)/K(+) min(-1) (g aorta)(-1)) and hormone replacement with 17beta-estradiol prevented this effect (159+/-29 nmol (86)Rb(+)/K(+) min(-1) (g aorta)(-1)). Na(+),K(+)-ATPase basal activity, measured as ouabain-sensitive (86)Rb(+)/K(+) uptake, was similar in male and female rats, but the effect of PE was significantly less in intact male aortas (232+/-16 in males vs 296+/-25 nmol (86)Rb(+)/K(+) min(-1) (g aorta)(-1) in females; P<0.05). Our results suggest that PE induced activation of NKCC1 and Na(+),K(+)-ATPase in the rat aorta in a gender-dependent way.
Collapse
Affiliation(s)
- Javier Palacios
- Facultad de Ciencias, Dpto. de Ciencias Químicas y Farmacéuticas, Universidad Católica del Norte, Angamos 0610, Antofagasta, Casilla 1280 Chile.
| | | | | | | | | |
Collapse
|
15
|
Johanson C, McMillan P, Tavares R, Spangenberger A, Duncan J, Silverberg G, Stopa E. Homeostatic capabilities of the choroid plexus epithelium in Alzheimer's disease. Cerebrospinal Fluid Res 2004; 1:3. [PMID: 15679944 PMCID: PMC546405 DOI: 10.1186/1743-8454-1-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2004] [Accepted: 12/10/2004] [Indexed: 11/10/2022] Open
Abstract
As the secretory source of vitamins, peptides and hormones for neurons, the choroid plexus (CP) epithelium critically provides substances for brain homeostasis. This distributive process of cerebrospinal fluid (CSF) volume transmission reaches many cellular targets in the CNS. In ageing and ageing-related dementias, the CP-CSF system is less able to regulate brain interstitial fluid. CP primarily generates CSF bulk flow, and so its malfunctioning exacerbates Alzheimers disease (AD). Considerable attention has been devoted to the blood-brain barrier in AD, but more insight is needed on regulatory systems at the human blood-CSF barrier in order to improve epithelial function in severe disease. Using autopsied CP specimens from AD patients, we immunocytochemically examined expression of heat shock proteins (HSP90 and GRP94), fibroblast growth factor receptors (FGFr) and a fluid-regulatory protein (NaK2Cl cotransporter isoform 1 or NKCC1). CP upregulated HSP90, FGFr and NKCC1, even in end-stage AD. These CP adjustments involve growth factors and neuropeptides that help to buffer perturbations in CNS water balance and metabolism. They shed light on CP-CSF system responses to ventriculomegaly and the altered intracranial pressure that occurs in AD and normal pressure hydrocephalus. The ability of injured CP to express key regulatory proteins even at Braak stage V/VI, points to plasticity and function that may be boosted by drug treatment to expedite CSF dynamics. The enhanced expression of human CP 'homeostatic proteins' in AD dementia is discussed in relation to brain deficits and pharmacology.
Collapse
Affiliation(s)
- Conrad Johanson
- Department of Clinical Neurosciences, Brown Medical School, Providence, RI 02903, USA
| | - Paul McMillan
- Department of Pathology, Brown Medical School, Providence, RI 02903,USA
| | - Rosemarie Tavares
- Department of Pathology, Brown Medical School, Providence, RI 02903,USA
| | - Anthony Spangenberger
- Department of Clinical Neurosciences, Brown Medical School, Providence, RI 02903, USA
| | - John Duncan
- Department of Clinical Neurosciences, Brown Medical School, Providence, RI 02903, USA
| | - Gerald Silverberg
- Department of Clinical Neurosciences, Brown Medical School, Providence, RI 02903, USA
| | - Edward Stopa
- Department of Clinical Neurosciences, Brown Medical School, Providence, RI 02903, USA
- Department of Pathology, Brown Medical School, Providence, RI 02903,USA
| |
Collapse
|