1
|
Udjus C, Halvorsen B, Kong XY, Sagen EL, Martinsen M, Yang K, Løberg EM, Christensen G, Skjønsberg OH, Larsen K. Alveolar hypoxia induces organ-specific inflammasome-related inflammation in male mouse lungs. Physiol Rep 2024; 12:e16143. [PMID: 39034131 PMCID: PMC11260499 DOI: 10.14814/phy2.16143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024] Open
Abstract
Inflammation through activation of caspase-1, seems to play a role in pulmonary hypertension induced by alveolar hypoxia. Whether alveolar hypoxia induces caspase-1-mediated inflammation and influx of leukocytes in other organs than the lungs, is not known. Our aim was to explore sites of caspase-1-related inflammation in alveolar hypoxia. Wild type (WT) mice were exposed to environmental hypoxia or room-air, and organs were analyzed. Right heart catheterization was performed after 14 days of alveolar hypoxia in WT mice and mice transplanted with WT or caspase-1-/- bone marrow. Hypoxia induced leukocyte accumulation and increased caspase-1 protein in the lungs, not in other organs. WT mice transplanted with WT or caspase-1-/- bone marrow showed no difference in pulmonary leukocyte accumulation or development of pulmonary hypertension after alveolar hypoxia. Caspase-1 and IL-18 were detected in bronchial epithelium in WT mice, and hypoxia induced IL-18 secretion from bronchial epithelial cells. IL-18 stimulation generated IL-6 mRNA in monocytes. Phosphorylated STAT3 was increased in hypoxic lungs, not in other organs. Alveolar hypoxia induces caspase-1 activation and leukocyte accumulation specific to the lungs, not in other organs. Caspase-1 activation and IL-18 secretion from bronchial epithelial cells might initiate hypoxia-induced inflammation, leading to pulmonary hypertension.
Collapse
Affiliation(s)
- Camilla Udjus
- Department of Pulmonary MedicineOslo University Hospital Ullevål and University of OsloOsloNorway
- Institute for Experimental Medical ResearchOslo University Hospital Ullevål and University of OsloOsloNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Bente Halvorsen
- Institute of Clinical MedicineUniversity of OsloOsloNorway
- Research Institute of Internal MedicineOslo University Hospital Rikshospitalet and University of OsloOsloNorway
| | - Xiang Yi Kong
- Research Institute of Internal MedicineOslo University Hospital Rikshospitalet and University of OsloOsloNorway
| | - Ellen Lund Sagen
- Institute of Clinical MedicineUniversity of OsloOsloNorway
- Research Institute of Internal MedicineOslo University Hospital Rikshospitalet and University of OsloOsloNorway
| | - Marita Martinsen
- Institute for Experimental Medical ResearchOslo University Hospital Ullevål and University of OsloOsloNorway
| | - Kuan Yang
- Research Institute of Internal MedicineOslo University Hospital Rikshospitalet and University of OsloOsloNorway
| | - Else Marit Løberg
- Department of PathologyOslo University Hospital Ullevål and University of OsloOsloNorway
| | - Geir Christensen
- Institute for Experimental Medical ResearchOslo University Hospital Ullevål and University of OsloOsloNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
- K.G. Jebsen Center for Cardiac ResearchUniversity of OsloOsloNorway
| | - Ole Henning Skjønsberg
- Department of Pulmonary MedicineOslo University Hospital Ullevål and University of OsloOsloNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Karl‐Otto Larsen
- Department of Pulmonary MedicineOslo University Hospital Ullevål and University of OsloOsloNorway
| |
Collapse
|
2
|
Jasińska-Stroschein M. An updated review of experimental rodent models of pulmonary hypertension and left heart disease. Front Pharmacol 2024; 14:1308095. [PMID: 38259266 PMCID: PMC10800974 DOI: 10.3389/fphar.2023.1308095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Left heart disease (LHD) is the leading cause of pulmonary hypertension (PH). Its recent growth has not been matched by the design of therapeutic agents directly targeting the disease. Effective therapies approved for pulmonary arterial hypertension (PAH) have been shown to be inefficient in patients with PH-LHD. Hence, there is a need for an animal model that would closely mimic PH-LHD in preclinical experiments. The current study describes and compares a number of rodent models of left ventricular failure and their potential to induce PH. It also evaluates whether, and to what extent, common PH models could develop LV failure. Articles were identified in the Pubmed/Medline and Web of Science online electronic databases following the PRISMA Protocol between 1992 and 2022. Quality assessment was carried out using the SYRCLE risk-of-bias tool for animal studies. Publication bias across studies using Egger's regression test statistic, was performed together with sensitivity analysis. A wide spectrum of protocols-135 studies and 207 interventions, was examined, including systemic hypertensive models, pressure-overload-induced HF, model of ischemic heart failure, and metabolic approaches based on high fat diet or metabolic syndrome. The most pronounced alterations in PH-related parameters were demonstrated for the common PH models, but were also seen in animals with LV failure induced by ischemic conditions, pressure overload or metabolic conditions. Models based on aortic banding, transverse aortic constriction (TAC), or with myocardial infarction (MI) caused by coronary artery ligation, demonstrated more pronounced worsening in PH due to LV failure; however, they also demonstrated poor survival, especially the ischemic-HF model. Common PH models, excluding prolonged exposure to monocrotaline, do not promote LV hypertrophy. Prolonged exposure to a high-fat diet, or a two-hit model of an obese ZSF1 rat combined with SU5416-induced pulmonary endothelial impairment (a VEGF receptor antagonist) worsened PH and impaired diastolic dysfunction. Due to the limited number of protocols, further trials are needed to confirm the utility of such approaches for modeling PH in subjects with metabolic syndrome. This would provide a clearer insight into the complexity of LHD, PH and metabolic disorders in PH-LHD, and thus accelerate the development of new therapies in clinical trials.
Collapse
|
3
|
Yan S, Sheak JR, Walker BR, Jernigan NL, Resta TC. Contribution of Mitochondrial Reactive Oxygen Species to Chronic Hypoxia-Induced Pulmonary Hypertension. Antioxidants (Basel) 2023; 12:2060. [PMID: 38136180 PMCID: PMC10741244 DOI: 10.3390/antiox12122060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Pulmonary hypertension (PH) resulting from chronic hypoxia (CH) occurs in patients with chronic obstructive pulmonary diseases, sleep apnea, and restrictive lung diseases, as well as in residents at high altitude. Previous studies from our group and others demonstrate a detrimental role of reactive oxygen species (ROS) in the pathogenesis of CH-induced PH, although the subcellular sources of ROS are not fully understood. We hypothesized that mitochondria-derived ROS (mtROS) contribute to enhanced vasoconstrictor reactivity and PH following CH. To test the hypothesis, we exposed rats to 4 weeks of hypobaric hypoxia (PB ≈ 380 mmHg), with control rats housed in ambient air (PB ≈ 630 mmHg). Chronic oral administration of the mitochondria-targeted antioxidant MitoQ attenuated CH-induced decreases in pulmonary artery (PA) acceleration time, increases in right ventricular systolic pressure, right ventricular hypertrophy, and pulmonary arterial remodeling. In addition, endothelium-intact PAs from CH rats exhibited a significantly greater basal tone compared to those from control animals, as was eliminated via MitoQ. CH also augmented the basal tone in endothelium-disrupted PAs, a response associated with increased mtROS production in primary PA smooth muscle cells (PASMCs) from CH rats. However, we further uncovered an effect of NO synthase inhibition with Nω-nitro-L-arginine (L-NNA) to unmask a potent endothelial vasoconstrictor influence that accentuates mtROS-dependent vasoconstriction following CH. This basal tone augmentation in the presence of L-NNA disappeared following combined endothelin A and B receptor blockade with BQ123 and BQ788. The effects of using CH to augment vasoconstriction and PASMC mtROS production in exogenous endothelin 1 (ET-1) were similarly prevented by MitoQ. We conclude that mtROS participate in the development of CH-induced PH. Furthermore, mtROS signaling in PASMCs is centrally involved in enhanced pulmonary arterial constriction following CH, a response potentiated by endogenous ET-1.
Collapse
Affiliation(s)
| | | | | | | | - Thomas C. Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA (J.R.S.); (B.R.W.); (N.L.J.)
| |
Collapse
|
4
|
Udjus C, Sjaastad I, Hjørnholm U, Tunestveit TK, Hoffmann P, Hinojosa A, Espe EKS, Christensen G, Skjønsberg OH, Larsen KO, Rostrup M. Extreme altitude induces divergent mass reduction of right and left ventricle in mountain climbers. Physiol Rep 2022; 10:e15184. [PMID: 35146955 PMCID: PMC8831961 DOI: 10.14814/phy2.15184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 12/01/2022] Open
Abstract
Mountain climbing at high altitude implies exposure to low levels of oxygen, low temperature, wind, physical and psychological stress, and nutritional insufficiencies. We examined whether right ventricular (RV) and left ventricular (LV) myocardial masses were reversibly altered by exposure to extreme altitude. Magnetic resonance imaging and echocardiography of the heart, dual x‐ray absorptiometry scan of body composition, and blood samples were obtained from ten mountain climbers before departure to Mount Everest or Dhaulagiri (baseline), 13.5 ± 1.5 days after peaking the mountain (post‐hypoxia), and six weeks and six months after expeditions exceeding 8000 meters above sea level. RV mass was unaltered after extreme altitude, in contrast to a reduction in LV mass by 11.8 ± 3.4 g post‐hypoxia (p = 0.001). The reduction in LV mass correlated with a reduction in skeletal muscle mass. After six weeks, LV myocardial mass was restored to baseline values. Extreme altitude induced a reduction in LV end‐diastolic volume (20.8 ± 7.7 ml, p = 0.011) and reduced E’, indicating diastolic dysfunction, which were restored after six weeks follow‐up. Elevated circulating interleukin‐18 after extreme altitude compared to follow‐up levels, might have contributed to reduced muscle mass and diastolic dysfunction. In conclusion, the mass of the RV, possibly exposed to elevated afterload, was not changed after extreme altitude, whereas LV mass was reduced. The reduction in LV mass correlated with reduced skeletal muscle mass, indicating a common denominator, and elevated circulating interleukin‐18 might be a mechanism for reduced muscle mass after extreme altitude.
Collapse
Affiliation(s)
- Camilla Udjus
- Department of Pulmonary Medicine, Oslo University Hospital Ullevål, Oslo, Norway.,Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway.,K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway.,K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway.,Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Ulla Hjørnholm
- Section of Cardiovascular and Renal Research, Medical Division, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Torbjørn K Tunestveit
- Section of Cardiovascular and Renal Research, Medical Division, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway.,University of Oslo, Oslo, Norway
| | - Pavel Hoffmann
- Section for Interventional Cardiology, Division of Cardiovascular and Pulmonary Diseases, Department of Cardiology, Oslo University Hospital, Oslo, Norway
| | - Alexis Hinojosa
- Department of Radiology and Nuclear Medicine, Oslo University Hospital Ullevål, Oslo, Norway.,Interventional Centre (IVS), Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Emil K S Espe
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway.,K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway.,K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Ole H Skjønsberg
- Department of Pulmonary Medicine, Oslo University Hospital Ullevål, Oslo, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Karl-Otto Larsen
- Department of Pulmonary Medicine, Oslo University Hospital Ullevål, Oslo, Norway
| | - Morten Rostrup
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Section of Cardiovascular and Renal Research, Medical Division, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway.,Department of Acute Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
5
|
Papoušek F, Sedmera D, Neckář J, Ošťádal B, Kolář F. Left ventricular function and remodelling in rats exposed stepwise up to extreme chronic intermittent hypoxia. Respir Physiol Neurobiol 2020; 282:103526. [PMID: 32805421 DOI: 10.1016/j.resp.2020.103526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/20/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022]
Abstract
The main aim was to find out whether long-lasting stepwise exposure to extreme hypoxia affects left ventricular (LV) geometry and systolic function. Adult male rats were exposed to intermittent hypobaric hypoxia (8 h/day) with increasing altitude in steps of 1000 m every 3 weeks up to 8000 m. While the LV cavity diastolic diameter did not change over the whole range of hypoxia, the wall thickness increased significantly at the altitude of 8000 m. LV fractional shortening ranged between 48.1 % and 50.1 % and remained unaffected even at the most severe hypoxia. At the end of experiment, haematocrit reached 83 %, mean systemic arterial pressure 120 % and relative LV weight 154 % of normoxic values while RV systolic pressure and relative RV weight doubled. Myocyte hypertrophy and myocardial fibrosis were more pronounced in RV than in LV. In conclusion, LV systolic function was preserved after chronic stepwise exposure of rats to extreme intermittent hypoxia despite moderate concentric hypertrophy and myocardial remodelling.
Collapse
Affiliation(s)
- František Papoušek
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Sedmera
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Neckář
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Bohuslav Ošťádal
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - František Kolář
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
6
|
Antigny F, Mercier O, Humbert M, Sabourin J. Excitation-contraction coupling and relaxation alteration in right ventricular remodelling caused by pulmonary arterial hypertension. Arch Cardiovasc Dis 2020; 113:70-84. [DOI: 10.1016/j.acvd.2019.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 02/09/2023]
|
7
|
Chan SMH, Selemidis S, Bozinovski S, Vlahos R. Pathobiological mechanisms underlying metabolic syndrome (MetS) in chronic obstructive pulmonary disease (COPD): clinical significance and therapeutic strategies. Pharmacol Ther 2019; 198:160-188. [PMID: 30822464 PMCID: PMC7112632 DOI: 10.1016/j.pharmthera.2019.02.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major incurable global health burden and is currently the 4th largest cause of death in the world. Importantly, much of the disease burden and health care utilisation in COPD is associated with the management of its comorbidities (e.g. skeletal muscle wasting, ischemic heart disease, cognitive dysfunction) and infective viral and bacterial acute exacerbations (AECOPD). Current pharmacological treatments for COPD are relatively ineffective and the development of effective therapies has been severely hampered by the lack of understanding of the mechanisms and mediators underlying COPD. Since comorbidities have a tremendous impact on the prognosis and severity of COPD, the 2015 American Thoracic Society/European Respiratory Society (ATS/ERS) Research Statement on COPD urgently called for studies to elucidate the pathobiological mechanisms linking COPD to its comorbidities. It is now emerging that up to 50% of COPD patients have metabolic syndrome (MetS) as a comorbidity. It is currently not clear whether metabolic syndrome is an independent co-existing condition or a direct consequence of the progressive lung pathology in COPD patients. As MetS has important clinical implications on COPD outcomes, identification of disease mechanisms linking COPD to MetS is the key to effective therapy. In this comprehensive review, we discuss the potential mechanisms linking MetS to COPD and hence plausible therapeutic strategies to treat this debilitating comorbidity of COPD.
Collapse
Affiliation(s)
- Stanley M H Chan
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
8
|
Crnkovic S, Schmidt A, Egemnazarov B, Wilhelm J, Marsh LM, Ghanim B, Klepetko W, Olschewski A, Olschewski H, Kwapiszewska G. Functional and molecular factors associated with TAPSE in hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2016; 311:L59-73. [PMID: 27106290 DOI: 10.1152/ajplung.00381.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/17/2016] [Indexed: 01/11/2023] Open
Abstract
Adaptation of the right ventricle (RV) to increased afterload is crucial for survival in pulmonary hypertension (PH), but it is challenging to assess RV function and identify associated molecular mechanisms. The aim of the current study was to analyze the relationship between invasive and noninvasive parameters of RV morphology and function and associated molecular changes. The response of mice to normobaric hypoxia was assessed by hechocardiography, invasive hemodynamics, and histological and molecular analyses. Plasma levels of possibly novel markers of RV remodeling were measured by ELISA in patients with idiopathic pulmonary arterial hypertension (IPAH) and matched healthy controls. Chronic hypoxia-induced PH was accompanied by significantly decreased tricuspid annular plane systolic excursion (TAPSE) and unchanged RV contractility index and tau. RV hypertrophy was present without an increase in fibrosis. There was no change in α- and β-major histocompatibility class or natriuretic peptides expression. Comparative microarray analysis identified two soluble factors, fibroblast growth factor-5 (FGF5) and interleukin-22 receptor alpha-2 (IL22RA2), as being possibly associated with RV remodeling. We observed significantly higher plasma levels of IL22RA2, but not FGF5, in patients with IPAH. Hypoxic pulmonary hypertension in a stage of RV remodeling with preserved systolic function is associated with decreased pulmonary vascular compliance, mild diastolic RV dysfunction, and significant decrease in TAPSE. Subtle gene expression changes in the RV vs. the left ventricle upon chronic hypoxia suggest that the majority of changes are due to hypoxia and not due to changes in afterload. Increased IL22RA2 levels might represent a novel RV adaptive mechanism.
Collapse
Affiliation(s)
- Slaven Crnkovic
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Department of Experimental Anaesthesiology, Medical University of Graz, Graz, Austria
| | - Albrecht Schmidt
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Jochen Wilhelm
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Bahil Ghanim
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Department of Thoracic Surgery, Medical University of Vienna/Vienna General Hospital, Vienna, Austria
| | - Walter Klepetko
- Department of Thoracic Surgery, Medical University of Vienna/Vienna General Hospital, Vienna, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Department of Experimental Anaesthesiology, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; and
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Department of Experimental Anaesthesiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
9
|
Khedoe PPSJ, Rensen PCN, Berbée JFP, Hiemstra PS. Murine models of cardiovascular comorbidity in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1011-27. [PMID: 26993520 DOI: 10.1152/ajplung.00013.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/15/2016] [Indexed: 01/12/2023] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD) have an increased risk for cardiovascular disease (CVD). Currently, COPD patients with atherosclerosis (i.e., the most important underlying cause of CVD) receive COPD therapy complemented with standard CVD therapy. This may, however, not be the most optimal treatment. To investigate the link between COPD and atherosclerosis and to develop specific therapeutic strategies for COPD patients with atherosclerosis, a substantial number of preclinical studies using murine models have been performed. In this review, we summarize the currently used murine models of COPD and atherosclerosis, both individually and combined, and discuss the relevance of these models for studying the pathogenesis and development of new treatments for COPD patients with atherosclerosis. Murine and clinical studies have provided complementary information showing a prominent role for systemic inflammation and oxidative stress in the link between COPD and atherosclerosis. These and other studies showed that murine models for COPD and atherosclerosis are useful tools and can provide important insights relevant to understanding the link between COPD and CVD. More importantly, murine studies provide good platforms for studying the potential of promising (new) therapeutic strategies for COPD patients with CVD.
Collapse
Affiliation(s)
- P Padmini S J Khedoe
- Department of Pulmonology, Leiden University Medical Center, the Netherlands; Department of Medicine, Division of Endocrinology, Leiden University Medical Center, the Netherlands; and
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, the Netherlands; and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands
| | - Jimmy F P Berbée
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, the Netherlands; and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, the Netherlands
| |
Collapse
|
10
|
López-Sánchez M, Muñoz-Esquerre M, Huertas D, Montes A, Molina-Molina M, Manresa F, Dorca J, Santos S. Inflammatory markers and circulating extracellular matrix proteins in patients with chronic obstructive pulmonary disease and left ventricular diastolic dysfunction. CLINICAL RESPIRATORY JOURNAL 2016; 11:859-866. [DOI: 10.1111/crj.12428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/26/2015] [Accepted: 12/06/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Marta López-Sánchez
- Department of Pulmonary Medicine; Bellvitge University Hospital; Barcelona Spain
- Pneumology Research Group, Bellvitge Biomedical Research Institute (IDIBELL); Barcelona Spain
| | - Mariana Muñoz-Esquerre
- Department of Pulmonary Medicine; Bellvitge University Hospital; Barcelona Spain
- Pneumology Research Group, Bellvitge Biomedical Research Institute (IDIBELL); Barcelona Spain
| | - Daniel Huertas
- Department of Pulmonary Medicine; Bellvitge University Hospital; Barcelona Spain
- Pneumology Research Group, Bellvitge Biomedical Research Institute (IDIBELL); Barcelona Spain
| | - Ana Montes
- Pneumology Research Group, Bellvitge Biomedical Research Institute (IDIBELL); Barcelona Spain
- CIBERES; Barcelona Spain
| | - María Molina-Molina
- Department of Pulmonary Medicine; Bellvitge University Hospital; Barcelona Spain
- Pneumology Research Group, Bellvitge Biomedical Research Institute (IDIBELL); Barcelona Spain
- CIBERES; Barcelona Spain
| | - Federico Manresa
- Department of Pulmonary Medicine; Bellvitge University Hospital; Barcelona Spain
- Pneumology Research Group, Bellvitge Biomedical Research Institute (IDIBELL); Barcelona Spain
| | - Jordi Dorca
- Department of Pulmonary Medicine; Bellvitge University Hospital; Barcelona Spain
- Pneumology Research Group, Bellvitge Biomedical Research Institute (IDIBELL); Barcelona Spain
- CIBERES; Barcelona Spain
| | - Salud Santos
- Department of Pulmonary Medicine; Bellvitge University Hospital; Barcelona Spain
- Pneumology Research Group, Bellvitge Biomedical Research Institute (IDIBELL); Barcelona Spain
- CIBERES; Barcelona Spain
| |
Collapse
|
11
|
Ma L, Ambalavanan N, Liu H, Sun Y, Jhala N, Bradley WE, Dell'Italia LJ, Michalek S, Wu H, Steele C, Benza RL, Chen Y. TLR4 regulates pulmonary vascular homeostasis and remodeling via redox signaling. Front Biosci (Landmark Ed) 2016; 21:397-409. [PMID: 26709781 DOI: 10.2741/4396] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pulmonary arterial hypertension (PAH) contributes to morbidity and mortality of patients with lung and heart diseases. We demonstrated that hypoxia induced PAH and increased pulmonary arterial wall thickness in wild-type mice. Mice deficient in toll-like receptor 4 (TLR4-/-) spontaneously developed PAH, which was not further enhanced by hypoxia. Echocardiography determined right ventricular hypertrophy and decreased pulmonary arterial acceleration time were associated with the development of PAH in TLR4(-/-) mice. In pulmonary arterial smooth muscle cells (PASMC), hypoxia decreased TLR4 expression and induced reactive oxygen species (ROS) and Nox1/Nox4. Inhibition of NADPH oxidase decreased hypoxia-induced proliferation of wild-type PASMC. PASMC derived from TLR4(-/-) mice exhibited increased ROS and Nox4/Nox1 expression. Our studies demonstrate an important role of TLR4 in maintaining normal pulmonary vasculature and in hypoxia-induced PAH. Inhibition of TLR4, by genetic ablation or hypoxia, increases the expression of Nox1/Nox4 and induces PASMC proliferation and vascular remodeling. These results support a novel function of TLR4 in regulating the development of PAH and reveal a new regulatory axis contributing to TLR4 deficiency-induced vascular hypertrophy and remodeling.
Collapse
Affiliation(s)
- Liping Ma
- Department of Pathology, University of Alabama at Birmingham, Birmingham AL 35294, *current address: Sun Yat-Sen Memorial Hospital ,Sun Yat-Sen University, Guangzhou 510120, China
| | | | - Hui Liu
- Department of Medicine, University of Alabama at Birmingham, Birmingham AL 35294
| | - Yong Sun
- Department of Pathology, University of Alabama at Birmingham, Birmingham AL 35294
| | - Nirag Jhala
- Department of Pathology, University of Alabama at Birmingham, Birmingham AL 35294
| | - Wayne E Bradley
- Department of Medicine, University of Alabama at Birmingham, Birmingham AL 35294
| | - Louis J Dell'Italia
- Department of Medicine, University of Alabama at Birmingham, Birmingham AL 35294; VA Medical Center, Birmingham AL 35294
| | - Sue Michalek
- Department of Microbiology, University of Alabama at Birmingham, Birmingham AL 35294
| | - Hui Wu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham AL 35294; Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham AL 35294
| | - Chad Steele
- Department of Medicine, University of Alabama at Birmingham, Birmingham AL 35294
| | - Raymond L Benza
- Department of Medicine, University of Alabama at Birmingham, Birmingham AL 35294
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294; VA Medical Center, Birmingham AL 35294,
| |
Collapse
|
12
|
Revuelta-López E, Cal R, Herraiz-Martínez A, de Gonzalo-Calvo D, Nasarre L, Roura S, Gálvez-Montón C, Bayes-Genis A, Badimon L, Hove-Madsen L, Llorente-Cortés V. Hypoxia-driven sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) downregulation depends on low-density lipoprotein receptor-related protein 1 (LRP1)-signalling in cardiomyocytes. J Mol Cell Cardiol 2015; 85:25-36. [PMID: 25968337 DOI: 10.1016/j.yjmcc.2015.04.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 01/30/2023]
Abstract
The maintenance of sarcoplasmic reticulum Ca(2+) ATPase (SERCA2) activity is crucial for cardiac function and SERCA2 is dramatically reduced in the heart exposed to hypoxic/ischemic conditions. Previous work from our group showed that hypoxia upregulates the phosphorylated form of the Ca(2+)-dependent nonreceptor protein tyrosine kinase (PTK) proline-rich tyrosine kinase 2 (pPyk2) protein levels in a low-density lipoprotein receptor-related protein (LRP1)-dependent manner. Pyk2 in turn may modulate SERCA2 in cardiomyocytes although this remains controversial. We therefore aimed to investigate the role of LRP1 on hypoxia-induced SERCA2 depletion in cardiomyocytes and to establish LRP1 signalling mechanisms involved. Western blot analysis showed that hypoxia reduced SERCA2 concomitantly with a sustained increase in LRP1 and pPyk2 protein levels in HL-1 cardiomyocytes. By impairing hypoxia-induced Pyk2 phosphorylation and HIF-1α accumulation, LRP1 deficiency prevented SERCA2 depletion and reduction of the sarcoplasmic reticulum calcium content in cardiomyocytes. Moreover, the inhibition of Pyk2 phosphorylation (with the Src-family inhibitor PP2) or the specific silencing of Pyk2 (with siRNA-anti Pyk2) preserved low HIF-1α and high SERCA2 levels in HL-1 cardiomyocytes exposed to hypoxia. We determined that the LRP1/Pyk2 axis represses SERCA2 mRNA expression via HIF-1α since HIF-1α overexpression abolished the protective effect of LRP1 deficiency on SERCA2 depletion. Our findings show a crucial role of LRP1/Pyk2/HIF-1α in hypoxia-induced cardiomyocyte SERCA2 downregulation, a pathophysiological process closely associated with heart failure.
Collapse
Affiliation(s)
| | - Roi Cal
- Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Barcelona, Spain
| | | | | | - Laura Nasarre
- Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Barcelona, Spain
| | - Santiago Roura
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Can Ruti Campus, Badalona, Spain
| | - Carolina Gálvez-Montón
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Can Ruti Campus, Badalona, Spain
| | - Antoni Bayes-Genis
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Can Ruti Campus, Badalona, Spain
| | - Lina Badimon
- Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Barcelona, Spain
| | - Leif Hove-Madsen
- Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Barcelona, Spain
| | | |
Collapse
|
13
|
Portillo K, Abad-Capa J, Ruiz-Manzano J. Enfermedad pulmonar obstructiva crónica y ventrículo izquierdo. Arch Bronconeumol 2015; 51:227-34. [DOI: 10.1016/j.arbres.2014.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/06/2014] [Accepted: 03/17/2014] [Indexed: 01/19/2023]
|
14
|
Hillestad V, Espe EKS, Cero F, Larsen KO, Sjaastad I, Nygård S, Skjønsberg OH, Christensen G. IL-18 neutralization during alveolar hypoxia improves left ventricular diastolic function in mice. Acta Physiol (Oxf) 2015; 213:492-504. [PMID: 25182570 DOI: 10.1111/apha.12376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 06/30/2014] [Accepted: 08/27/2014] [Indexed: 12/18/2022]
Abstract
AIM In patients, an association exists between pulmonary diseases and diastolic dysfunction of the left ventricle (LV). We have previously shown that alveolar hypoxia in mice induces LV diastolic dysfunction and that mice exposed to hypoxia have increased levels of circulating interleukin-18 (IL-18), suggesting involvement of IL-18 in development of diastolic dysfunction. IL-18 binding protein (IL-18BP) is a natural inhibitor of IL-18. In this study, we hypothesized that neutralization of IL-18 during alveolar hypoxia would improve LV diastolic function. METHODS Mice were exposed to 10% oxygen for 2 weeks while treated with IL-18BP or vehicle. Cardiac function and morphology were measured using echocardiography, intraventricular pressure measurements and magnetic resonance imaging (MRI). For characterization of molecular changes in the heart, both real-time PCR and Western blotting were performed. ELISA technique was used to measure levels of circulating cytokines. RESULTS As expected, exposure to hypoxia-induced LV diastolic dysfunction, as shown by prolonged time constant of isovolumic relaxation (τ). Improved relaxation with IL-18BP treatment was demonstrated by a significant reduction towards control τ values. Decreased levels of phosphorylated phospholamban (P-PLB) in hypoxia, but normalization by IL-18BP treatment suggest a role for IL-18 in regulation of calcium-handling proteins in hypoxia-induced diastolic dysfunction. In addition, MRI showed less increase in right ventricular (RV) wall thickness in IL-18BP-treated animals exposed to hypoxia, indicating an effect on RV hypertrophy. CONCLUSION Neutralization of IL-18 during alveolar hypoxia improves LV diastolic function and partly prevents RV hypertrophy.
Collapse
Affiliation(s)
- V. Hillestad
- Institute for Experimental Medical Research; Oslo University Hospital Ullevål and University of Oslo; Oslo Norway
- KG Jebsen Cardiac Research Center; University of Oslo; Oslo Norway
- Center for Heart Failure Research; University of Oslo; Oslo Norway
| | - E. K. S. Espe
- Institute for Experimental Medical Research; Oslo University Hospital Ullevål and University of Oslo; Oslo Norway
- KG Jebsen Cardiac Research Center; University of Oslo; Oslo Norway
- Center for Heart Failure Research; University of Oslo; Oslo Norway
| | - F. Cero
- Institute for Experimental Medical Research; Oslo University Hospital Ullevål and University of Oslo; Oslo Norway
- KG Jebsen Cardiac Research Center; University of Oslo; Oslo Norway
- Center for Heart Failure Research; University of Oslo; Oslo Norway
- Departement of Pulmonary Medicine; Oslo University Hospital Ullevål and University of Oslo; Oslo Norway
| | - K. O. Larsen
- Institute for Experimental Medical Research; Oslo University Hospital Ullevål and University of Oslo; Oslo Norway
- KG Jebsen Cardiac Research Center; University of Oslo; Oslo Norway
- Center for Heart Failure Research; University of Oslo; Oslo Norway
- Departement of Pulmonary Medicine; Oslo University Hospital Ullevål and University of Oslo; Oslo Norway
| | - I. Sjaastad
- Institute for Experimental Medical Research; Oslo University Hospital Ullevål and University of Oslo; Oslo Norway
- KG Jebsen Cardiac Research Center; University of Oslo; Oslo Norway
- Center for Heart Failure Research; University of Oslo; Oslo Norway
| | - S. Nygård
- Institute for Experimental Medical Research; Oslo University Hospital Ullevål and University of Oslo; Oslo Norway
- KG Jebsen Cardiac Research Center; University of Oslo; Oslo Norway
- Center for Heart Failure Research; University of Oslo; Oslo Norway
- Bioinformatics Core Facility; Institute for Medical Informatics; Oslo University Hospital and University of Oslo; Oslo Norway
| | - O. H. Skjønsberg
- Departement of Pulmonary Medicine; Oslo University Hospital Ullevål and University of Oslo; Oslo Norway
| | - G. Christensen
- Institute for Experimental Medical Research; Oslo University Hospital Ullevål and University of Oslo; Oslo Norway
- KG Jebsen Cardiac Research Center; University of Oslo; Oslo Norway
- Center for Heart Failure Research; University of Oslo; Oslo Norway
| |
Collapse
|
15
|
López-Sánchez M, Muñoz-Esquerre M, Huertas D, Gonzalez-Costello J, Ribas J, Manresa F, Dorca J, Santos S. High Prevalence of Left Ventricle Diastolic Dysfunction in Severe COPD Associated with A Low Exercise Capacity: A Cross-Sectional Study. PLoS One 2013; 8:e68034. [PMID: 23826360 PMCID: PMC3694927 DOI: 10.1371/journal.pone.0068034] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/24/2013] [Indexed: 01/28/2023] Open
Abstract
Background A subclinical left ventricle diastolic dysfunction (LVDD) has been described in patients with chronic obstructive pulmonary disease (COPD). Objectives To evaluate the prevalence of LVDD in stable severe COPD patients, to analyze its relationship with exercise capacity and to look for its possible causes (lung hyperinflation, ventricular interdependence or inflammatory mechanisms). Methods We evaluated 106 consecutive outpatients with severe COPD (FEV1 between 30–50%). Thirty-three (31%) were excluded because of previous heart disease. A pulmonary function test, a 6-minute walking test (6MWT), a Doppler echocardiography test, including diastolic dysfunction parameters, and an analysis of arterial blood gases, NT-proBNP and serum inflammatory markers (CRP, leucocytes), were performed in all patients. Results The prevalence of LVDD in severe stable COPD patients was 90% (80% type I, n=57, and 10% type II, n=7). A significant association between a lower E/A ratio (higher LVDD type I) and a lower exercise tolerance (6-minute walked distance (6MWD)) was found (r=0.29, p<0.05). The fully adjusted multivariable linear regression model demonstrated that a lower E/A ratio, a DLCO in the quartile 4th and a higher tobacco consumption were associated with a lower 6MWD (76, 57 and 0.7 metres, respectively, p<0.05). A significant correlation between E/A ratio and PaO2 was observed (r=0.26, p<0.05), but not with static lung hyperinflation, inflammation or right ventricle overload parameters. Conclusion In stable severe COPD patients, the prevalence of LVDD is high and this condition might contribute in their lower exercise tolerance. Hypoxemia could have a concomitant role in their pathogenesis.
Collapse
Affiliation(s)
- Marta López-Sánchez
- Department of Pulmonary Medicine, Hospital Universitari de Bellvitge, Barcelona, Spain
- Department of Cardiology, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Mariana Muñoz-Esquerre
- Department of Pulmonary Medicine, Hospital Universitari de Bellvitge, Barcelona, Spain
- Pneumology Research Group, Institut d´Investigacions Biomèdiques de Bellvitge (IDIBELL), Universitat de Barcelona, Barcelona, Spain
| | - Daniel Huertas
- Department of Pulmonary Medicine, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - José Gonzalez-Costello
- Pneumology Research Group, Institut d´Investigacions Biomèdiques de Bellvitge (IDIBELL), Universitat de Barcelona, Barcelona, Spain
| | - Jesús Ribas
- Department of Pulmonary Medicine, Hospital Universitari de Bellvitge, Barcelona, Spain
- Pneumology Research Group, Institut d´Investigacions Biomèdiques de Bellvitge (IDIBELL), Universitat de Barcelona, Barcelona, Spain
| | - Federico Manresa
- Department of Pulmonary Medicine, Hospital Universitari de Bellvitge, Barcelona, Spain
- Pneumology Research Group, Institut d´Investigacions Biomèdiques de Bellvitge (IDIBELL), Universitat de Barcelona, Barcelona, Spain
| | - Jordi Dorca
- Department of Pulmonary Medicine, Hospital Universitari de Bellvitge, Barcelona, Spain
- Pneumology Research Group, Institut d´Investigacions Biomèdiques de Bellvitge (IDIBELL), Universitat de Barcelona, Barcelona, Spain
| | - Salud Santos
- Department of Pulmonary Medicine, Hospital Universitari de Bellvitge, Barcelona, Spain
- Pneumology Research Group, Institut d´Investigacions Biomèdiques de Bellvitge (IDIBELL), Universitat de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
16
|
Riise J, Ørstavik Ø, Qvigstad E, Dahl CP, Osnes JB, Skomedal T, Levy FO, Krobert KA. Prostaglandin E1 facilitates inotropic effects of 5-HT4 serotonin receptors and β-adrenoceptors in failing human heart. Basic Res Cardiol 2012; 107:295. [PMID: 22923058 DOI: 10.1007/s00395-012-0295-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 06/26/2012] [Accepted: 08/02/2012] [Indexed: 11/30/2022]
Abstract
Prostaglandins have displayed both beneficial and detrimental effects in clinical studies in patients with severe heart failure. Prostaglandins are known to increase cardiac output, but the mechanism is not clarified. Here, we tested the hypothesis that prostaglandins can increase contractility in human heart by amplifying cAMP-dependent inotropic responses. Contractility was measured ex vivo in isolated left ventricular strips and phosphodiesterase (PDE) and adenylyl cyclase (AC) activity was measured in homogenates or membranes from failing human left ventricles. PGE(1) (1 µM) alone did not modify contractility, but given prior, amplified maximal serotonin (5-HT)-evoked (10 µM) contractile responses mediated by 5-HT(4) receptors several fold (24 ± 7 % with PGE(1) vs. 3 ± 2 % above basal with 5-HT alone). The 5-HT(4)-mediated inotropic response was amplified by the PDE3 inhibitor cilostamide and further amplified in combination with PGE(1) (26 ± 6 vs. 56 ± 12 % above basal). PGE(1) reduced the time to reach 90 % of both the maximal 5-HT- and isoproterenol-evoked inotropic response compared to 5-HT or isoproterenol alone. PGE(1) did not modify PDE activity in the homogenate, either alone or when given simultaneously with PDE3 and/or PDE4 inhibitors. Neither 5-HT- nor isoproterenol-stimulated AC activity was significantly amplified by PGE(1). Sensitivity of ventricular strips to Ca(2+) was not enhanced in the presence of PGE(1). Our results show that PGE(1) can enhance cAMP-mediated responses in failing human left ventricle, through a mechanism independent of PDE inhibition, amplification of AC activity or increasing sensitivity to calcium. This effect of PGE(1) possibly contributes to the increase of cardiac output, independent of decreased afterload, observed after prostaglandin administration in humans.
Collapse
Affiliation(s)
- Jon Riise
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Sognsvannsvn. 20, Blindern, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Impact of acute normobaric hypoxia on regional and global myocardial function: a speckle tracking echocardiography study. Int J Cardiovasc Imaging 2012; 29:561-70. [PMID: 22918573 DOI: 10.1007/s10554-012-0117-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 08/13/2012] [Indexed: 12/26/2022]
Abstract
Aim of this study was to evaluate the influence of normobaric hypoxia on myocardial function in healthy humans. Fourteen subjects underwent two-dimensional speckle tracking echocardiography (2D-STE) examination during normoxia and in a normobaric hypoxia chamber. Examinations were performed at rest and during bicycle exercise test. The following parameters were quantified in both atria and ventricles by 2D-STE: Global Strain (S), systolic strain rate (SRS), early (SRE) and late (SRA) diastolic strain rate. During hypoxia SRS and SRE increased significantly in both ventricles compared to baseline. The increase of LV SRS and SRE during normoxic exercise was significantly higher when compared with exercise under hypoxia (for SRS -0.55 ± 0.22 vs. -0.34 ± 0.24 1/s, p = 0.024; for SRE 0.56 ± 0.29 vs. 0.23 ± 0.29 1/s, p = 0.005). For the right ventricle (RV) no significant difference of exercise induced increase of systolic contractility was found (SRS -1.07 ± 0.53 under normoxia vs. -1.28 ± 0.24 1/s under hypoxic conditions, p = 0.47). A shift from passive conduit (SRE) to active contraction (SRA) phase during hypoxia was noted for the right atrium (RA) (SRE/SRA 0.72 ± 0.13 under hypoxia vs. 1.17 ± 0.17 under normoxia). The ratio SRE/SRA of RA was closely related to pulmonary systolic pressure (r = -0.78, p < 0.001). Exposure to normobaric hypoxia leads to an increase of regional myocardial deformation in both ventricles. The contractile reserve during hypoxic exercise is reduced in LV, whereas RV systolic deformation rate is maintained. In addition, hypoxia had an impact on the ratio of passive conduit to active contraction phase in right atrium.
Collapse
|
18
|
Moon MR, Aziz A, Lee AM, Moon CJ, Okada S, Kanter EM, Yamada KA. Differential calcium handling in two canine models of right ventricular pressure overload. J Surg Res 2012; 178:554-62. [PMID: 22632938 DOI: 10.1016/j.jss.2012.04.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/24/2012] [Accepted: 04/27/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND The purpose of this investigation was to characterize differential right atrial (RA) and ventricular (RV) molecular changes in Ca(2+)-handling proteins consequent to RV pressure overload and hypertrophy in two common, yet distinct models of pulmonary hypertension: dehydromonocrotaline (DMCT) toxicity and pulmonary artery (PA) banding. METHODS A total of 18 dogs underwent sternotomy in four groups: (1) DMCT toxicity (n = 5), (2) mild PA banding over 10 wk to match the RV pressure rise with DMCT (n = 5); (3) progressive PA banding to generate severe RV overload (n = 4); and (4) sternotomy only (n = 4). RESULTS In the right ventricle, with DMCT, there was no change in sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) or phospholamban (PLB), but we saw a trend toward down-regulation of phosphorylated PLB at serine-16 (p[Ser-16]PLB) (P = 0.07). Similarly, with mild PA banding, there was no change in SERCA or PLB, but p(Ser-16)PLB was down-regulated by 74% (P < 0.001). With severe PA banding, there was no change in PLB, but SERCA fell by 57% and p(Ser-16)PLB fell by 67% (P < 0.001). In the right atrium, with DMCT, there were no significant changes. With both mild and severe PA banding, p(Ser-16)PLB fell (P < 0.001), but SERCA and PLB did not change. CONCLUSIONS Perturbations in Ca(2+)-handling proteins depend on the degree of RV pressure overload and the model used to mimic the RV effects of pulmonary hypertension. They are similar, but blunted, in the atrium compared with the ventricle.
Collapse
Affiliation(s)
- Marc R Moon
- Division of Cardiothoracic Surgery, Washington University School of Medicine, Saint Louis, Missouri 63110-1013, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Wu Y, Feng W, Zhang H, Li S, Wang D, Pan X, Hu S. Ca²+-regulatory proteins in cardiomyocytes from the right ventricle in children with congenital heart disease. J Transl Med 2012; 10:67. [PMID: 22472319 PMCID: PMC3464735 DOI: 10.1186/1479-5876-10-67] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 04/02/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypoxia and hypertrophy are the most frequent pathophysiological consequence of congenital heart disease (CHD) which can induce the alteration of Ca2+-regulatory proteins and inhibit cardiac contractility. Few studies have been performed to examine Ca2+-regulatory proteins in human cardiomyocytes from the hypertrophic right ventricle with or without hypoxia. METHODS Right ventricle tissues were collected from children with tetralogy of Fallot [n = 25, hypoxia and hypertrophy group (HH group)], pulmonary stenosis [n = 25, hypertrophy group (H group)], or small isolated ventricular septal defect [n = 25, control group (C group)] during open-heart surgery. Paraffin sections of tissues were stained with 3,3'-dioctadecyloxacarbocyanine perchlorate to measure cardiomyocyte size. Expression levels of Ca2+-regulatory proteins [sarcoplasmic reticulum Ca2+-ATPase (SERCA2a), ryanodine receptor (RyR2), sodiumcalcium exchanger (NCX), sarcolipin (SLN) and phospholamban (PLN)] were analysed by means of real-time PCR, western blot, or immunofluorescence. Additionally, phosphorylation level of RyR and PLN and activity of protein phosphatase (PP1) were evaluated using western blot. RESULTS Mild cardiomyocyte hypertrophy of the right ventricle in H and HH groups was confirmed by comparing cardiomyocyte size. A significant reduction of SERCA2a in mRNA (P<0.01) was observed in the HH group compared with the C group. The level of Ser16-phosphorylated PLN was down-regulated (P<0.01) and PP1 was increased (P<0.01) in the HH group compared to that in the C group. CONCLUSIONS The decreased SERCA2a mRNA may be a biomarker of the pathological process in the early stage of cyanotic CHD with the hypertrophic right ventricle. A combination of hypoxia and hypertrophy can induce the adverse effect of PLN-Ser16 dephosphorylation. Increased PP1 could result in the decreased PLN-Ser16 and inhibition of PP1 is a potential therapeutic target for heart dysfunction in pediatrics.
Collapse
Affiliation(s)
- Yihe Wu
- State Key Laboratory of Cardiovascular Medicine, Cardiovascular Institute & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Larsen KO, Yndestad A, Sjaastad I, Løberg EM, Goverud IL, Halvorsen B, Jia J, Andreassen AK, Husberg C, Jonasson S, Lipp M, Christensen G, Aukrust P, Skjønsberg OH. Lack of CCR7 induces pulmonary hypertension involving perivascular leukocyte infiltration and inflammation. Am J Physiol Lung Cell Mol Physiol 2011; 301:L50-9. [PMID: 21498626 DOI: 10.1152/ajplung.00048.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The chemokine receptor CCR7 regulates lymphocyte trafficking, and CCR7 deficiency induces infiltration of T and B cells adjacent to vessels in mouse lungs. Perivascular infiltration of T and B cells has also been found in human pulmonary arterial hypertension, and downregulation of the CCR7 receptor in circulating leukocytes of such patients has been observed. To investigate whether changes in the CCR7 system contribute to the pathogenesis of pulmonary hypertension, we utilized mice deficient of the CCR7 receptor. The cardiopulmonary and inflammatory responses of CCR7 depletion were evaluated in CCR7-deficient and wild-type mice. Measurements of cytokines upregulated in the animal model were also performed in patients with pulmonary hypertension and controls and in vascular smooth muscle cells. We found that mice lacking CCR7 had increased right ventricular systolic pressure, reduced pulmonary artery acceleration time, increased right ventricular/tibial length ratio, Rho kinase-mediated pulmonary vasoconstriction, and increased muscularization of distal arteries, indicating pulmonary hypertension. These mice also showed increased perivascular infiltration of leukocytes, consisting mainly of T and B cells, and increased mRNA levels of the inflammatory cytokines interleukin-12 and CX3CL1 within pulmonary tissue. Increased serum levels of interleukin-12 and CX3CL1 were also observed in patients with pulmonary hypertension, particularly in those with pulmonary hypertension associated with connective tissue disorder. In smooth muscle cells, interleukin-12 induced secretion of the angiogenic cytokine interleukin-8. We conclude that these results suggest a role for CCR7 in the development of pulmonary arterial hypertension, at least in some subgroups, possibly via pulmonary infiltration of lymphocytes and secretion of interleukin-12 and CX3CL1.
Collapse
Affiliation(s)
- Karl-Otto Larsen
- Department of Pulmonary Medicine, Oslo University Hospital Ullevål, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cetinkaya M, Bostan O, Köksal N, Semizel E, Ozkan H, Cakır S. Early left ventricular diastolic dysfunction in premature infants born to preeclamptic mothers. J Perinat Med 2011; 39:89-95. [PMID: 21142411 DOI: 10.1515/jpm.2010.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AIM To evaluate the cardiac function in premature infants born to preeclamptic mothers and its clinical consequences. METHODS This was a prospective observational cohort study performed in a tertiary neonatal intensive care unit. Fifty-three premature infants born to preeclamptic mothers comprising the study group were evaluated and compared with 42 premature infants born to normotensive mothers (control group). Relationship between echocardiographic measures and neonatal morbidity were assessed as the main outcome measures. RESULTS Left ventricle end-diastolic dimension (LVEDD), peak flow velocities during early diastole (peak E wave), peak flow velocities during atrial contraction (peak A wave), and peak E/A ratio were significantly lower in the study group. Within the study group, these parameters were also significantly lower in infants with respiratory problems. LVEDD was significantly smaller in preeclamptic infants with intrauterine growth retardation (IUGR). CONCLUSION Left ventricle diastolic dysfunction (LVDD) was detected in premature infants born to preeclamptic mothers in the first week after delivery. LVDD was associated with higher incidence of respiratory problems, transient tachypnea of the newborn, longer duration of oxygen requirement, and IUGR.
Collapse
Affiliation(s)
- Merih Cetinkaya
- Faculty of Medicine, Division of Neonatology, Department of Pediatrics, Uludag University, Bursa, Turkey.
| | | | | | | | | | | |
Collapse
|
22
|
Yndestad A, Larsen KO, Øie E, Ueland T, Smith C, Halvorsen B, Sjaastad I, Skjønsberg OH, Pedersen TM, Anfinsen OG, Damås JK, Christensen G, Aukrust P, Andreassen AK. Elevated levels of activin A in clinical and experimental pulmonary hypertension. J Appl Physiol (1985) 2009; 106:1356-64. [DOI: 10.1152/japplphysiol.90719.2008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activin A, a member of the transforming growth factor (TGF)-β superfamily, is involved in regulation of tissue remodeling and inflammation. Herein, we wanted to explore a role for activin A in pulmonary hypertension (PH). Circulating levels of activin A and its binding protein follistatin were measured in patients with PH ( n = 47) and control subjects ( n = 14). To investigate synthesis and localization of pulmonary activin A, we utilized an experimental model of hypoxia-induced PH. In mouse lungs, we also explored signaling pathways that can be activated by activin A, such as phosphorylation of Smads, which are mediators of TGF-β signaling. Possible pathophysiological mechanisms initiated by activin A were explored by exposing pulmonary arterial smooth muscle cells in culture to this cytokine. Elevated levels of activin A and follistatin were found in patients with PH, and activin A levels were significantly related to mortality. Immunohistochemistry of lung autopsies from PH patients and lungs with experimental PH localized activin A primarily to alveolar macrophages and bronchial epithelial cells. Mice with PH exhibited increased pulmonary levels of mRNA for activin A and follistatin in the lungs, and also elevated pulmonary levels of phosphorylated Smad2. Finally, we found that activin A increased proliferation and induced gene expression of endothelin-1 and plasminogen activator inhibitor-1 in pulmonary artery smooth muscle cells, mediators that could contribute to vascular remodeling. Our findings in both clinical and experimental studies suggest a role for activin A in the development of various types of PH.
Collapse
|
23
|
Time course and mechanisms of left ventricular systolic and diastolic dysfunction in monocrotaline-induced pulmonary hypertension. Basic Res Cardiol 2009; 104:535-45. [PMID: 19288153 DOI: 10.1007/s00395-009-0017-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 01/27/2009] [Accepted: 02/24/2009] [Indexed: 10/21/2022]
Abstract
Although pulmonary hypertension (PH) selectively overloads the right ventricle (RV), neuroendocrine activation and intrinsic myocardial dysfunction have been described in the left ventricle (LV). In order to establish the timing of LV dysfunction development in PH and to clarify underlying molecular changes, Wistar rats were studied 4 and 6 weeks after subcutaneous injection of monocrotaline (MCT) 60 mg/kg (MCT-4, n = 11; MCT-6, n = 11) or vehicle (Ctrl-4, n = 11; Ctrl-6, n = 11). Acute single beat stepwise increases of systolic pressure were performed from baseline to isovolumetric (LVPiso). This hemodynamic stress was used to detect early changes in LV performance. Neurohumoral activation was evaluated by measuring angiotensin-converting enzyme (ACE) and endothelin-1 (ET-1) LV mRNA levels. Cardiomyocyte apoptosis was evaluated by TUNEL assay. Extracellular matrix composition was evaluated by tenascin-C mRNA levels and interstitial collagen content. Myosin heavy chain (MHC) composition of the LV was studied by protein quantification. MCT treatment increased RV pressures and RV/LV weight ratio, without changing LV end-diastolic pressures or dimensions. Baseline LV dysfunction were present only in MCT-6 rats. Afterload elevations prolonged tau and upward-shifted end-diastolic pressure dimension relations in MCT-4 and even more in MCT-6. MHC-isoform switch, ACE upregulation and cardiomyocyte apoptosis were present in both MCT groups. Rats with severe PH develop LV dysfunction associated with ET-1 and tenascin-C overexpression. Diastolic dysfunction, however, could be elicited at earlier stages in response to hemodynamic stress, when only LV molecular changes, such as MHC isoform switch, ACE upregulation, and myocardial apoptosis were present.
Collapse
|
24
|
Larsen KO, Lygren B, Sjaastad I, Krobert KA, Arnkvaern K, Florholmen G, Larsen AKR, Levy FO, Taskén K, Skjønsberg OH, Christensen G. Diastolic dysfunction in alveolar hypoxia: a role for interleukin-18-mediated increase in protein phosphatase 2A. Cardiovasc Res 2008; 80:47-54. [PMID: 18599478 DOI: 10.1093/cvr/cvn180] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIMS Chronic obstructive pulmonary disease with alveolar hypoxia is associated with diastolic dysfunction in the right and left ventricle (LV). LV diastolic dysfunction is not caused by increased afterload, and we recently showed that reduced phosphorylation of phospholamban at serine (Ser) 16 may explain the reduced relaxation of the myocardium. Here, we study the mechanisms leading to the hypoxia-induced reduction in phosphorylation of phospholamban at Ser16. METHODS AND RESULTS In C57Bl/6j mice exposed to 10% oxygen, signalling molecules were measured in cardiac tissue, sarcoplasmic reticulum (SR)-enriched membrane preparations, and serum. Cardiomyocytes isolated from neonatal mice were exposed to interleukin (IL)-18 for 24 h. The beta-adrenergic pathway in the myocardium was not altered by alveolar hypoxia, as assessed by measurements of beta-adrenergic receptor levels, adenylyl cyclase activity, and subunits of cyclic AMP-dependent protein kinase. However, alveolar hypoxia led to a significantly higher amount (124%) and activity (234%) of protein phosphatase (PP) 2A in SR-enriched membrane preparations from LV compared with control. Serum levels of an array of cytokines were assayed, and a pronounced increase in IL-18 was observed. In isolated cardiomyocytes, treatment with IL-18 increased the amount and activity of PP2A, and reduced phosphorylation of phospholamban at Ser16 to 54% of control. CONCLUSION Our results indicate that the diastolic dysfunction observed in alveolar hypoxia might be caused by increased circulating IL-18, thereby inducing an increase in PP2A and a reduction in phosphorylation of phospholamban at Ser16.
Collapse
Affiliation(s)
- Karl-Otto Larsen
- Department of Pulmonary Medicine, Ullevål University Hospital, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Biventricular function at high altitude: implications for regulation of stroke volume in chronic hypoxia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008. [PMID: 18269185 DOI: 10.1007/978-0-387-75434-5_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
The myocardium is well protected against chronic hypoxia. In chronic hypoxia stroke volume falls both at rest and on exercise. The fall in stroke volume is associated with reduction in left ventricular dimensions and filling pressure. An obvious explanation for this is the reduction in plasma volume observed at high altitude, but this does not appear to be the whole story. Neither is left ventricular systolic function abnormal even at the summit of Mount Everest. Hypoxia itself may have a direct effect on impairing myocardial relaxation. Increased pulmonary vascular resistance leads to right ventricular pressure overload. This may impair right ventricular function, and reduce stroke volume and venous return to the left atrium. Interaction between the right and left ventricles, which share a common septum and are potentially constrained in volume by the pericardium, may impair diastolic left ventricular filling as a consequence of right ventricular pressure overload, and hence reduce stroke volume. It is questionable how clinically significant is this left ventricular diastolic dysfunction. The relative importance of different mechanisms which reduce stroke volume probably depends whether hemodynamics are measured at rest or on exercise. Intervention with sildenafil to ameliorate hypoxic pulmonary vasoconstriction is associated with both an increase in exercise capacity and stroke volume in hypoxia. Whether these have a causal association remains to be demonstrated.
Collapse
|