1
|
He T, d’Uscio LV, Sun R, Santhanam AVR, Katusic ZS. Inactivation of BACE1 increases expression of endothelial nitric oxide synthase in cerebrovascular endothelium. J Cereb Blood Flow Metab 2022; 42:1920-1932. [PMID: 35673977 PMCID: PMC9536128 DOI: 10.1177/0271678x221105683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/15/2022]
Abstract
Cerebrovascular effects of β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) inactivation have not been systematically studied. In the present study we employed cultured human brain microvascular endothelial cells (BMECs), BACE1-knockout (BACE1-/-) mice and conditional (tamoxifen-induced) endothelium-specific BACE1-knockout (eBACE1-/-) mice to determine effect of BACE1 inhibition on expression and function of endothelial nitric oxide synthase (eNOS). Deletion of BACE1 caused upregulation of eNOS and glypican-1 (GPC1) in human BMECs treated with BACE1-siRNA, and cerebral microvessels of male BACE1-/- mice and male eBACE1-/- mice. In addition, BACE1siRNA treatment increased NO production in human BMECs. These effects appeared to be independent of amyloid β-peptide production. Furthermore, adenoviral-mediated overexpression of BACE1 in human BMECs down-regulated GPC1 and eNOS. Treatment of human BMECs with GPC1siRNA suppressed mRNA and protein levels of eNOS. In basilar arteries of male eBACE1-/- mice, endothelium-dependent relaxations to acetylcholine and endothelium-independent relaxations to NO donor, DEA-NONOate, were not affected, consistent with unchanged expression of eNOS and phosphorylation of eNOS at Ser1177 in large cerebral arteries. In aggregate, our findings suggest that under physiological conditions, inactivation of endothelial BACE1 increases expression of eNOS in cerebral microvessels but not in large brain arteries. This effect appears to be mediated by increased GPC1 expression.
Collapse
Affiliation(s)
- Tongrong He
- Departments of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Livius V d’Uscio
- Departments of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Ruohan Sun
- Departments of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Anantha Vijay R Santhanam
- Departments of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Zvonimir S Katusic
- Departments of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Xiao L, Wang N. PPAR-δ: A key nuclear receptor in vascular function and remodeling. J Mol Cell Cardiol 2022; 169:1-9. [DOI: 10.1016/j.yjmcc.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 12/08/2022]
|
3
|
Mierzejewska P, Kunc M, Zabielska-Kaczorowska MA, Kutryb-Zajac B, Pelikant-Malecka I, Braczko A, Jablonska P, Romaszko P, Koszalka P, Szade J, Smolenski RT, Slominska EM. An unusual nicotinamide derivative, 4-pyridone-3-carboxamide ribonucleoside (4PYR), is a novel endothelial toxin and oncometabolite. Exp Mol Med 2021; 53:1402-1412. [PMID: 34580423 PMCID: PMC8492732 DOI: 10.1038/s12276-021-00669-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Our recent studies identified a novel pathway of nicotinamide metabolism that involves 4-pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR) and demonstrated its endothelial cytotoxic effect. This study tested the effects of 4PYR and its metabolites in experimental models of breast cancer. Mice were divided into groups: 4T1 (injected with mammary 4T1 cancer cells), 4T1 + 4PYR (4PYR-treated 4T1 mice), and control, maintained for 2 or 21 days. Lung metastasis and endothelial function were analyzed together with blood nucleotides (including 4PYR), plasma amino acids, nicotinamide metabolites, and vascular ectoenzymes of nucleotide catabolism. 4PYR metabolism was also evaluated in cultured 4T1, MDA-MB-231, MCF-7, and T47D cells. An increase in blood 4PYR in 4T1 mice was observed at 2 days. 4PYR and its metabolites were noticed after 21 days in 4T1 only. Higher blood 4PYR was linked with more lung metastases in 4T1 + 4PYR vs. 4T1. Decreased L-arginine, higher asymmetric dimethyl-L-arginine, and higher vascular ecto-adenosine deaminase were observed in 4T1 + 4PYR vs. 4T1 and control. Vascular relaxation caused by flow-dependent endothelial activation in 4PYR-treated mice was significantly lower than in control. The permeability of 4PYR-treated endothelial cells was increased. Decreased nicotinamide but enhanced nicotinamide metabolites were noticed in 4T1 vs. control. Reduced N-methylnicotinamide and a further increase in Met2PY were observed in 4T1 + 4PYR vs. 4T1 and control. In cultured breast cancer cells, estrogen and progesterone receptor antagonists inhibited the production of 4PYR metabolites. 4PYR formation is accelerated in cancer and induces metabolic disturbances that may affect cancer progression and, especially, metastasis, probably through impaired endothelial homeostasis. 4PYR may be considered a new oncometabolite. Levels of a metabolite of nicotinamide, a form of vitamin B3, found in the blood and urine of cancer patients may provide a useful biomarker indicating the likelihood of metastasis. Disruption to the lining of blood vessels (endothelium) enables cancer cells to infiltrate the bloodstream and migrate to other organs. Research suggests that increased levels of 4PYR, a derivative of nicotinamide metabolism, may induce metabolic disturbances that favor cancer progression. Ewa Slominska and co-workers at the Medical University of Gdansk, Poland, examined 4PYR in mouse models injected with breast cancer cells and found increased levels in the blood only two days after injection. Mice with the highest 4PYR levels had enhanced lung metastases after three weeks. The team believes 4PYR activity may increase the permeability of the endothelium, but further investigation is needed.
Collapse
Affiliation(s)
| | - Michal Kunc
- Department of Pathomorphology, Medical University of Gdansk, Gdansk, Poland
| | | | | | - Iwona Pelikant-Malecka
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland.,Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
| | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Patrycja Jablonska
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Pawel Romaszko
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Patrycja Koszalka
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdansk, Gdansk, Poland
| | - Jolanta Szade
- Department of Pathomorphology, Medical University of Gdansk, Gdansk, Poland
| | | | | |
Collapse
|
4
|
d'Uscio LV, Katusic ZS. Endothelium-specific deletion of amyloid-β precursor protein exacerbates endothelial dysfunction induced by aging. Aging (Albany NY) 2021; 13:19165-19185. [PMID: 34382945 PMCID: PMC8386539 DOI: 10.18632/aging.203401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/30/2021] [Indexed: 01/03/2023]
Abstract
The physiological function of amyloid precursor protein (APP) in the control of endothelial function during aging is unclear. Aortas of young (4-6 months old) and aged (23-26 months old) wild-type (WT) and endothelium-specific APP-deficient (eAPP−/−) mice were used to study aging-induced changes in vascular phenotype. Unexpectedly, aging significantly increased protein expression of APP in aortas of WT mice but not in aortas of eAPP−/− mice thereby demonstrating selective upregulation APP expression in vascular endothelium of aged aortas. Most notably, endothelial dysfunction (impairment of endothelium-dependent relaxations) induced by aging was significantly exacerbated in aged eAPP−/− mice aortas as compared to age-matched WT mice. Consistent with this observations, endothelial nitric oxide synthase (eNOS) protein expression was significantly decreased in aged eAPP−/− mice as compared to age matched WT mice. In addition, protein expression of cyclooxygenase 2 and release of prostaglandins were significantly increased in both aged WT and eAPP−/− mice. Notably, treatment with cyclooxygenase inhibitor, indomethacin, normalized endothelium-dependent relaxations in aged WT mice, but not in aged eAPP−/− mice. In aggregate, our findings support the concept that aging-induced upregulation of APP in vascular endothelium is an adaptive response designed to protect and preserve expression and function of eNOS.
Collapse
Affiliation(s)
- Livius V d'Uscio
- Departments of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Zvonimir S Katusic
- Departments of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
5
|
The mitochondrial thioredoxin reductase system (TrxR2) in vascular endothelium controls peroxynitrite levels and tissue integrity. Proc Natl Acad Sci U S A 2021; 118:1921828118. [PMID: 33579817 DOI: 10.1073/pnas.1921828118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mitochondrial thioredoxin/peroxiredoxin system encompasses NADPH, thioredoxin reductase 2 (TrxR2), thioredoxin 2, and peroxiredoxins 3 and 5 (Prx3 and Prx5) and is crucial to regulate cell redox homeostasis via the efficient catabolism of peroxides (TrxR2 and Trxrd2 refer to the mitochondrial thioredoxin reductase protein and gene, respectively). Here, we report that endothelial TrxR2 controls both the steady-state concentration of peroxynitrite, the product of the reaction of superoxide radical and nitric oxide, and the integrity of the vascular system. Mice with endothelial deletion of the Trxrd2 gene develop increased vascular stiffness and hypertrophy of the vascular wall. Furthermore, they suffer from renal abnormalities, including thickening of the Bowman's capsule, glomerulosclerosis, and functional alterations. Mechanistically, we show that loss of Trxrd2 results in enhanced peroxynitrite steady-state levels in both vascular endothelial cells and vessels by using a highly sensitive redox probe, fluorescein-boronate. High steady-state peroxynitrite levels were further found to coincide with elevated protein tyrosine nitration in renal tissue and a substantial change of the redox state of Prx3 toward the oxidized protein, even though glutaredoxin 2 (Grx2) expression increased in parallel. Additional studies using a mitochondria-specific fluorescence probe (MitoPY1) in vessels revealed that enhanced peroxynitrite levels are indeed generated in mitochondria. Treatment with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin [Mn(III)TMPyP], a peroxynitrite-decomposition catalyst, blunted intravascular formation of peroxynitrite. Our data provide compelling evidence for a yet-unrecognized role of TrxR2 in balancing the nitric oxide/peroxynitrite ratio in endothelial cells in vivo and thus establish a link between enhanced mitochondrial peroxynitrite and disruption of vascular integrity.
Collapse
|
6
|
Role of PPARs in Progression of Anxiety: Literature Analysis and Signaling Pathways Reconstruction. PPAR Res 2020; 2020:8859017. [PMID: 33312191 PMCID: PMC7721491 DOI: 10.1155/2020/8859017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/26/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) group includes three isoforms encoded by PPARG, PPARA, and PPARD genes. High concentrations of PPARs are found in parts of the brain linked to anxiety development, including hippocampus and amygdala. Among three PPAR isoforms, PPARG demonstrates the highest expression in CNS, where it can be found in neurons, astrocytes, and glial cells. Herein, the highest PPARG expression occurs in amygdala. However, little is known considering possible connections between PPARs and anxiety behavior. We reviewed possible connections between PPARs and anxiety. We used the Pathway Studio software (Elsevier). Signal pathways were created according to previously developed algorithms. SNEA was performed in Pathway Studio. Current study revealed 14 PPAR-regulated proteins linked to anxiety. Possible mechanism of PPAR involvement in neuroinflammation protection is proposed. Signal pathway reconstruction and reviewing aimed to reveal possible connection between PPARG and CCK-ergic system was conducted. Said analysis revealed that PPARG-dependent regulation of MME and ACE peptidase expression may affect levels of nonhydrolysed, i.e., active CCK-4. Impairments in PPARG regulation and following MME and ACE peptidase expression impairments in amygdala may be the possible mechanism leading to pathological anxiety development, with brain CCK-4 accumulation being a key link. Literature data analysis and signal pathway reconstruction and reviewing revealed two possible mechanisms of peroxisome proliferator-activated receptors involvement in pathological anxiety: (1) cytokine expression and neuroinflammation mechanism and (2) regulation of peptidases targeted to anxiety-associated neuropeptides, primarily CCK-4, mechanism.
Collapse
|
7
|
Mechanisms of vascular dysfunction in the interleukin-10-deficient murine model of preeclampsia indicate nitric oxide dysregulation. Kidney Int 2020; 99:646-656. [PMID: 33144212 DOI: 10.1016/j.kint.2020.09.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022]
Abstract
Preeclampsia is a pregnancy-specific hypertensive disorder characterized by proteinuria, and vascular injury in the second half of pregnancy. We hypothesized that endothelium-dependent vascular dysfunction is present in a murine model of preeclampsia based on administration of human preeclamptic sera to interleukin-10-/- mice and studied mechanisms that underlie vascular injury. Pregnant wild type and IL-10-/- mice were injected with either normotensive or severe preeclamptic patient sera (sPE) during gestation. A preeclampsia-like phenotype was confirmed by blood pressure measurements; assessment of albuminuria; measurement of angiogenic factors; demonstration of foot process effacement and endotheliosis in kidney sections; and by accumulation of glycogen in placentas from IL-10-/- mice injected with sPE sera (IL-10-/-sPE). Vasomotor function of isolated aortas was assessed. The IL-10-/-sPE murine model demonstrated significantly augmented aortic contractions to phenylephrine and both impaired endothelium-dependent and, to a lesser extent, endothelium-independent relaxation compared to wild type normotensive mice. Treatment of isolated aortas with indomethacin, a cyclooxygenase inhibitor, improved, but failed to normalize contraction to phenylephrine to that of wild type normotensive mice, suggesting the additional contribution from nitric oxide downregulation and effects of indomethacin-resistant vasoconstricting factors. In contrast, indomethacin normalized relaxation of aortas derived from IL-10-/-sPE mice. Thus, our results identify the role of IL-10 deficiency in dysregulation of the cyclooxygenase pathway and vascular dysfunction in the IL-10-/-sPE murine model of preeclampsia and point towards a possible contribution of nitric oxide dysregulation. These compounds and related mechanisms may serve both as diagnostic markers and therapeutic targets for preventive and treatment strategies in preeclampsia.
Collapse
|
8
|
Mierzejewska P, Zabielska MA, Kutryb-Zajac B, Tomczyk M, Koszalka P, Smolenski RT, Slominska EM. Impaired L-arginine metabolism marks endothelial dysfunction in CD73-deficient mice. Mol Cell Biochem 2019; 458:133-142. [PMID: 31093850 PMCID: PMC6616215 DOI: 10.1007/s11010-019-03537-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/12/2019] [Indexed: 12/18/2022]
Abstract
Changes in the ecto-5'-nucleotidase activity-an extracellular nucleotide catabolic enzyme may lead to the inflammation and endothelial dysfunction. We investigated the effect of CD73 deletion on the endothelial function and L-arginine metabolism in various age groups of mice. 1-,3-,6-, and 12-month-old, male C57BL/6 J wild type (WT) and C57BL/6 J CD73-/- (CD73-/-) mice were used. Blood samples were used for the analysis of adenine nucleotide concentrations. Serum samples were analyzed for the concentration of amino acids, Interleukin 6 (IL-6), Intercellular Adhesion Molecule 1 (ICAM-1), Vascular Cell Adhesion Molecule 1 (VCAM-1), and endothelial nitric oxide synthase (eNOS) level. Serum and aortic nitrate/nitrite, as well as aortic arginase and NOS activity in endothelial cells (EC) were evaluated. CD73 deletion led to age-dependent increase in IL-6, ICAM-1, and VCAM-1 concentration compared to WT. All CD73-/- mice age groups were characterized by reduced L-Arginine concentration and eNOS level. Significantly lower NOS activity was noticed in EC isolated from CD73-/- mice lungs in comparison to EC isolated from WT lungs. The L-Arginine/ADMA ratio in the CD73-/- decreased in age-dependent manner in comparison to WT. The nitrate/nitrite ratio was reduced in serum and in aortas of 6-month-old CD73-/- mice as compared to WT. The ornithine/arginine and ornithine/citrulline ratios were increased in CD73-/- compared to controls. Blood (erythrocyte) Adenosine-5'-triphosphate and Adenosine-5'-diphosphate levels were reduced in favor to higher blood Adenosine-5'-monophosphate concentration in CD73-/- mice in comparison to WT. The CD73 deletion leads to the development of age-dependent endothelial dysfunction in mice, associated with impaired L-arginine metabolism. CD73 activity seems to protect endothelium.
Collapse
Affiliation(s)
- P Mierzejewska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdańsk, Poland
| | - M A Zabielska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdańsk, Poland
- Department of Physiology, Medical University of Gdansk, Gdańsk, Poland
| | - B Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdańsk, Poland
| | - M Tomczyk
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdańsk, Poland
| | - P Koszalka
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdansk, Gdańsk, Poland
| | - R T Smolenski
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdańsk, Poland
| | - E M Slominska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdańsk, Poland.
| |
Collapse
|
9
|
Hydrogen sulfide improves endothelial dysfunction in hypertension by activating peroxisome proliferator-activated receptor delta/endothelial nitric oxide synthase signaling. J Hypertens 2019; 36:651-665. [PMID: 29084084 DOI: 10.1097/hjh.0000000000001605] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE We aimed to elucidate the ameliorative effect of hydrogen sulfide (H2S) on endothelium-dependent relaxation disturbances via peroxisome proliferator-activated receptor delta/endothelial nitric oxide synthase (PPARδ/eNOS) pathway activation in hypertensive patients and rats. METHODS Renal arteries were collected from normotensive and hypertensive patients who underwent nephron-sparing surgery. Renal arteries from 37 patients were cultured with or without sodium H2S (NaHS) 50 μmol/l. The rats were randomly divided into four groups: Sham; Sham + NaHS, two kidneys; one clipped (2K1C); and 2K1C + NaHS. Mean arterial pressure was measured by tail-cuff plethysmography. A microvessel recording technique was used to observe the effect of NaHS on endothelium-dependent relaxation. Plasma H2S concentrations were detected using the monobromobimane method. Real-time PCR and western blotting were used to assess mRNA and protein levels of AT1, cystathionine γ-lyase, PPARδ, and phosphor-eNOS. Laser confocal scanning microscopy measured intracellular NO production in human umbilical vein endothelial cells. RESULTS NaHS improved endothelial function in hypertensive humans and rats. The 20-week administration of NaHS to 2K1C rats lowered the mean arterial pressure. In human umbilical vein endothelial cells, NaHS improved the AngII-induced production of NO. NaHS upregulated PPARδ expression, increased protein kinase B (Akt) or adenosine monophosphate kinase-activated protein kinase (AMPK) phosphorylation, and enhanced eNOS phosphorylation. A PPARδ agonist could mimic the ameliorative effect of NaHS that was suppressed by PPARδ, AMPK, or Akt inhibition. CONCLUSION H2S plays a protective function in renal arterial endothelium in hypertension by activating the PPARδ/PI3K/Akt/eNOS or PPARδ/AMPK/eNOS pathway. H2S may serve as an effective strategy against hypertension.
Collapse
|
10
|
Abstract
The nuclear receptor peroxisome proliferator-activated receptor δ (PPARδ) can transcriptionally regulate target genes. PPARδ exerts essential regulatory functions in the heart, which requires constant energy supply. PPARδ plays a key role in energy metabolism, controlling not only fatty acid (FA) and glucose oxidation, but also redox homeostasis, mitochondrial biogenesis, inflammation, and cardiomyocyte proliferation. PPARδ signaling is impaired in the heart under various pathological conditions, such as pathological cardiac hypertrophy, myocardial ischemia/reperfusion, doxorubicin cardiotoxicity and diabetic cardiomyopathy. PPARδ deficiency in the heart leads to cardiac dysfunction, myocardial lipid accumulation, cardiac hypertrophy/remodeling and heart failure. This article provides an up-today overview of this research area and discusses the role of PPARδ in the heart in light of the complex mechanisms of its transcriptional regulation and its potential as a translatable therapeutic target for the treatment of cardiac disorders.
Collapse
Affiliation(s)
- Qinglin Yang
- Cardiovascular Center of Excellence, LSU Healther Science Center, 533 Bolivar St, New Orleans, LA 70112, USA
| | - Qinqiang Long
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| |
Collapse
|
11
|
d'Uscio LV, He T, Santhanam AV, Katusic ZS. Endothelium-specific amyloid precursor protein deficiency causes endothelial dysfunction in cerebral arteries. J Cereb Blood Flow Metab 2018; 38:1715-1726. [PMID: 28959912 PMCID: PMC6168907 DOI: 10.1177/0271678x17735418] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The exact physiological function of amyloid-β precursor protein (APP) in endothelial cells is unknown. Endothelium-specific APP-deficient (eAPP-/-) mice were created to gain new insights into the role of APP in the control of vascular endothelial function. Endothelium-dependent relaxations to acetylcholine were significantly impaired in basilar arteries of global APP knockout (APP-/-) and eAPP-/- mice ( P < 0.05). In contrast, endothelium-independent relaxations to nitric oxide (NO)-donor diethylamine-NONOate were unchanged. Western blot analysis revealed that protein expression of endothelial nitric oxide synthase (eNOS) was significantly downregulated in large cerebral arteries of APP-/- mice and eAPP-/- mice as compared to respective wild-type littermates ( P < 0.05). Furthermore, basal levels of cyclic guanosine monophosphate (cGMP) were also significantly reduced in large cerebral arteries of APP-deficient mice ( P < 0.05). In contrast, protein expression of prostacyclin synthase as well as levels of cyclic adenosine monophosphate (cAMP) was not affected by genetic inactivation of APP in endothelial cells. By using siRNA to knockdown APP in cultured human brain microvascular endothelial cells we also found a significant downregulation of eNOS mRNA and protein expressions in APP-deficient endothelium ( P < 0.05). These findings indicate that under physiological conditions, expression of APP in cerebral vascular endothelium plays an important protective function by maintaining constitutive expression of eNOS .
Collapse
Affiliation(s)
- Livius V d'Uscio
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Tongrong He
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Anantha V Santhanam
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zvonimir S Katusic
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
12
|
Wu Y, Su SA, Xie Y, Shen J, Zhu W, Xiang M. Murine models of vascular endothelial injury: Techniques and pathophysiology. Thromb Res 2018; 169:64-72. [PMID: 30015230 DOI: 10.1016/j.thromres.2018.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/08/2018] [Accepted: 07/08/2018] [Indexed: 12/13/2022]
Abstract
Vascular endothelial injury (VEI) triggers pathological processes in various cardiovascular diseases, such as coronary heart disease and hypertension. To further elucidate the in vivo pathological mechanisms of VEI, many animal models have been established. For the easiness of genetic manipulation and feeding, murine models become most commonly applied for investigating VEI. Subsequently, countless valuable information concerning pathogenesis has been obtained and therapeutic strategies for VEI have been developed. This review will highlight some typical murine VEI models from the perspectives of pharmacological intervention, surgery and genetic manipulation. The techniques, pathophysiology, advantages, disadvantages and the experimental purpose of each model will also be discussed.
Collapse
Affiliation(s)
- Yue Wu
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China
| | - Sheng-An Su
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China
| | - Yao Xie
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China
| | - Jian Shen
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China
| | - Wei Zhu
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China.
| | - Meixiang Xiang
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China.
| |
Collapse
|
13
|
Sierra S, Luquin N, Navarro-Otano J. The endocannabinoid system in cardiovascular function: novel insights and clinical implications. Clin Auton Res 2017; 28:35-52. [PMID: 29222605 DOI: 10.1007/s10286-017-0488-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
RATIONALE Cardiovascular disease is now recognized as the number one cause of death in the world, and the size of the population at risk continues to increase rapidly. The dysregulation of the endocannabinoid (eCB) system plays a central role in a wide variety of conditions including cardiovascular disorders. Cannabinoid receptors, their endogenous ligands, as well as enzymes conferring their synthesis and degradation, exhibit overlapping distributions in the cardiovascular system. Furthermore, the pharmacological manipulation of the eCB system has effects on blood pressure, cardiac contractility, and endothelial vasomotor control. Growing evidence from animal studies supports the significance of the eCB system in cardiovascular disorders. OBJECTIVE To summarize the literature surrounding the eCB system in cardiovascular function and disease and the new compounds that may potentially extend the range of available interventions. RESULTS Drugs targeting CB1R, CB2R, TRPV1 and PPARs are proven effective in animal models mimicking cardiovascular disorders such as hypertension, atherosclerosis and myocardial infarction. Despite the setback of two clinical trials that exhibited unexpected harmful side-effects, preclinical studies are accelerating the development of more selective drugs with promising results devoid of adverse effects. CONCLUSION Over the last years, increasing evidence from basic and clinical research supports the role of the eCB system in cardiovascular function. Whereas new discoveries are paving the way for the identification of novel drugs and therapeutic targets, the close cooperation of researchers, clinicians and pharmaceutical companies is needed to achieve successful outcomes.
Collapse
Affiliation(s)
- Salvador Sierra
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Physiology and Biophysics, Molecular Medicine Research Building, Virginia Commonwealth University, 1220 East Broad Street, Richmond, VA, 23298, USA.
| | - Natasha Luquin
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, Australia
| | - Judith Navarro-Otano
- Neurology Service, Electromyography, Motor Control and Neuropathic Pain Unit, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
d'Uscio LV, He T, Katusic ZS. Expression and Processing of Amyloid Precursor Protein in Vascular Endothelium. Physiology (Bethesda) 2017; 32:20-32. [PMID: 27927802 DOI: 10.1152/physiol.00021.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyloid precursor protein (APP) is evolutionary conserved protein expressed in endothelial cells of cerebral and peripheral arteries. In this review, we discuss mechanisms responsible for expression and proteolytic cleavage of APP in endothelial cells. We focus on physiological and pathological implications of APP expression in vascular endothelium.
Collapse
Affiliation(s)
- Livius V d'Uscio
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Tongrong He
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Zvonimir S Katusic
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
15
|
Zhang Z, Jiang M, Xie X, Yang H, Wang X, Xiao L, Wang N. Oleanolic acid ameliorates high glucose-induced endothelial dysfunction via PPARδ activation. Sci Rep 2017; 7:40237. [PMID: 28067284 PMCID: PMC5220361 DOI: 10.1038/srep40237] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/02/2016] [Indexed: 02/07/2023] Open
Abstract
Oleanolic acid (3β-hydroxyolean-12-en-28-oic acid, OA) is a pentacyclic triterpenes widely distributed in food, medicinal plants and nutritional supplements. OA exhibits various pharmacological properties, such as hepatoprotective and anti-tumor effects. In this study, we analyzed the effect of OA on endothelial dysfunction induced by high glucose in human vascular endothelial cells (ECs). Western blotting showed that OA attenuated high glucose-reduced nitric production oxide (NO) as well as Akt-Ser473 and eNOS-Ser1177 phosphorylation in cultured human umbilical vein ECs (HUVECs). Next, luciferase reporter assay showed that OA activated peroxisome proliferators-activated receptor δ (PPARδ) activity. Quantitative reverse transcriptase PCR (qRT-PCR) demonstrated that OA increased the expressions of PPARδ target genes (PDK4, ADRP and ANGPTL4) in ECs. Meanwhile, the induced expressions of PDK4, ADRP and ANGPTL4 by OA were inhibited by GSK0660, a specific antagonist of PPARδ. In addition, inhibition of PPARδ abolished OA-induced the Akt-Ser473 and eNOS-Ser1177 phosphorylation, and NO production. Finally, by using Multi Myograph System, we showed that OA prevented high glucose-impaired vasodilation. This protective effect on vasodilation was inhibited in aortic rings pretreated with GSK0660. Collectively, we demonstrated that OA improved high glucose-impaired endothelial function via a PPARδ-mediated mechanism and through eNOS/Akt/NO pathway.
Collapse
Affiliation(s)
- Zihui Zhang
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Manli Jiang
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinya Xie
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Haixia Yang
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinfeng Wang
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lei Xiao
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Nanping Wang
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, 710061, China.,The Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| |
Collapse
|
16
|
He T, Santhanam AVR, Lu T, d'Uscio LV, Katusic ZS. Role of prostacyclin signaling in endothelial production of soluble amyloid precursor protein-α in cerebral microvessels. J Cereb Blood Flow Metab 2017; 37:106-122. [PMID: 26661245 PMCID: PMC5363732 DOI: 10.1177/0271678x15618977] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/20/2015] [Accepted: 10/30/2015] [Indexed: 12/20/2022]
Abstract
We tested hypothesis that activation of the prostacyclin (PGI2) receptor (IP receptor) signaling pathway in cerebral microvessels plays an important role in the metabolism of amyloid precursor protein (APP). In human brain microvascular endothelial cells activation of IP receptor with the stable analogue of PGI2, iloprost, stimulated expression of amyloid precursor protein and a disintegrin and metalloprotease 10 (ADAM10), resulting in an increased production of the neuroprotective and anticoagulant molecule, soluble APPα (sAPPα). Selective agonist of IP receptor, cicaprost, and adenylyl cyclase activator, forskolin, also enhanced expression of amyloid precursor protein and ADAM10. Notably, in cerebral microvessels of IP receptor knockout mice, protein levels of APP and ADAM10 were reduced. In addition, iloprost increased protein levels of peroxisome proliferator-activated receptor δ (PPARδ) in human brain microvascular endothelial cells. PPARδ-siRNA abolished iloprost-augmented protein expression of ADAM10. In contrast, GW501516 (a selective agonist of PPARδ) upregulated ADAM10 and increased production of sAPPα. Genetic deletion of endothelial PPARδ (ePPARδ-/-) in mice significantly reduced cerebral microvascular expression of ADAM10 and production of sAPPα. In vivo treatment with GW501516 increased sAPPα content in hippocampus of wild type mice but not in hippocampus of ePPARδ-/- mice. Our findings identified previously unrecognized role of IP-PPARδ signal transduction pathway in the production of sAPPα in cerebral microvasculature.
Collapse
Affiliation(s)
- Tongrong He
- Department of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Anantha Vijay R Santhanam
- Department of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Tong Lu
- Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Livius V d'Uscio
- Department of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zvonimir S Katusic
- Department of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
17
|
Latham Birt SH, Purcell R, Botham KM, Wheeler-Jones CPD. Endothelial HO-1 induction by model TG-rich lipoproteins is regulated through a NOX4-Nrf2 pathway. J Lipid Res 2016; 57:1204-18. [PMID: 27185859 PMCID: PMC4918850 DOI: 10.1194/jlr.m067108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Indexed: 12/17/2022] Open
Abstract
Circulating levels of chylomicron remnants (CMRs) increase postprandially and their composition directly reflects dietary lipid intake. These TG-rich lipoproteins likely contribute to the development of endothelial dysfunction, albeit via unknown mechanisms. Here, we investigated how the FA composition of CMRs influences their actions on human aortic endothelial cells (HAECs) by comparing the effects of model CMRs-artificial TG-rich CMR-like particles (A-CRLPs)-containing TGs extracted from fish, DHA-rich algal, corn, or palm oils. HAECs responded with distinct transcriptional programs according to A-CRLP TG content and oxidation status, with genes involved in antioxidant defense and cytoprotection most prominently affected by n-3 PUFA-containing A-CRLPs. These particles were significantly more efficacious inducers of heme oxygenase-1 (HO-1) than n-6 PUFA corn or saturated FA-rich palm CRLPs. Mechanistically, HO-1 induction by all CRLPs requires NADPH oxidase 4, with PUFA-containing particles additionally dependent upon mitochondrial reactive oxygen species. Activation of both p38 MAPK and PPARβ/δ culminates in increased nuclear factor erythroid 2-related factor 2 (Nrf2) expression/nuclear translocation and HO-1 induction. These studies define new molecular pathways coupling endothelial cell activation by model CMRs with adaptive regulation of Nrf2-dependent HO-1 expression and may represent key mechanisms through which dietary FAs differentially impact progression of endothelial dysfunction.
Collapse
Affiliation(s)
- Sally H Latham Birt
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, United Kingdom
| | - Robert Purcell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, United Kingdom
| | - Kathleen M Botham
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, United Kingdom
| | | |
Collapse
|
18
|
Restoration of Endothelial Function in Pparα (-/-) Mice by Tempol. PPAR Res 2015; 2015:728494. [PMID: 26649033 PMCID: PMC4663011 DOI: 10.1155/2015/728494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 12/18/2022] Open
Abstract
Peroxisome proliferator activated receptor alpha (PPARα) is one of the PPAR isoforms belonging to the nuclear hormone receptor superfamily that regulates genes involved in lipid and lipoprotein metabolism. PPARα is present in the vascular wall and is thought to be involved in protection against vascular disease. To determine if PPARα contributes to endothelial function, conduit and cerebral resistance arteries were studied in Pparα−/− mice using isometric and isobaric tension myography, respectively. Aortic contractions to PGF2α and constriction of middle cerebral arteries to phenylephrine were not different between wild type (WT) and Pparα−/−; however, relaxation/dilation to acetylcholine (ACh) was impaired. There was no difference in relaxation between WT and Pparα−/− aorta to treatment with a nitric oxide (NO) surrogate indicating impairment in endothelial function. Endothelial NO levels as well as NO synthase expression were reduced in Pparα−/− aortas, while superoxide levels were elevated. Two-week feeding with the reactive oxygen species (ROS) scavenger, tempol, normalized ROS levels and rescued the impaired endothelium-mediated relaxation in Pparα−/− mice. These results suggest that Pparα−/− mice have impaired endothelial function caused by decreased NO bioavailability. Therefore, activation of PPARα receptors may be a therapeutic target for maintaining endothelial function and protection against cardiovascular disease.
Collapse
|
19
|
Cheng X, Wang X, Wan Y, Zhou Q, Zhu H, Wang Y. Myosin light chain kinase inhibitor ML7 improves vascular endothelial dysfunction via tight junction regulation in a rabbit model of atherosclerosis. Mol Med Rep 2015; 12:4109-4116. [PMID: 26096176 PMCID: PMC4526030 DOI: 10.3892/mmr.2015.3973] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 05/08/2015] [Indexed: 01/06/2023] Open
Abstract
Vascular endothelial dysfunction (VED) is an important factor in the initiation and development of atherosclerosis (AS). Previous studies have demonstrated that endothelial permeability is increased in diet‑induced AS. However, the precise underlying mechanisms remain poorly understood. The present study aimed to analyze whether the myosin light chain kinase (MLCK) inhibitor ML7 is able to improve VED and AS by regulating the expression of the tight junction (TJ) proteins zona occludens (ZO)‑1 and occludin via mechanisms involving MLCK and MLC phosphorylation in high‑fat diet‑fed rabbits. New Zealand white rabbits were randomly divided into three groups: Control group, AS group and ML7 group. The rabbits were fed a standard diet (control group), a high‑fat diet (AS group) or a high‑fat diet supplemented with 1 mg/kg/day ML7 (ML7 group). After 12 weeks, endothelium‑dependent relaxation and endothelium‑independent relaxation were measured using high-frequency ultrasound. Administration of a high‑fat diet significantly increased the levels of serum lipids and inflammatory markers in the rabbits in the AS group, as compared with those in the rabbits in the control group. Furthermore, a high‑fat diet contributed to the formation of a typical atherosclerotic plaque, as well as an increase in endothelial permeability and VED. These symptoms of AS were significantly improved following treatment with ML7, as demonstrated in the ML7 group. Hematoxylin & eosin and immunohistochemical staining indicated that ML7 was able to decrease the expression of MLCK and MLC phosphorylation in the arterial wall of rabbits fed a high‑fat diet. A similar change was observed for the TJ proteins ZO‑1 and occludin. In addition, western blot analysis demonstrated that ML7 increased the expression levels of occludin in the precipitate, but reduced its expression in the supernatant of lysed aortas. These results indicated that occludin, which is a dynamic protein at the TJ, is associated with remodeling from cell membrane to cytoplasm. The present study was the first, to the best of our knowledge, to indicate that ML7 may ameliorate VED and AS by regulating the TJ proteins ZO‑1 and occludin via mechanisms involving MLCK and MLC phosphorylation.
Collapse
Affiliation(s)
- Xiaowen Cheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xiaobian Wang
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yufeng Wan
- Department of Otolaryngology, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qing Zhou
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Huaqing Zhu
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuan Wang
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
20
|
Zolezzi JM, Bastías-Candia S, Santos MJ, Inestrosa NC. Alzheimer's disease: relevant molecular and physiopathological events affecting amyloid-β brain balance and the putative role of PPARs. Front Aging Neurosci 2014; 6:176. [PMID: 25120477 PMCID: PMC4112937 DOI: 10.3389/fnagi.2014.00176] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/03/2014] [Indexed: 12/02/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of age-related dementia. With the expected aging of the human population, the estimated morbidity of AD suggests a critical upcoming health problem. Several lines of research are focused on understanding AD pathophysiology, and although the etiology of the disease remains a matter of intense debate, increased brain levels of amyloid-β (Aβ) appear to be a critical event in triggering a wide range of molecular alterations leading to AD. It has become evident in recent years that an altered balance between production and clearance is responsible for the accumulation of brain Aβ. Moreover, Aβ clearance is a complex event that involves more than neurons and microglia. The status of the blood-brain barrier (BBB) and choroid plexus, along with hepatic functionality, should be considered when Aβ balance is addressed. Furthermore, it has been proposed that exposure to sub-toxic concentrations of metals, such as copper, could both directly affect these secondary structures and act as a seeding or nucleation core that facilitates Aβ aggregation. Recently, we have addressed peroxisomal proliferator-activated receptors (PPARs)-related mechanisms, including the direct modulation of mitochondrial dynamics through the PPARγ-coactivator-1α (PGC-1α) axis and the crosstalk with critical aging- and neurodegenerative-related cellular pathways. In the present review, we revise the current knowledge regarding the molecular aspects of Aβ production and clearance and provide a physiological context that gives a more complete view of this issue. Additionally, we consider the different structures involved in AD-altered Aβ brain balance, which could be directly or indirectly affected by a nuclear receptor (NR)/PPAR-related mechanism.
Collapse
Affiliation(s)
- Juan M Zolezzi
- Laboratorio de Biología Celular y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Tarapacá Arica, Chile
| | - Sussy Bastías-Candia
- Laboratorio de Biología Celular y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Tarapacá Arica, Chile
| | - Manuel J Santos
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile ; Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales Sydney, NSW, Australia ; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes Punta Arenas, Chile
| |
Collapse
|