1
|
D'Souza AW, Hissen SL, Manabe K, Washio T, Annis MC, Sanchez B, Usselman CW, Fu Q, Shoemaker JK. The impact of oral contraceptive pill use on sympathetic transduction at rest in young females. Am J Physiol Heart Circ Physiol 2025; 328:H271-H282. [PMID: 39763373 DOI: 10.1152/ajpheart.00623.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Although previous work has demonstrated that oral contraceptive pill (OCP) use does not affect resting muscle sympathetic nerve activity (MSNA), growing evidence indicates that it attenuates neurogenic vasoconstriction. Despite these advances, it remains unknown how OCP use affects the ability of MSNA to dynamically control vascular tone and arterial blood pressure (BP) on a beat-by-beat basis. Thus, we tested the hypothesis that, compared with naturally menstruating females (MC), those using OCPs will exhibit attenuated sympathetic vascular transduction at rest. Forty-three females [MC: n = 21, 26 (4) yrs; OCP: n = 22, 24 (4) yrs; data are presented as means (SD)] completed 10 min of supine rest with continuous measurements of beat-by-beat BP, femoral artery blood flow (26 females; MC: n = 13, OCP: n = 13), and MSNA. Spike-triggered averaging was used to determine sympathetic transduction into leg vascular conductance (LVC) and BP for 12 cardiac cycles following MSNA bursts. Overall sympathetic-BP transduction (P = 0.293), as well as sympathetic-BP transduction of MSNA burst quartiles (P = 0.741) and burst firing patterns (P = 0.452) were not different between the MC and OCP groups. Conversely, sympathetic vascular transduction per unit MSNA burst amplitude (P = 0.026) and burst firing pattern (P = 0.014) were attenuated among females using OCPs. In addition, females using OCPs demonstrated progressively smaller leg vasoconstrictor responses as a function of MSNA burst firing pattern compared with MC females (P = 0.021). Collectively, these data indicate that, in premenopausal females, OCP use attenuates the leg vasoconstrictor responses to bursts of MSNA, particularly during periods of increased sympathetic neural drive, without affecting the transduction of MSNA bursts into beat-by-beat changes in BP.NEW & NOTEWORTHY This study investigated the impact of OCP use on the transduction of MSNA bursts into regional vasoconstriction and blood pressure in premenopausal females. We demonstrated that females using OCPs exhibit attenuated sympathetic transduction into LVC; however, this does not translate to reductions in sympathetic blood pressure transduction. Collectively, these data indicate that OCP use may alter the local vasoconstrictor response to bursts of MSNA; however, compensatory mechanisms may contribute to maintain sympathetic blood pressure transduction.
Collapse
Affiliation(s)
- Andrew W D'Souza
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
| | - Sarah L Hissen
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Kazumasa Manabe
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Takuro Washio
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Meghan C Annis
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - Belinda Sanchez
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Charlotte W Usselman
- Cardiovascular Health and Autonomic Regulation Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Qi Fu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - J Kevin Shoemaker
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Sabino-Carvalho JL, Mekonnen E, Zanuzzi M, Li S, Cui X, Park J. Impaired Neurocirculatory Control in Chronic Kidney Disease: New Evidence for Blunted Sympathetic Baroreflex and Reduced Sympathetic Transduction. FUNCTION 2024; 5:zqae036. [PMID: 39179420 DOI: 10.1093/function/zqae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 08/26/2024] Open
Abstract
Chronic kidney disease (CKD) is characterized by over-activation of the sympathetic nervous system (SNS) that increases cardiovascular risk. Whether sympathetic baroreflex sensitivity (sBRS) is impaired or intact in CKD remains under-studied and controversial. Furthermore, the downstream effect of SNS activation on blood pressure transduction has not been previously examined in CKD. We tested the hypothesis that sBRS is attenuated, while sympathetic transduction is augmented in CKD. In 18 sedentary patients with CKD stages III-IV (eGFR: 40±14 mL/min) and 13 age-matched controls (eGFR: 95±10 mL/min), beat-to-beat blood pressure (BP; finger photoplethysmography), heart rate (electrocardiography) and muscle sympathetic nerve activity (MSNA; microneurography) were recorded at rest for 10-min. Weighted linear regression analysis between MSNA burst incidence and diastolic BP was used to determine the spontaneous sBRS. Sympathetic-BP transduction was quantified using signal averaging, whereby the BP response to each MSNA burst was tracked over 15 cardiac cycles and averaged to derive the peak change in BP. Compared with controls, CKD patients had an attenuated sBRS [CKD: -1.34 ± 0.59 versus CON: -2.91 ± 1.09 bursts (100 heartbeats)-1 mmHg-1; P = 0.001]. |sBRS| was significantly associated with eGFR (r = 0.69, P < 0.001). CKD patients had attenuated sympathetic-BP transduction compared to controls (0.75 ± 0.7 vs. 1.60 ± 0.8 mmHg; P = 0.010). Resting MSNA was negatively associated with sympathetic transduction (r = -0.57, P = 0.002). CKD patients exhibit impaired sBRS that may contribute to SNS overactivation and cardiovascular risk in this patient population. In addition, CKD patients had an attenuated sympathetic transduction that may counteract the vascular effects of SNS overactivation.
Collapse
Affiliation(s)
- Jeann L Sabino-Carvalho
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Research Service Line, Atlanta Veterans Affairs Health Care System, Decatur, GA, 30322, USA
| | - Elsa Mekonnen
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Research Service Line, Atlanta Veterans Affairs Health Care System, Decatur, GA, 30322, USA
| | - Matias Zanuzzi
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Research Service Line, Atlanta Veterans Affairs Health Care System, Decatur, GA, 30322, USA
| | - Sabrina Li
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Research Service Line, Atlanta Veterans Affairs Health Care System, Decatur, GA, 30322, USA
| | - Xiangqin Cui
- Research Service Line, Atlanta Veterans Affairs Health Care System, Decatur, GA, 30322, USA
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Jeanie Park
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Research Service Line, Atlanta Veterans Affairs Health Care System, Decatur, GA, 30322, USA
| |
Collapse
|
3
|
Bigalke JA, Greenlund IM, Solis-Montenegro TX, Durocher JJ, Joyner MJ, Carter JR. Binge Alcohol Consumption Elevates Sympathetic Transduction to Blood Pressure: A Randomized Controlled Trial. Hypertension 2024; 81:2140-2151. [PMID: 39119705 PMCID: PMC11410516 DOI: 10.1161/hypertensionaha.124.23416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Alcohol consumption is associated with cardiovascular disease, and the sympathetic nervous system is a suspected mediator. The present study investigated sympathetic transduction of muscle sympathetic nerve activity to blood pressure at rest and in response to cold pressor test following evening binge alcohol or fluid control, with the hypothesis that sympathetic transduction would be elevated the morning after binge alcohol consumption. METHODS Using a randomized, fluid-controlled (FC) crossover design, 26 healthy adults (12 male, 14 female, 25±6 years, 27±4 kg/m2) received an evening binge alcohol dose and a FC. All participants underwent next-morning autonomic-cardiovascular testing consisting of muscle sympathetic nerve activity, beat-to-beat blood pressure, and heart rate during a 10-minute rest period and a 2-minute cold pressor test. Sympathetic transduction was assessed at rest and during the cold pressor test in both experimental conditions. RESULTS Evening alcohol increased heart rate (FC: 60±9 versus alcohol: 64±9 bpm; P=0.010) but did not alter resting mean arterial pressure (FC: 80±6 versus alcohol: 80±7 mm Hg; P=0.857) or muscle sympathetic nerve activity (FC: 18±9 versus alcohol: 20±8 bursts/min; P=0.283). Sympathetic transduction to mean arterial pressure (time×condition; P=0.003), diastolic blood pressure (time×condition; P=0.010), and total vascular conductance (time×condition; P=0.004) was augmented after alcohol at rest. Sympathetic transduction during the cold pressor test was also elevated after evening binge alcohol consumption (P=0.002). CONCLUSIONS These findings suggest that evening binge alcohol consumption leads to augmented morning-after sympathetic transduction of muscle sympathetic nerve activity to blood pressure, highlighting a new mechanism whereby chronic or excessive alcohol consumption contributes to cardiovascular disease progression via altered end-organ responsiveness to sympathetic neural outflow. REGISTRATION URL: https://clinicaltrials.gov/study/NCT03567434; Unique identifier: NCT03567434.
Collapse
Affiliation(s)
- Jeremy A. Bigalke
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, USA
- Department of Psychology, Montana State University, Bozeman, MT, USA
| | - Ian M. Greenlund
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, USA
- Department of Psychology, Montana State University, Bozeman, MT, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - John J. Durocher
- Department of Biological Sciences and Integrative Physiology and Health Sciences Center, Purdue University Northwest, Hammond, IN, USA
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jason R. Carter
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, USA
- Department of Health & Human Development, Montana State University, Bozeman, MT, USA
| |
Collapse
|
4
|
Fernandes IA, Stavres J, Hamaoka T, Ojikutu QA, Sabino-Carvalho JL, Vianna LC, Luck JC, Blaha C, Cauffman AE, Dalton PC, Herr MD, Ruiz-Velasco V, Carr ZJ, Janicki PK, Cui J. Does a single oral administration of amiloride affect spontaneous arterial baroreflex sensitivity and blood pressure variability in healthy young adults? J Neurophysiol 2024; 132:922-928. [PMID: 39110514 DOI: 10.1152/jn.00264.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Preclinical models indicate that amiloride (AMD) reduces baroreflex sensitivity and perturbs homeostatic blood pressure (BP) regulation. However, it remains unclear whether these findings translate to humans. This study investigated whether oral administration of AMD reduces spontaneous cardiac and sympathetic baroreflex sensitivity and perturbs BP regulation in healthy young humans. Heart rate (HR; electrocardiography), beat-to-beat BP (photoplethysmography), and muscle sympathetic activity (MSNA, microneurography) were continuously measured in 10 young subjects (4 females) during rest across two randomized experimental visits: 1) after 3 h of oral administration of placebo (PLA, 10 mg of methylcellulose within a gelatin capsule) and 2) after 3 h of oral administration of AMD (10 mg). Visits were separated for at least 48 h. We calculated the standard deviation and other indices of BP variability. Spontaneous cardiac baroreflex was assessed via the sequence technique and cardiac autonomic modulation through time- and frequency-domain HR variability. The sensitivity (gain) of the sympathetic baroreflex was determined via weighted linear regression analysis between MSNA and diastolic BP. AMD did not affect HR, BP, and MSNA compared with PLA. Indexes of cardiac autonomic modulation (time- and frequency-domain HR variability) and BP variability were also unchanged after AMD ingestion. Likewise, AMD did not modify the gain of both spontaneous cardiac and sympathetic arterial baroreflex. A single oral dose of AMD does not affect spontaneous arterial baroreflex sensitivity and BP variability in healthy young adults.NEW & NOTEWORTHY Preclinical models indicate that amiloride (AMD), a nonselective antagonist of the acid-sensing ion channels (ASICs), impairs baroreflex sensitivity and perturbs blood pressure regulation. We translated these findings into humans, investigating the impact of acute oral ingestion of AMD on blood pressure variability and spontaneous cardiac and sympathetic baroreflex sensitivity in healthy young humans. In contrast to preclinical evidence, AMD does not impair spontaneous arterial baroreflex sensitivity and blood pressure variability in healthy young adults.
Collapse
Affiliation(s)
- Igor A Fernandes
- Human Neurovascular Control Laboratory, Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, United States
| | - Jon Stavres
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, Mississippi, United States
| | - Takuto Hamaoka
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
| | - Qudus A Ojikutu
- Human Neurovascular Control Laboratory, Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, United States
| | - Jeann L Sabino-Carvalho
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Lauro C Vianna
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Federal District, Brazil
| | - J Carter Luck
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
| | - Cheryl Blaha
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
| | - Aimee E Cauffman
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
| | - Paul C Dalton
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
| | - Michael D Herr
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
| | - Victor Ruiz-Velasco
- Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
| | - Zyad J Carr
- Department of Anesthesiology, Yale School of Medicine, Yale New Haven Hospital, New Haven, Connecticut
| | - Piotr K Janicki
- Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
| | - Jian Cui
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
| |
Collapse
|
5
|
McGinty SJ, Matthews EL, Greaney JL, Shoemaker JK, Wenner MM. Sympathetic baroreflex sensitivity is enhanced in postmenopausal women. J Appl Physiol (1985) 2024; 137:374-381. [PMID: 38961825 PMCID: PMC11424174 DOI: 10.1152/japplphysiol.00833.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/05/2024] Open
Abstract
The sympathetic nervous system is critical for regulating blood pressure (BP) via the arterial baroreflex and sympathetic transduction in the peripheral vasculature. These mechanisms interact, and both may be altered with aging and impacted by menopause. Although age-related decreases in sympathetic transduction have been demonstrated in women, it remains unclear whether sympathetic baroreflex sensitivity (BRS) is impaired in postmenopausal women (POST). We tested the hypothesis that sympathetic BRS would be enhanced in POST compared with premenopausal women (PRE). We examined beat-by-beat BP and muscle sympathetic nerve activity (MSNA) in 19 PRE (22 ± 2 yr, 22 ± 3 kg/m2) and 12 POST (57 ± 5 yr, 24 ± 2 kg/m2) during 10 min of rest. Spontaneous sympathetic BRS was quantified as the slope of a linear regression between MSNA burst incidence and diastolic BP. Sympathetic transduction to mean arterial pressure (MAP) for the 10 cardiac cycles following spontaneous MSNA bursts was assessed via signal averaging method. Resting MAP was similar (PRE: 82 ± 8 vs. POST: 85 ± 8 mmHg, P = 0.43), whereas resting MSNA was elevated in POST (PRE: 10 ± 6 vs. POST: 45 ± 16 bursts/100 heart beats, P < 0.0001). Spontaneous sympathetic BRS was enhanced in POST (PRE: -2.0 ± 1.2 vs. POST: -5.2 ± 1.9 bursts/beat/mmHg, P < 0.0005). Sympathetic transduction to MAP was attenuated in POST (time: P < 0.001, group: P < 0.001, interaction: P < 0.01). These data suggest that sympathetic BRS may be enhanced in POST. Consistent with recent hypotheses, enhanced sensitivity of the arterial baroreflex's neural arc may signify a compensatory response to reduced efficiency of the peripheral arterial baroreflex arc (i.e., sympathetic transduction) to preserve BP buffering capacity.NEW & NOTEWORTHY Studies examining sympathetic baroreflex function with aging remain equivocal, with some studies showing an increase, decrease, or no change in sympathetic baroreflex sensitivity (BRS) in older adults compared with younger adults. With aging, women experience unique physiological changes due to menopause that influence autonomic function. For the first time, we show that postmenopausal women exhibit a greater sympathetic BRS compared with young premenopausal women.
Collapse
Affiliation(s)
- Shane J McGinty
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Evan L Matthews
- Department of Exercise Science and Physical Education, Montclair State University, Montclair, New Jersey, United States
| | - Jody L Greaney
- Department of Health Behaviour and Nutrition Sciences, University of Delaware, Newark, Delaware, United States
| | - J Kevin Shoemaker
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
6
|
D'Souza AW, Moore JP, Manabe K, Lawley JS, Washio T, Hissen SL, Sanchez B, Fu Q. The interactive effects of posture and biological sex on the control of muscle sympathetic nerve activity during rhythmic handgrip exercise. Am J Physiol Regul Integr Comp Physiol 2024; 327:R133-R144. [PMID: 38766771 DOI: 10.1152/ajpregu.00055.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/28/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Body posture and biological sex exhibit independent effects on the sympathetic neural responses to dynamic exercise. However, the neural mechanisms (e.g., baroreflex) by which posture impacts sympathetic outflow during rhythmic muscular contractions, and whether biological sex affects posture-mediated changes in efferent sympathetic nerve traffic during exercise, remain unknown. Thus, we tested the hypotheses that increases in muscle sympathetic nerve activity (MSNA) would be greater during upright compared with supine rhythmic handgrip (RHG) exercise, and that females would demonstrate smaller increases in MSNA during upright RHG exercise than males. Twenty young (30 [6] yr; means [SD]) individuals (9 males, 11 females) underwent 6 min of supine and upright (head-up tilt 45°) RHG exercise at 40% maximal voluntary contraction with continuous measurements of MSNA (microneurography), blood pressure (photoplethysmography), and heart rate (electrocardiogram). In the pooled group, absolute MSNA burst frequency (P < 0.001), amplitude (P = 0.009), and total MSNA (P < 0.001) were higher during upright compared with supine RHG exercise. However, body posture did not impact the peak change in MSNA during RHG exercise (range: P = 0.063-0.495). Spontaneous sympathetic baroreflex gain decreased from rest to RHG exercise (P = 0.006) and was not impacted by posture (P = 0.347). During upright RHG exercise, males demonstrated larger increases in MSNA burst amplitude (P = 0.002) and total MSNA (P = 0.001) compared with females, which coincided with greater reductions in sympathetic baroreflex gain among males (P = 0.004). Collectively, these data indicate that acute attenuation of baroreflex-mediated sympathoinhibition permits increases in MSNA during RHG exercise and that males exhibit a greater reserve for efferent sympathetic neural recruitment during orthostasis than females.NEW & NOTEWORTHY The impact of posture and sex on cardiovascular control during rhythmic handgrip (RHG) exercise is unknown. We show that increases in muscle sympathetic nerve activity (MSNA) during RHG are partly mediated by a reduction in sympathetic baroreflex gain. In addition, males demonstrate larger increases in total MSNA during upright RHG than females. These data indicate that the baroreflex partly mediates increases in MSNA during RHG and that males have a greater sympathetic vasoconstrictor reserve than females.
Collapse
Affiliation(s)
- Andrew W D'Souza
- Divison of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
| | - Jonathan P Moore
- Department of Sports and Exercise Sciences, Bangor University, Bangor, United Kingdom
| | - Kazumasa Manabe
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Justin S Lawley
- Division of Performance Physiology and Prevention, Department of Sport Science, Universität Innsbruck, Innsbruck, Austria
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Takuro Washio
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Sarah L Hissen
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Belinda Sanchez
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
| | - Qi Fu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
7
|
Kissell CE, Young BE, Jarrard CP, Huang M, Allen DR, Okuda DT, Smith SA, Fadel PJ, Davis SL. Reduced resting beat-to-beat blood pressure variability in females with relapsing-remitting multiple sclerosis. Mult Scler Relat Disord 2024; 83:105416. [PMID: 38244526 DOI: 10.1016/j.msard.2023.105416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/04/2023] [Accepted: 12/27/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Relapsing-remitting multiple sclerosis (RRMS) is a demyelinating disease of the central nervous system and cardiovascular autonomic dysfunction has been well documented in this population. The sympathetic nervous system contributes to beat-to-beat blood pressure regulation primarily by baroreflex control of the peripheral vasculature which may be impaired in females with RRMS. Even at rest, attenuated sympathetic control of vasomotor tone may result in large and frequent blood pressure excursions (i.e., greater blood pressure variability). Therefore, the primary purpose of this investigation was to test the following hypotheses; (1) females with RRMS have augmented beat-to-beat blood pressure variability compared to healthy controls and (2) reduced sympathetic baroreflex sensitivity in females with RRMS is related to augmented blood pressure variability. METHODS Electrocardiogram and beat-to-beat blood pressure were continuously recorded during 8-10 min of supine rest in 26 females with clinically definite RRMS and 24 sex-, age- and BMI- matched healthy controls. Muscle sympathetic nerve activity (MSNA) was recorded in a subset of participants (MS, n = 15; CON, n = 14). Traditional statistical measurements of dispersions were used to index beat-to-beat blood pressure variability. Spontaneous sympathetic baroreflex sensitivity was quantified by sorting diastolic blood pressures into 3 mmHg bins and calculating MSNA burst incidence within each bin. Weighted linear regression was then used to account for the number of cardiac cycles in each bin and calculate slopes. Spontaneous cardiac baroreflex sensitivity was determined using the sequence method. RESULTS Groups had similar resting mean arterial pressure (MAP), systolic blood pressure (SBP), diastolic blood pressure (DBP), MSNA burst frequency and MSNA burst incidence (All P > 0.05). The standard deviation and interquartile range of MAP, SBP and DBP were less in females with RRMS compared to healthy controls (All P < 0.05). There were no between groups differences in sympathetic baroreflex sensitivity or cardiac baroreflex sensitivity (Both P > 0.05) and baroreflex sensitivity measures were not related to any indices of blood pressure variability (Both P > 0.05). CONCLUSION These data suggest that females with RRMS have reduced beat-to-beat blood pressure variability. However, this does not appear to be related to changes in sympathetic or cardiac baroreflex sensitivity.
Collapse
Affiliation(s)
- Claire E Kissell
- Department of Applied Physiology and Sport Management, Southern Methodist University, Dallas, TX, USA
| | - Benjamin E Young
- Department of Applied Clinical Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Caitlin P Jarrard
- Department of Applied Clinical Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mu Huang
- Office of Science, Medicine, and Health, American Heart Association, Dallas, TX, USA
| | - Dustin R Allen
- Department of Health Sciences, Boston University, Boston, Massachusetts, USA
| | - Darin T Okuda
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Scott A Smith
- Department of Applied Clinical Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - Scott L Davis
- Department of Applied Physiology and Sport Management, Southern Methodist University, Dallas, TX, USA; Department of Applied Clinical Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
8
|
Nardone M, Foster M, O'Brien MW, Coovadia Y, Xie S, Usselman CW, Kimmerly DS, Taylor CE, Millar PJ. Sympathetic determinants of resting blood pressure in males and females. Am J Physiol Heart Circ Physiol 2024; 326:H612-H622. [PMID: 38214907 DOI: 10.1152/ajpheart.00497.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
Discharge of postganglionic muscle sympathetic nerve activity (MSNA) is related poorly to blood pressure (BP) in adults. Whether neural measurements beyond the prevailing level of MSNA can account for interindividual differences in BP remains unclear. The current study sought to evaluate the relative contributions of sympathetic-BP transduction and sympathetic baroreflex gain on resting BP in young adults. Data were analyzed from 191 (77 females) young adults (18-39 years) who underwent continuous measurement of beat-to-beat BP (finger photoplethysmography), heart rate (electrocardiography), and fibular nerve MSNA (microneurography). Linear regression analyses were computed to determine associations between sympathetic-BP transduction (signal-averaging) or sympathetic baroreflex gain (threshold technique) and resting BP, before and after controlling for age, body mass index, and MSNA burst frequency. K-mean clustering was used to explore sympathetic phenotypes of BP control and consequential influence on resting BP. Sympathetic-BP transduction was unrelated to BP in males or females (both R2 < 0.01; P > 0.67). Sympathetic baroreflex gain was positively associated with BP in males (R2 = 0.09, P < 0.01), but not in females (R2 < 0.01; P = 0.80), before and after controlling for age, body mass index, and MSNA burst frequency. K-means clustering identified a subset of participants with average resting MSNA, yet lower sympathetic-BP transduction and lower sympathetic baroreflex gain. This distinct subgroup presented with elevated BP in males (P < 0.02), but not in females (P = 0.10). Sympathetic-BP transduction is unrelated to resting BP, while the association between sympathetic baroreflex gain and resting BP in males reveals important sex differences in the sympathetic determination of resting BP.NEW & NOTEWORTHY In a sample of 191 normotensive young adults, we confirm that resting muscle sympathetic nerve activity is a poor predictor of resting blood pressure and now demonstrate that sympathetic baroreflex gain is associated with resting blood pressure in males but not females. In contrast, signal-averaged measures of sympathetic-blood pressure transduction are unrelated to resting blood pressure. These findings highlight sex differences in the neural regulation of blood pressure.
Collapse
Affiliation(s)
- Massimo Nardone
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Monique Foster
- School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia
| | - Myles W O'Brien
- Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
- School of Physiotherapy (Faculty of Health) and Division of Geriatric Medicine (Faculty of Medicine), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Yasmine Coovadia
- Cardiovascular Health and Autonomic Regulation Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Shengkun Xie
- Global Management Studies, Ted Rogers School of Management, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Charlotte W Usselman
- Cardiovascular Health and Autonomic Regulation Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Derek S Kimmerly
- Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Chloe E Taylor
- School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
9
|
Kawada T, Miyamoto T, Fukumitsu M, Saku K. Input-size dependence of the baroreflex neural arc transfer characteristics during Gaussian white noise inputs. Am J Physiol Regul Integr Comp Physiol 2024; 326:R121-R133. [PMID: 38047314 DOI: 10.1152/ajpregu.00199.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/23/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Although Gaussian white noise (GWN) inputs offer a theoretical framework for identifying higher-order nonlinearity, an actual application to the data of the neural arc of the carotid sinus baroreflex did not succeed in fully predicting the well-known sigmoidal nonlinearity. In the present study, we assumed that the neural arc can be approximated by a cascade of a linear dynamic (LD) component and a nonlinear static (NS) component. We analyzed the data obtained using GWN inputs with a mean of 120 mmHg and standard deviations (SDs) of 10, 20, and 30 mmHg for 15 min each in anesthetized rats (n = 7). We first estimated the linear transfer function from carotid sinus pressure to sympathetic nerve activity (SNA) and then plotted the measured SNA against the linearly predicted SNA. The predicted and measured data pairs exhibited an inverse sigmoidal distribution when grouped into 10 bins based on the size of the linearly predicted SNA. The sigmoidal nonlinearity estimated via the LD-NS model showed a midpoint pressure (104.1 ± 4.4 mmHg for SD of 30 mmHg) lower than that estimated by a conventional stepwise input (135.8 ± 3.9 mmHg, P < 0.001). This suggests that the NS component is more likely to reflect the nonlinearity observed during pulsatile inputs that are physiological to baroreceptors. Furthermore, the LD-NS model yielded higher R2 values compared with the linear model and the previously suggested second-order Uryson model in the testing dataset.NEW & NOTEWORTHY We examined the input-size dependence of the baroreflex neural arc transfer characteristics during Gaussian white noise inputs. A linear dynamic-static nonlinear model yielded higher R2 values compared with a linear model and captured the well-known sigmoidal nonlinearity of the neural arc, indicating that the nonlinear dynamics contributed to determining sympathetic nerve activity. Ignoring such nonlinear dynamics might reduce our ability to explain underlying physiology and significantly limit the interpretation of experimental data.
Collapse
Affiliation(s)
- Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Tadayoshi Miyamoto
- Department of Sport and Health Sciences, Faculty of Sport and Health Sciences, Osaka Sangyo University, Osaka, Japan
| | - Masafumi Fukumitsu
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Keita Saku
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
- Bio Digital Twin Center, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
10
|
Hissen SL, Takeda R, Badrov MB, Arias-Franklin S, Patel S, Nelson DB, Babb TG, Fu Q. Impact of maternal obesity on resting muscle sympathetic nerve activity during uncomplicated pregnancy: a longitudinal assessment. Am J Physiol Regul Integr Comp Physiol 2024; 326:R10-R18. [PMID: 37955129 PMCID: PMC11283889 DOI: 10.1152/ajpregu.00098.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Maternal obesity increases the risk of adverse pregnancy outcomes. The mechanisms that contribute to this elevated risk are unclear but may be related to greater activity of the sympathetic nervous system, which is associated with hypertensive disorders of pregnancy. We hypothesized that resting muscle sympathetic nerve activity (MSNA) would be greater in women with obesity during pregnancy when compared with normal-weight women. Blood pressure, heart rate, and MSNA were recorded during 5 min of supine rest in 14 normal-weight women [body mass index (BMI) 22.1 ± 2.1 (SD) kg/m2] and 14 women with obesity (BMI 33.9 ± 3.5 kg/m2) during (early and late) pregnancy and postpartum. All women had uncomplicated pregnancies. Resting MSNA burst frequency was not different between groups during early (normal weight 17 ± 10 vs. obesity 22 ± 15 bursts/min, P = 0.35) but was significantly greater in the obesity group during late pregnancy (23 ± 13 vs. 35 ± 15 bursts/min, P = 0.031) and not different postpartum (10 ± 6 vs. 9 ± 7 bursts/min, P = 0.74). These findings were also apparent when comparing burst incidence and total activity. Although still within the normotensive range, systolic blood pressure was greater in the obesity group across all time points (P = 0.002). Diastolic blood pressure was lower during pregnancy compared with postpartum (P < 0.001) and not different between groups (P = 0.488). Heart rate increased throughout pregnancy in both groups (P < 0.001). Our findings suggest that maternal obesity is associated with greater increases in sympathetic activity even during uncomplicated pregnancy. Future research is needed to determine if this is linked with an increased risk of adverse outcomes or is required to maintain homeostasis in pregnancy.NEW & NOTEWORTHY The impact of maternal obesity on resting muscle sympathetic nerve activity was examined during (early and late) and after uncomplicated pregnancy. Resting muscle sympathetic nerve activity is not different during early pregnancy or postpartum but is significantly elevated in women with obesity during late pregnancy when compared with normal-weight women. Future research is needed to determine if this is linked with an increased risk of adverse outcomes or is required to maintain homeostasis in pregnancy.
Collapse
Affiliation(s)
- Sarah L Hissen
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Ryosuke Takeda
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Mark B Badrov
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- The University of Texas Southwestern Medical Center, Dallas, Texas, United States
- University Health Network, Toronto, Ontario, Canada
| | - Sonia Arias-Franklin
- The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Shivani Patel
- The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - David B Nelson
- The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Tony G Babb
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Qi Fu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
11
|
Bigalke JA, Young BE, Cleveland EL, Fadel PJ, Carter JR. Aging and sympathetic transduction to blood pressure in humans: methodological and physiological considerations. Am J Physiol Heart Circ Physiol 2024; 326:H148-H157. [PMID: 37921667 PMCID: PMC11213475 DOI: 10.1152/ajpheart.00359.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/04/2023]
Abstract
Recent reports suggest that quantification of signal-averaged sympathetic transduction is influenced by resting muscle sympathetic nerve activity (MSNA) and burst occurrence relative to the average mean arterial pressure (MAP). Herein, we asked how these findings may influence age-related reductions in sympathetic transduction. Beat-to-beat blood pressure and MSNA were recorded during 5 min of rest in 27 younger (13 females: age, 25 ± 5 yr; BMI, 25 ± 4 kg/m2) and 26 older (15 females: age, 59 ± 5 yr; BMI, 26 ± 4 kg/m2) healthy adults. All MSNA bursts were signal averaged together. Beat-to-beat MAP values were then split into low (T1), middle (T2), and high (T3) tertiles, and signal-averaged transduction was calculated within each tertile. Resting MSNA was higher in older adults and MAP was similar between groups. Older adults exhibited blunted overall MAP transduction (younger, Δ1.5 ± 0.6 vs. older, Δ0.9 ± 0.7 mmHg; P = 0.005), which was irrespective of relation to prevailing MAP. A greater proportion of bursts occurred above the average MAP in older adults (P < 0.001), and a larger proportion of these bursts were associated with depressor responses (P = 0.005). Nonetheless, assessment of bursts above the average MAP associated with pressor responses revealed similar age-associated reductions in transduction (younger, Δ2.6 ± 1.6 vs. older, Δ1.7 ± 0.8 mmHg; P = 0.016). These findings indicate an age-related increase in burst occurrence above the average resting MAP, which alone does not explain blunted transduction, thereby supporting the physiological underpinnings of age-related decrements in sympathetic transduction to blood pressure.NEW & NOTEWORTHY The current study demonstrated that aging is associated with a greater prevalence of sympathetic bursts occurring above the average blood pressure, which offers both methodologically and physiologically relevant information regarding aging and sympathetic control of blood pressure. These data support age-related reductions in sympathetic transduction via a reduced pressor response to sympathetic bursts irrespective of the prevailing absolute blood pressure value, along with increases in sympathetic outflow necessary to maintain blood pressure.
Collapse
Affiliation(s)
- Jeremy A Bigalke
- Robbins College of Health and Human Sciences, Baylor University, Waco, Texas, United States
- Department of Psychology, Montana State University, Bozeman, Montana, United States
| | - Benjamin E Young
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Emily L Cleveland
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Jason R Carter
- Robbins College of Health and Human Sciences, Baylor University, Waco, Texas, United States
| |
Collapse
|
12
|
Stephens BY, Young BE, Nandadeva D, Skow RJ, Greaney JL, Brothers RM, Fadel PJ. Sympathetic transduction at rest and during cold pressor test in young healthy non-Hispanic Black and White women. Am J Physiol Regul Integr Comp Physiol 2023; 325:R682-R691. [PMID: 37781734 PMCID: PMC11178294 DOI: 10.1152/ajpregu.00073.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/01/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Non-Hispanic Black (BL) individuals have the highest prevalence of hypertension and cardiovascular disease (CVD) compared with all other racial/ethnic groups. Previous work focused on racial disparities in sympathetic control and blood pressure (BP) regulation between young BL and White (WH) adults, have mainly included men. Herein, we hypothesized that BL women would exhibit augmented resting sympathetic vascular transduction and greater sympathetic and BP reactivity to cold pressor test (CPT) compared with WH women. Twenty-eight young healthy women (BL: n = 14, 22 [Formula: see text] 4 yr; WH: n = 14, 22 [Formula: see text] 4 yr) participated. Beat-to-beat BP (Finometer), common femoral artery blood flow (duplex Doppler ultrasound), and muscle sympathetic nerve activity (MSNA; microneurography) were continuously recorded. In a subset (BL n = 10, WH n = 11), MSNA and BP were recorded at rest and during a 2-min CPT. Resting sympathetic vascular transduction was quantified as changes in leg vascular conductance (LVC) and mean arterial pressure (MAP) following spontaneous bursts of MSNA using signal averaging. Sympathetic and BP reactivity were quantified as changes in MSNA and MAP during the last minute of CPT. There were no differences in nadir LVC following resting MSNA bursts between BL (-8.70 ± 3.43%) and WH women (-7.30 ± 3.74%; P = 0.394). Likewise, peak increases in MAP following MSNA bursts were not different between groups (BL: +2.80 ± 1.42 mmHg; vs. WH: +2.99 ± 1.15 mmHg; P = 0.683). During CPT, increases in MSNA and MAP were also not different between BL and WH women, with similar transduction estimates between groups (ΔMAP/ΔMSNA; P = 0.182). These findings indicate that young, healthy BL women do not exhibit exaggerated sympathetic transduction or augmented sympathetic and BP reactivity during CPT.NEW & NOTEWORTHY This study was the first to comprehensively investigate sympathetic vascular transduction and sympathetic and BP reactivity during a cold pressor test in young, healthy BL women. We demonstrated that young BL women do not exhibit exaggerated resting sympathetic vascular transduction and do not have augmented sympathetic or BP reactivity during cold stress compared with their WH counterparts. Collectively, these findings suggest that alterations in sympathetic transduction and reactivity are not apparent in young, healthy BL women.
Collapse
Affiliation(s)
- Brandi Y Stephens
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Benjamin E Young
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Damsara Nandadeva
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
- Department of Physiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Rachel J Skow
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Jody L Greaney
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - R Matthew Brothers
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| |
Collapse
|
13
|
D'Souza AW, Hissen SL, Manabe K, Takeda R, Washio T, Coombs GB, Sanchez B, Fu Q, Shoemaker JK. Age- and sex-related differences in sympathetic vascular transduction and neurohemodynamic balance in humans. Am J Physiol Heart Circ Physiol 2023; 325:H917-H932. [PMID: 37594483 DOI: 10.1152/ajpheart.00301.2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/19/2023]
Abstract
Bursts of muscle sympathetic nerve activity (MSNA) and the ensuing vasoconstriction are pivotal determinants of beat-by-beat blood pressure regulation. Although age and sex impact blood pressure regulation, how these factors affect the central and peripheral arcs of the baroreflex remains unclear. In 27 young [25 (SD 3) yr] males (YM; n = 14) and females (YF; n = 13) and 23 older [71 (SD 5) yr] males (OM; n = 11) and females (OF; n = 12), femoral artery blood flow, blood pressure, and MSNA were recorded for 10 min of supine rest. Sympathetic baroreflex sensitivity (i.e., central arc) was quantified as the relationship between diastolic blood pressure and MSNA burst incidence. Signal averaging was used to determine sympathetic vascular transduction into leg vascular conductance (LVC) for 12 cardiac cycles following MSNA bursts (i.e., peripheral arc). Older adults demonstrated attenuated sympathetic transduction into LVC (both P < 0.001) following MSNA bursts, and smaller increases in sympathetic transduction as a function of MSNA burst size and firing pattern compared with young adults (range, P = 0.004-0.032). YM (r2 = 0.36; P = 0.032) and OM (r2 = 0.51; P = 0.014) exhibited an inverse relationship between the central and peripheral arcs of the baroreflex, whereas females did not (YF, r2 = 0.03, P = 0.621; OF, r2 = 0.06, P = 0.445). MSNA burst incidence was inversely related to sympathetic transduction in YM and OF (range, P = 0.03-0.046) but not in YF or OM (range, P = 0.360-0.603). These data indicate that age is associated with attenuated sympathetic vascular transduction, whereas age- and sex-specific changes are present in the relationship between the central and peripheral arcs of the baroreflex regulation of blood pressure.NEW & NOTEWORTHY Sympathetic vascular transduction is attenuated in older compared with young adults, regardless of biological sex. Males, but not females (regardless of age), demonstrate an inverse relationship between central (sympathetic baroreflex sensitivity) and peripheral (sympathetic vascular transduction) components of the baroreflex arc. Young males and older females exhibit an inverse relationship between resting sympathetic outflow and sympathetic vascular transduction. Our results indicate that age and sex exert independent and interactive effects on sympathetic vascular transduction and sympathetic neurohemodynamic balance in humans.
Collapse
Affiliation(s)
- Andrew W D'Souza
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - Sarah L Hissen
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Kazumasa Manabe
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Ryosuke Takeda
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Toyota, Japan
| | - Takuro Washio
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Geoff B Coombs
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - Belinda Sanchez
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Qi Fu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - J Kevin Shoemaker
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
14
|
Stone T, Yanes Cardozo LL, Oluwatade TN, Leone CA, Burgos M, Okifo F, Pal L, Reckelhoff JF, Stachenfeld NS. Testosterone-associated blood pressure dysregulation in women with androgen excess polycystic ovary syndrome. Am J Physiol Heart Circ Physiol 2023; 325:H232-H243. [PMID: 37327000 PMCID: PMC10393337 DOI: 10.1152/ajpheart.00164.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
We tested the hypothesis that hyperandrogenemia in androgen excess polycystic ovary syndrome (AE-PCOS) is a primary driver in blood pressure (BP) dysregulation via altered sympathetic nervous system activity (SNSA), reduced integrated baroreflex gain and increased renin-angiotensin system (RAS) activation. We measured resting SNSA (microneurography), integrated baroreflex gain, and RAS with lower body negative pressure in obese insulin-resistant (IR) women with AE-PCOS [n = 8, 23 ± 4 yr; body mass index (BMI) = 36.3 ± 6.4 kg/m2] and obese IR controls (n = 7, control, 29 ± 7 yr; BMI = 34.9 ± 6.8 kg/m2), at baseline (BSL), after 4 days of gonadotropin-releasing hormone antagonist (ANT, 250 μg/day) and 4 days of ANT + testosterone (ANT + T, 5 mg/day) administration. Resting BP was similar between groups for systolic blood pressure (SBP; 137 ± 14 vs. 135 ± 14 mmHg, AE-PCOS, control) and diastolic BP (89 ± 21 vs. 76 ± 10 mmHg, AE-PCOS, control). BSL integrated baroreflex gain was similar between groups [1.4 ± 0.9 vs. 1.0 ± 1.3 forearm vascular resistance (FVR) U/mmHg], but AE-PCOS had lower SNSA (10.3 ± 2.0 vs. 14.4 ± 4.4 burst/100 heartbeats, P = 0.04). In AE-PCOS, T suppression increased integrated baroreflex gain, which was restored to BSL with ANT + T (4.3 ± 6.5 vs. 1.5 ± 0.8 FVR U/mmHg, ANT, and ANT + T, P = 0.04), with no effect in control. ANT increased SNSA in AE-PCOS (11.2 ± 2.4, P = 0.04). Serum aldosterone was greater in AE-PCOS versus control (136.5 ± 60.2 vs. 75.7 ± 41.4 pg/mL, AE-PCOS, control, P = 0.04) at BSL but was unaffected by intervention. Serum angiotensin-converting enzyme was greater in AE-PCOS versus control (101.9 ± 93.4 vs. 38.2 ± 14.7 pg/mL, P = 0.04) and reduced by ANT in AE-PCOS (77.7 ± 76.5 vs. 43.4 ± 27.3 µg/L, ANT, and ANT + T, P = 0.04) with no impact on control. Obese, IR women with AE-PCOS showed decreased integrated baroreflex gain and increased RAS activation compared with control.NEW & NOTEWORTHY Here we present evidence for an important role of testosterone in baroreflex control of blood pressure and renal responses to baroreceptor unloading in women with a common, high-risk androgen excess polycystic ovary syndrome (AE-PCOS) phenotype. These data indicate a direct effect of testosterone on the vascular system of women with AE-PCOS independent of body mass index (BMI) and insulin-resistant (IR). Our study indicates that hyperandrogenemia is a central underlining mechanism of heightened cardiovascular risk in women with PCOS.
Collapse
Affiliation(s)
- Tori Stone
- John B. Pierce Laboratory, New Haven, Connecticut, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States
| | - Licy L Yanes Cardozo
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Women's Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Division of Endocrinology, Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Toni N Oluwatade
- John B. Pierce Laboratory, New Haven, Connecticut, United States
- College of Arts and Sciences, Yale University, New Haven, Connecticut, United States
| | - Cheryl A Leone
- John B. Pierce Laboratory, New Haven, Connecticut, United States
| | - Melanie Burgos
- John B. Pierce Laboratory, New Haven, Connecticut, United States
| | - Faith Okifo
- John B. Pierce Laboratory, New Haven, Connecticut, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States
| | - Lubna Pal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States
| | - Jane F Reckelhoff
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Women's Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Nina S Stachenfeld
- John B. Pierce Laboratory, New Haven, Connecticut, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
15
|
Bigalke JA, Durocher JJ, Greenlund IM, Keller-Ross M, Carter JR. Blood pressure and muscle sympathetic nerve activity are associated with trait anxiety in humans. Am J Physiol Heart Circ Physiol 2023; 324:H494-H503. [PMID: 36800506 PMCID: PMC10259854 DOI: 10.1152/ajpheart.00026.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Chronic anxiety is prevalent and associated with an increased risk of cardiovascular disease. Prior studies that have reported a relationship between muscle sympathetic nerve activity (MSNA) and anxiety have focused on participants with anxiety disorders and/or metabolic syndrome. The present study leverages a large cohort of healthy adults devoid of cardiometabolic disorders to examine the hypothesis that trait anxiety severity is positively associated with resting MSNA and blood pressure. Resting blood pressure (BP) (sphygmomanometer and finger plethysmography), MSNA (microneurography), and heart rate (HR; electrocardiogram) were collected in 88 healthy participants (52 males, 36 females, 25 ± 1 yr, 25 ± 1 kg/m2). Multiple linear regression was performed to assess the independent relationship between trait anxiety, MSNA, resting BP, and HR while controlling for age and sex. Trait anxiety was significantly correlated with systolic arterial pressure (SAP; r = 0.251, P = 0.018), diastolic arterial pressure (DAP; r = 0.291, P = 0.006), mean arterial pressure (MAP; r = 0.328, P = 0.002), MSNA burst frequency (BF; r = 0.237, P = 0.026), and MSNA burst incidence (BI; r = 0.225, P = 0.035). When controlling for the effects of age and sex, trait anxiety was independently associated with SAP (β = 0.206, P = 0.028), DAP (β = 0.317, P = 0.002), MAP (β = 0.325, P = 0.001), MSNA BF (β = 0.227, P = 0.030), and MSNA BI (β = 0.214, P = 0.038). Trait anxiety is associated with increased blood pressure and MSNA, demonstrating an important relationship between anxiety and autonomic blood pressure regulation.NEW & NOTEWORTHY Anxiety is associated with development of cardiovascular disease. Although the sympathetic nervous system is a likely mediator of this relationship, populations with chronic anxiety have shown little, if any, alteration in resting levels of directly recorded muscle sympathetic nerve activity (MSNA). The present study is the first to reveal an independent relationship between trait anxiety, resting blood pressure, and MSNA in a large cohort of healthy males and females devoid of cardiometabolic comorbidities.
Collapse
Affiliation(s)
- Jeremy A Bigalke
- Department of Health and Human Development, Montana State University, Bozeman, Montana, United States
- Department of Psychology, Montana State University, Bozeman, Montana, United States
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan, United States
| | - John J Durocher
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan, United States
- Department of Biological Sciences and Integrative Physiology and Health Sciences Center, Purdue University Northwest, Hammond, Indiana, United States
| | - Ian M Greenlund
- Department of Psychology, Montana State University, Bozeman, Montana, United States
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Manda Keller-Ross
- Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, Minnesota, United States
| | - Jason R Carter
- Department of Health and Human Development, Montana State University, Bozeman, Montana, United States
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan, United States
- Robbins College of Health and Human Sciences, Baylor University, Waco, Texas, United States
| |
Collapse
|
16
|
Hissen SL, Takeda R, Yoo JK, Badrov MB, Stickford ASL, Best SA, Okada Y, Jarvis SS, Nelson DB, Fu Q. Posture-related changes in sympathetic baroreflex sensitivity during normal pregnancy. Clin Auton Res 2022; 32:485-495. [PMID: 36394777 PMCID: PMC11440427 DOI: 10.1007/s10286-022-00903-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/12/2022] [Indexed: 11/18/2022]
Abstract
Normal pregnancy is associated with vast adjustments in cardiovascular autonomic control. Sympathetic baroreflex sensitivity has been reported to be attenuated during pregnancy in animal models, but most studies in humans are cross-sectional and findings from longitudinal case studies are inconclusive. It remains unclear how sympathetic baroreflex sensitivity is altered longitudinally during pregnancy within an individual in different body postures. Therefore, this study examined the impact of posture on sympathetic baroreflex sensitivity in 24 normal-weight normotensive pregnant women. Spontaneous sympathetic baroreflex sensitivity was assessed during early (6-11 weeks) and late (32-36 weeks) pregnancy and 6-10 weeks postpartum in the supine posture and graded head-up tilt (30° and 60°). In addition, data from the postpartum period were compared with (and no different to) 18 age-matched non-pregnant women to confirm that the postpartum period was reflective of a non-pregnant condition (online supplement). When compared with postpartum (-3.8 ± 0.4 bursts/100 heartbeats/mmHg), supine sympathetic baroreflex sensitivity was augmented during early pregnancy (-5.9 ± 0.4 bursts/100 heartbeats/mmHg, P < 0.001). However, sympathetic baroreflex sensitivity at 30° or 60° head-up tilt was not different between any phase of gestation (P > 0.05). When compared to supine, sympathetic baroreflex sensitivity at 60° head-up tilt was significantly blunted during early (Δ2.0 ± 0.7 bursts/100 heartbeats/mmHg, P = 0.024) and late (Δ1.5 ± 0.6 bursts/100 heartbeats/mmHg, P = 0.049) pregnancy but did not change postpartum (Δ0.4 ± 0.6 bursts/100 heartbeats/mmHg, P = 1.0). These data show that time-course changes in sympathetic baroreflex sensitivity are dependent on the posture it is examined in and provides a foundation of normal blood pressure regulation during pregnancy for future studies in women at risk for adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Sarah L Hissen
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ryosuke Takeda
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeung-Ki Yoo
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mark B Badrov
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- University Health Network, Toronto, ON, Canada
| | - Abigail S L Stickford
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- Medtronic Plc, Minneapolis, MN, USA
| | - Stuart A Best
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- University of Kentucky, Lexington, KY, USA
| | - Yoshiyuki Okada
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- Hiroshima University, Hiroshima, Japan
| | - Sara S Jarvis
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- Northern Arizona University, Flagstaff, AZ, USA
| | - David B Nelson
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qi Fu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA.
- The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
17
|
D'Souza AW, Klassen SA, Badrov MB, Lalande S, Shoemaker JK. Aging is associated with enhanced central, but impaired peripheral arms of the sympathetic baroreflex arc. J Appl Physiol (1985) 2022; 133:349-360. [PMID: 35736951 DOI: 10.1152/japplphysiol.00045.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that the baroreflex control of action potential (AP) subpopulations would be blunted in older compared to young adults. Integrated muscle sympathetic nerve activity (MSNA) and the underlying sympathetic APs were obtained using microneurography and a continuous wavelet analysis approach, respectively, during 5 minutes of supine rest in 13 older (45-75 years, 6 females) and 14 young (21-30 years, 7 females) adults. Baroreflex threshold relationships were quantified as the slope of the linear regression between MSNA burst probability (%) and diastolic blood pressure (mmHg), or AP cluster firing probability (%) and diastolic blood pressure (mmHg). Integrated MSNA baroreflex threshold gain was greater in older compared to young adults (older: -7.6±3.6 %/mmHg vs. Young: -3.5±1.5 %/mmHg, P<0.001). Similarly, the baroreflex threshold gain of AP clusters was modified by aging (group-by-cluster effect: P<0.001) such that older adults demonstrated greater baroreflex threshold gains of medium-sized AP clusters (e.g., Cluster 4, older: -8.2±3.2 %/mmHg vs. Young: -3.6±1.9 %/mmHg, P=0.003) but not for the smallest- (Cluster 1, older: -1.6±1.9 %/mmHg vs. Young: -1.0±1.7 %/mmHg, P>0.999) and largest-sized (Cluster 10, older: -0.5±0.5 %/mmHg vs. Young: -0.2±0.1 %/mmHg, P=0.819) AP clusters compared to young adults. In contrast, the peak change in mean arterial pressure (MAP) following a spontaneous MSNA burst (i.e., sympathetic transduction) was impaired with aging (older: -0.7±0.3 mmHg vs. Young: 1.8±1.2 mmHg, P<0.001). We conclude that aging is associated with elevated baroreflex control over high-probability AP content of sympathetic bursts that may compensate for impaired sympathetic neurovascular transduction.
Collapse
Affiliation(s)
- Andrew W D'Souza
- Neurovascular research laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - Stephen A Klassen
- Neurovascular research laboratory, School of Kinesiology, Western University, London, Ontario, Canada.,Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Mark B Badrov
- Neurovascular research laboratory, School of Kinesiology, Western University, London, Ontario, Canada.,University Health Network and Sinai Health System Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sophie Lalande
- Neurovascular research laboratory, School of Kinesiology, Western University, London, Ontario, Canada.,Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - J Kevin Shoemaker
- Neurovascular research laboratory, School of Kinesiology, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
18
|
Hamaoka T, Leuenberger UA, Blaha C, Luck JC, Sinoway LI, Cui J. Baroreflex responses to limb venous distension in humans. Am J Physiol Regul Integr Comp Physiol 2022; 323:R267-R276. [PMID: 35726869 PMCID: PMC9359652 DOI: 10.1152/ajpregu.00028.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The venous distension reflex (VDR) is a pressor response evoked by peripheral venous distension and accompanied by increased muscle sympathetic nerve activity (MSNA). The effects of venous distension on the baroreflex, an important modulator of blood pressure (BP), has not been examined. The purpose of this study was to examine the effect of the VDR on baroreflex sensitivity (BRS). We hypothesized that the VDR will increase the sympathetic BRS (SBRS). Beat-by-beat heart rate (HR), BP and MSNA were recorded in 16 female and 19 male young healthy subjects. To induce venous distension, normal saline equivalent to 5% of the forearm volume was infused into the veins of the occluded forearm. SBRS was assessed from the relationship between diastolic BP and MSNA during spontaneous BP variations. Cardiovagal BRS (CBRS) was assessed with the sequence technique. Venous distension evoked significant increases in BP and MSNA. Compared to baseline, during the maximal VDR response period, SBRS was significantly increased (-3.1 ± 1.5 to -4.5 ± 1.6 bursts・100 heartbeat-1・mmHg-1, P < 0.01) and CBRS was significantly decreased (16.6 ± 5.4 to 13.8 ± 6.1 ms・mmHg-1, P < 0.01). No sex differences were observed in the effect of the VDR on SBRS or CBRS. These results indicate that in addition to its pressor effect, the VDR altered both SBRS and CBRS. We speculate that these changes in baroreflex function contribute to the modulation of MSNA and BP during limb venous distension.
Collapse
Affiliation(s)
- Takuto Hamaoka
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Urs A Leuenberger
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Cheryl Blaha
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Jonathan Carter Luck
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Lawrence I Sinoway
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Jian Cui
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
19
|
Shafer BM, Incognito AV, Vermeulen TD, Nardone M, Teixeira AL, Klassen SA, Millar PJ, Foster GE. Action potential amplitude and baroreflex resetting of action potential clusters mediate hypoxia-induced sympathetic long-term facilitation. J Physiol 2022; 600:3127-3147. [PMID: 35661360 DOI: 10.1113/jp282933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/03/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Acute isocapnic hypoxia resets the arterial baroreflex and permits long-lasting sympathoexcitation called sympathetic long-term facilitation. Our understanding of sympathetic long-term facilitation following hypoxia in humans is based on multiunit muscle sympathetic nerve activity and does not fully characterize the underlying baroreflex control of sympathetic neuronal subpopulations or their discharge/recruitment strategies. We show that sympathetic long-term facilitation is mediated by baroreflex resetting of sympathetic action potential clusters to higher arterial pressure operating points, a reduction in the percentage of action potentials firing asynchronously, and a shift toward larger amplitude action potential activity. The results advance our fundamental understanding of how the sympathetic nervous system mediates sympathetic long-term facilitation following exposure to acute isocapnic hypoxia in humans. ABSTRACT Baroreflex resetting permits sympathetic long-term facilitation (sLTF) following hypoxia; however, baroreflex control of action potential (AP) clusters and AP recruitment patterns facilitating sLTF is unknown. We hypothesized that baroreflex resetting of arterial pressure operating points (OPs) of AP clusters and recruitment of large-amplitude APs would mediate sLTF following hypoxia. Eight men (age: 24 (3) yrs; BMI: 24 (3) kg/m2 ) underwent 20-min isocapnic hypoxia (PET O2 : 47 (2) mmHg) and 30-min recovery. Multi-unit microneurography (muscle sympathetic nerve activity; MSNA) and a continuous wavelet transform with matched mother wavelet was used to detect sympathetic APs during baseline, hypoxia, early (first 5-min), and late recovery (last 5-min). AP amplitude (normalized to largest baseline AP amplitude), percent APs occurring outside a MSNA burst (% asynchronous APs), and proportion of APs firing in small (1-3), medium (4-6), and large (7-10) normalized cluster sizes was calculated. Normalized clusters were used to assess baroreflex OPs and sensitivity. Hypoxia increased total MSNA activity, which remained elevated during recovery (P<0.0001). Baroreflex OPs were shifted rightward for all clusters in recovery, with no effect on slope. Compared to baseline, AP amplitude was elevated by 3 (2) % and 4 (2) % while asynchronous APs were reduced by 9 (5) % and 7 (6) % in early and late recovery, respectively. In early recovery, the proportion of APs firing in large clusters was increased compared to baseline. Hypoxia-induced sLTF is mediated by baroreflex resetting of AP clusters to higher OPs, reduced asynchronous AP firing, and increased contribution from large-amplitude APs. Abstract figure legend Eight healthy men underwent 20-min isocapnic hypoxia and 30-min recovery. The study tested the hypothesis that baroreflex resetting of arterial pressure operating points (OPs) of action potential (AP) clusters and recruitment of large-amplitude APs would mediate sympathetic long-term facilitation (sLTF) following acute hypoxic exposure. Hypoxia increased multi-unit muscle sympathetic nerve activity (MSNA; measured via microneurography), which remained elevated throughout recovery. Sympathetic APs were detected in the filtered MSNA neurogram using a continuous wavelet transform with matched mother wavelet. An effect of condition revealed that compared to baseline, AP amplitude was elevated while asynchronous APs were reduced in early and late recovery, respectively. Our findings show that AP amplitude distributions are shifting towards larger AP amplitudes in all subjects following hypoxia. Our findings indicate that hypoxia-induced sLTF is mediated by baroreflex resetting of AP clusters to higher OPs, reduced asynchronous AP firing, and increased contribution from large-amplitude APs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Brooke M Shafer
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Anthony V Incognito
- Department of Human Health and Nutritional Sciences, University of Guelph, Canada
| | - Tyler D Vermeulen
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Massimo Nardone
- Department of Human Health and Nutritional Sciences, University of Guelph, Canada
| | - André L Teixeira
- Department of Human Health and Nutritional Sciences, University of Guelph, Canada
| | | | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Canada
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| |
Collapse
|
20
|
Nardone M, Katerberg C, Teixeira AL, Lee JB, Bommarito JC, Millar PJ. Sympathetic transduction of blood pressure during graded lower body negative pressure in young healthy adults. Am J Physiol Regul Integr Comp Physiol 2022; 322:R620-R628. [DOI: 10.1152/ajpregu.00034.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sympathetic transduction of blood pressure (BP) is correlated negatively with resting muscle sympathetic nerve activity (MSNA) in cross-sectional data, but the acute effects of increasing MSNA are unclear. Sixteen (4 females) healthy adults (26±3 years) underwent continuous measurement of heart rate, BP, and MSNA at rest and during graded lower body negative pressure (LBNP) at -10, -20, and -30mmHg. Sympathetic transduction of BP was quantified in the time (signal averaging) and frequency (MSNA-BP gain) domains. The proportion of MSNA bursts firing within each tertile of BP were calculated. As expected, LBNP increased MSNA burst frequency (P<0.01) and burst amplitude (P<0.02), though the proportions of MSNA bursts firing across each BP tertile remained stable (all P>0.44). The MSNA-diastolic BP low frequency transfer function gain (P=0.25) was unchanged during LBNP; the spectral coherence was increased (P=0.03). Signal-averaged sympathetic transduction of diastolic BP was unchanged (from 2.1±1.0 at rest to 2.4±1.5, 2.2±1.3, and 2.3±1.4mmHg; P=0.43) during LBNP, but diastolic BP responses following non-burst cardiac cycles progressively decreased (from -0.8±0.4 at rest to -1.0±0.6, -1.2±0.6, and -1.6±0.9mmHg; P<0.01). As a result, the difference between MSNA burst and non-bursts diastolic BP responses was increased (from 2.9±1.4 at rest to 3.4±1.9, 3.4±1.9, and 3.9±2.1mmHg; P<0.01). In conclusion, acute increases in MSNA using LBNP did not alter traditional signal-averaged or frequency-domain measures of sympathetic transduction of BP or the proportion of MSNA bursts firing at different BP levels. The factors that determine changes in the firing of MSNA bursts relative to oscillations in BP require further investigation.
Collapse
Affiliation(s)
- Massimo Nardone
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Carlin Katerberg
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - André L. Teixeira
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jordan B. Lee
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Julian C. Bommarito
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Philip J. Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Urbancsek R, Csanádi Z, Forgács IN, Papp TB, Boczán J, Barta J, Jenei C, Nagy L, Rudas L. The Feasibility of Baroreflex Sensitivity Measurements in Heart Failure Subjects: The Role of Slow-patterned Breathing. Clin Physiol Funct Imaging 2022; 42:260-268. [PMID: 35396907 DOI: 10.1111/cpf.12755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Increased muscle sympathetic nerve activity (MSNA) indicates an adverse outcome in heart failure. Decreased baroreflex modulation of MSNA is well known feature of the disease. The determinability of cardiovagal baroreflex sensitivity (BRS) in heart failure is low, however, the determinability of sympathetic BRS is not known. METHODS We have assessed the spontaneous, MSNA burst incidence-based baroreflex index (BRSsymp) in 33 stable heart failure patients and in 10 healthy controls using the traditional r≥0.5 cut-off for acceptable individual diastolic pressure-burst incidence slopes, and also a more stringent r≥0.7 cut-off. We have also assessed the influence of 6/min breathing. RESULTS The determinability of BRSsymp in heart failure patients was 64% during spontaneous breathing with r≥0.5 cut-off, and 39% using the r≥0.7 cut-off. The determinability of these indices further decreased during 6/min breathing, dropping to 29% with the r≥0.7 cut-off. In contrast, the determinability of the cardiovagal BRS indices increased significantly with 6/min breathing (from 24% to 66%; p<0.001). Patients who still had determinable BRSsymp at the r≥0.7 cut-off had a significantly lower baseline burst incidence than those with an undeterminable index (70±14 vs.89±10 burst/100 cycles; p<0.002). Neither the 6/min breathing, nor the r≥0.7 cut-off limit influenced the high availability of BRSsymp in healthy subjects. CONCLUSION The determinability of BRSsymp in heart failure patients is limited, especially with the 0.7 limit for correlation. Undeterminable BRSsymp in patients is associated with higher sympathetic activity. 6/min breathing improves the determinability of cardiovagal BRS indices, but not that of BRSsymp. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Réka Urbancsek
- Faculty of Medicine, Department of Cardiology, University of Debrecen, Debrecen, Hungary
| | - Zoltán Csanádi
- Faculty of Medicine, Department of Cardiology, University of Debrecen, Debrecen, Hungary
| | - Ildikó Noémi Forgács
- Faculty of Medicine, Department of Cardiology, University of Debrecen, Debrecen, Hungary
| | - Tímea Bianka Papp
- Faculty of Medicine, Department of Cardiology, University of Debrecen, Debrecen, Hungary
| | - Judit Boczán
- Faculty of Medicine, Department of Neurology, University of Debrecen, Debrecen, Hungary
| | - Judit Barta
- Faculty of Medicine, Department of Cardiology, University of Debrecen, Debrecen, Hungary
| | - Csaba Jenei
- Faculty of Medicine, Department of Cardiology, University of Debrecen, Debrecen, Hungary
| | - László Nagy
- Faculty of Medicine, Department of Cardiology, University of Debrecen, Debrecen, Hungary
| | - László Rudas
- Department of Anesthesiology and Intensive Care, University of Szeged, Szeged, Hungary
| |
Collapse
|
22
|
McMillan NJ, Soares RN, Harper JL, Shariffi B, Moreno-Cabañas A, Curry TB, Manrique-Acevedo C, Padilla J, Limberg JK. Role of the arterial baroreflex in the sympathetic response to hyperinsulinemia in adult humans. Am J Physiol Endocrinol Metab 2022; 322:E355-E365. [PMID: 35187960 PMCID: PMC8993537 DOI: 10.1152/ajpendo.00391.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 11/22/2022]
Abstract
Muscle sympathetic nerve activity (MSNA) increases during hyperinsulinemia, primarily attributed to central nervous system effects. Whether peripheral vasodilation induced by insulin further contributes to increased MSNA via arterial baroreflex-mediated mechanisms requires further investigation. Accordingly, we examined baroreflex modulation of the MSNA response to hyperinsulinemia. We hypothesized that rescuing peripheral resistance with coinfusion of the vasoconstrictor phenylephrine would attenuate the MSNA response to hyperinsulinemia. We further hypothesized that the insulin-mediated increase in MSNA would be recapitulated with another vasodilator (sodium nitroprusside, SNP). In 33 young healthy adults (28 M/5F), MSNA (microneurography) and arterial blood pressure (BP, Finometer/brachial catheter) were measured, and total peripheral resistance (TPR, ModelFlow) and baroreflex sensitivity were calculated at rest and during intravenous infusion of insulin (n = 20) or SNP (n = 13). A subset of participants receiving insulin (n = 7) was coinfused with phenylephrine. Insulin infusion decreased TPR (P = 0.01) and increased MSNA (P < 0.01), with no effect on arterial baroreflex sensitivity or BP (P > 0.05). Coinfusion with phenylephrine returned TPR and MSNA to baseline, with no effect on arterial baroreflex sensitivity (P > 0.05). Similar to insulin, SNP decreased TPR (P < 0.02) and increased MSNA (P < 0.01), with no effect on arterial baroreflex sensitivity (P > 0.12). Acute hyperinsulinemia shifts the baroreflex stimulus-response curve to higher MSNA without changing sensitivity, likely due to insulin's peripheral vasodilatory effects. Results show that peripheral vasodilation induced by insulin contributes to increased MSNA during hyperinsulinemia.NEW & NOTEWORTHY We hypothesized that elevation in muscle sympathetic nervous system activity (MSNA) during hyperinsulinemia is mediated by its peripheral vasodilator effect on the arterial baroreflex. Using three separate protocols in humans, we observed increases in both MSNA and cardiac output during hyperinsulinemia, which we attributed to the baroreflex response to peripheral vasodilation induced by insulin. Results show that peripheral vasodilation induced by insulin contributes to increased MSNA during hyperinsulinemia.
Collapse
Affiliation(s)
- Neil J McMillan
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Rogerio N Soares
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Jennifer L Harper
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Brian Shariffi
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Alfonso Moreno-Cabañas
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Exercise Physiology Lab at Toledo, University of Castilla-La Mancha, Toledo, Spain
| | - Timothy B Curry
- Department of Anesthesia and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Services, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Department of Anesthesia and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
23
|
Greenlund IM, Carter JR. Sympathetic neural responses to sleep disorders and insufficiencies. Am J Physiol Heart Circ Physiol 2022; 322:H337-H349. [PMID: 34995163 PMCID: PMC8836729 DOI: 10.1152/ajpheart.00590.2021] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Short sleep duration and poor sleep quality are associated with cardiovascular risk, and sympathetic nervous system (SNS) dysfunction appears to be a key contributor. The present review will characterize sympathetic function across several sleep disorders and insufficiencies in humans, including sleep deprivation, insomnia, narcolepsy, and obstructive sleep apnea (OSA). We will focus on direct assessments of sympathetic activation, e.g., plasma norepinephrine and muscle sympathetic nerve activity, but include heart rate variability (HRV) when direct assessments are lacking. The review also highlights sex as a key biological variable. Experimental models of total sleep deprivation and sleep restriction are converging to support several epidemiological studies reporting an association between short sleep duration and hypertension, especially in women. A systemic increase of SNS activity via plasma norepinephrine is present with insomnia and has also been confirmed with direct, regionally specific evidence from microneurographic studies. Narcolepsy is characterized by autonomic dysfunction via both HRV and microneurographic studies but with opposing conclusions regarding SNS activation. Robust sympathoexcitation is well documented in OSA and is related to baroreflex and chemoreflex dysfunction. Treatment of OSA with continuous positive airway pressure results in sympathoinhibition. In summary, sleep disorders and insufficiencies are often characterized by sympathoexcitation and/or sympathetic/baroreflex dysfunction, with several studies suggesting women may be at heightened risk.
Collapse
Affiliation(s)
- Ian M. Greenlund
- 1Department of Health and Human Development, Montana State University, Bozeman, Montana,2Department of Psychology, Montana State University, Bozeman, Montana
| | - Jason R. Carter
- 1Department of Health and Human Development, Montana State University, Bozeman, Montana,2Department of Psychology, Montana State University, Bozeman, Montana
| |
Collapse
|
24
|
Bigalke JA, Carter JR. Sympathetic Neural Control in Humans with Anxiety-Related Disorders. Compr Physiol 2021; 12:3085-3117. [PMID: 34964121 DOI: 10.1002/cphy.c210027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Numerous conceptual models are used to describe the dynamic responsiveness of physiological systems to environmental pressures, originating with Claude Bernard's milieu intérieur and extending to more recent models such as allostasis. The impact of stress and anxiety upon these regulatory processes has both basic science and clinical relevance, extending from the pioneering work of Hans Selye who advanced the concept that stress can significantly impact physiological health and function. Of particular interest within the current article, anxiety is independently associated with cardiovascular risk, yet mechanisms underlying these associations remain equivocal. This link between anxiety and cardiovascular risk is relevant given the high prevalence of anxiety in the general population, as well as its early age of onset. Chronically anxious populations, such as those with anxiety disorders (i.e., generalized anxiety disorder, panic disorder, specific phobias, etc.) offer a human model that interrogates the deleterious effects that chronic stress and allostatic load can have on the nervous system and cardiovascular function. Further, while many of these disorders do not appear to exhibit baseline alterations in sympathetic neural activity, reactivity to mental stress offers insights into applicable, real-world scenarios in which heightened sympathetic reactivity may predispose those individuals to elevated cardiovascular risk. This article also assesses behavioral and lifestyle modifications that have been shown to concurrently improve anxiety symptoms, as well as sympathetic control. Lastly, future directions of research will be discussed, with a focus on better integration of psychological factors within physiological studies examining anxiety and neural cardiovascular health. © 2022 American Physiological Society. Compr Physiol 12:1-33, 2022.
Collapse
Affiliation(s)
- Jeremy A Bigalke
- Department of Psychology, Montana State University, Bozeman, Montana, USA
| | - Jason R Carter
- Department of Psychology, Montana State University, Bozeman, Montana, USA.,Department of Health and Human Development, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
25
|
Seeley AD, Giersch GEW, Charkoudian N. Post-exercise Body Cooling: Skin Blood Flow, Venous Pooling, and Orthostatic Intolerance. Front Sports Act Living 2021; 3:658410. [PMID: 34079934 PMCID: PMC8165173 DOI: 10.3389/fspor.2021.658410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/16/2021] [Indexed: 12/28/2022] Open
Abstract
Athletes and certain occupations (e.g., military, firefighters) must navigate unique heat challenges as they perform physical tasks during prolonged heat stress, at times while wearing protective clothing that hinders heat dissipation. Such environments and activities elicit physiological adjustments that prioritize thermoregulatory skin perfusion at the expense of arterial blood pressure and may result in decreases in cerebral blood flow. High levels of skin blood flow combined with an upright body position augment venous pooling and transcapillary fluid shifts in the lower extremities. Combined with sweat-driven reductions in plasma volume, these cardiovascular alterations result in levels of cardiac output that do not meet requirements for brain blood flow, which can lead to orthostatic intolerance and occasionally syncope. Skin surface cooling countermeasures appear to be a promising means of improving orthostatic tolerance via autonomic mechanisms. Increases in transduction of sympathetic activity into vascular resistance, and an increased baroreflex set-point have been shown to be induced by surface cooling implemented after passive heating and other arterial pressure challenges. Considering the further contribution of exercise thermogenesis to orthostatic intolerance risk, our goal in this review is to provide an overview of post-exercise cooling strategies as they are capable of improving autonomic control of the circulation to optimize orthostatic tolerance. We aim to synthesize both basic and applied physiology knowledge available regarding real-world application of cooling strategies to reduce the likelihood of experiencing symptomatic orthostatic intolerance after exercise in the heat.
Collapse
Affiliation(s)
- Afton D Seeley
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States.,Oak Ridge Institute of Science and Education, Belcamp, MD, United States
| | - Gabrielle E W Giersch
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States.,Oak Ridge Institute of Science and Education, Belcamp, MD, United States
| | - Nisha Charkoudian
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States
| |
Collapse
|