1
|
Tawa M, Nakagawa K, Ohkita M. Different sensitivities of porcine coronary arteries and veins to BAY 60-2770, a soluble guanylate cyclase activator. J Pharmacol Sci 2025; 157:1-7. [PMID: 39706640 DOI: 10.1016/j.jphs.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/23/2024] Open
Abstract
Nitric oxide (NO)-donor drugs, which stimulate reduced form of soluble guanylate cyclase (sGC), have different efficacy to the arteries and veins. This study examined whether sGC activators, which activate oxidized/apo sGC, also have arteriovenous selectivity similar to that of NO-donor drugs. The mechanical responses of the isolated blood vessels were assessed using the organ chamber technique and protein expression was verified using western blotting. BAY 60-2770 (sGC activator) caused concentration-dependent relaxation in both porcine coronary arteries and veins, with the response being slightly more pronounced in the arteries. In contrast, sodium nitroprusside (NO-donor drug)-induced relaxation of the arteries was slightly weaker than that of the veins. Vasorelaxant responses to 8-Br-cGMP (cGMP analog) did not differ between the arteries and veins. In the presence of ODQ (heme oxidant), the heterogeneities in the responses to BAY 60-2770 and sodium nitroprusside between the arteries and veins disappeared. The sGC expression in the arteries did not differ from that in the veins. These findings suggest that sGC activators, in contrast to NO-donor drugs, have greater effects on the arteries than on the veins. This may be due to differences in the balance of sGC forms expressed in the arteries and veins.
Collapse
Affiliation(s)
- Masashi Tawa
- Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-1094, Japan.
| | - Keisuke Nakagawa
- Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-1094, Japan
| | - Mamoru Ohkita
- Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-1094, Japan
| |
Collapse
|
2
|
Morse CJ, Morton JS, Marshall RA, El Karsh Z, Heistad RM, Laprairie RB, Mousseau DD, Olver TD. CP55940-induced vasorelaxation is endothelial-dependent and mediated by the CB1R through NOS, COX and EDHF pathways in porcine cerebral arteries. Microvasc Res 2023:104550. [PMID: 37230164 DOI: 10.1016/j.mvr.2023.104550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023]
Abstract
Using swine as an experimental model, we chose to examine whether the cannabinoid receptors, e.g. CB1R and the CB2R, could affect vasomotor tone in isolated pial arteries. It was hypothesized that the CB1R would specifically mediate cerebral artery vasorelaxation in an endothelial-dependent manner. First-order pial arteries were isolated from female Landrace pigs (age = 2 months; N = 27) for wire and pressure myography. Arteries were pre-contracted with a thromboxane A2 analogue (U-46619) and vasorelaxation in response to the CB1R and CB2R receptor mixed agonist CP55940 was examined in the following conditions: 1) untreated; 2) inhibition of the CB1R (AM251); or 3) inhibition of the CB2R receptor (AM630). The data revealed that CP55940 elicits a CB1R-dependent relaxation in pial arteries. CB1R expression was confirmed using immunoblot and immunohistochemical analyses. Subsequently, the role of different endothelial-dependent pathways in the CB1R-mediated vasorelaxation was examined using: 1) denudation (removal of the endothelium); 2) inhibition of cyclooxygenase (COX; Naproxen); 3) inhibition of nitric oxide synthase (NOS; L-NAME); 4) combined inhibition of COX + NOS. The data revealed CB1R-mediated vasorelaxation was endothelial-dependent, with contributions from COX-derived prostaglandins, NO, and endothelium-dependent hyperpolarizing factor (EDHF). Pressurized arteries underwent myogenic curves (20-100 mmHg) under the following conditions: 1) untreated; 2) inhibition of the CB1R. The data revealed CB1R inhibition increased basal myogenic tone, but not myogenic reactivity. As the vascular responses were assessed in isolated pial arteries, this work reveals that the CB1R modulates cerebrovascular tone independently of changes in brain metabolism.
Collapse
Affiliation(s)
- Cameron J Morse
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, The University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Jude S Morton
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, The University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Rory A Marshall
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, The University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Zeyad El Karsh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, The University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Ryan M Heistad
- College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Darrell D Mousseau
- College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - T Dylan Olver
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, The University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.
| |
Collapse
|
3
|
Jayalekshmi VS, Ramachandran S. Maternal cholesterol levels during gestation: boon or bane for the offspring? Mol Cell Biochem 2021; 476:401-416. [PMID: 32964393 DOI: 10.1007/s11010-020-03916-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023]
Abstract
An increase in cholesterol levels is perceived during pregnancy and is considered as a normal adaptive response to the development of the fetus. In some pregnancies, excessive increase in total cholesterol with high levels of Low-Density Lipoprotein leads to maladaptation by the fetus to cholesterol demands, resulting in a pathological condition termed as maternal hypercholesterolemia (MH). MH is considered clinically irrelevant and therefore cholesterol levels are not routinely checked during pregnancy, as a consequence of which there is scarce information on its global prevalence in pregnant women. Studies have reported that MH during pregnancy can cause atherogenesis in adults emphasizing the concept of in utero programming of fetus. Moreover, Gestational Diabetes Mellitus, obesity and Polycystic Ovary Syndrome are potential risk factors which strengthen combined pathologies in placenta and fetuses of mothers with MH. However, lack of conclusive evidence on cholesterol transport and underlying programming demand substantial research to develop population-based life style strategies for women in their childbearing years. The current review focuses on the mechanisms and outcomes of MH from existing epidemiological as well as experimental data and presents a detailed insight on this novel risk factor of cardiovascular diseases.
Collapse
Affiliation(s)
- V S Jayalekshmi
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- PhD Program in Biotechnology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Surya Ramachandran
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
4
|
Olver TD, Edwards JC, Ferguson BS, Hiemstra JA, Thorne PK, Hill MA, Laughlin MH, Emter CA. Chronic interval exercise training prevents BK Ca channel-mediated coronary vascular dysfunction in aortic-banded miniswine. J Appl Physiol (1985) 2018; 125:86-96. [PMID: 29596016 DOI: 10.1152/japplphysiol.01138.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Conventional treatments have failed to improve the prognosis of heart failure with preserved ejection fraction (HFpEF) patients. Thus, the purpose of this study was to determine the therapeutic efficacy of chronic interval exercise training (IT) on large-conductance Ca2+-activated K+ (BKCa) channel-mediated coronary vascular function in heart failure. We hypothesized that chronic interval exercise training would attenuate pressure overload-induced impairments to coronary BKCa channel-mediated function. A translational large-animal model with cardiac features of HFpEF was used to test this hypothesis. Specifically, male Yucatan miniswine were divided into three groups ( n = 7/group): control (CON), aortic banded (AB)-heart failure (HF), and AB-interval trained (HF-IT). Coronary blood flow, vascular conductance, and vasodilatory capacity were measured after administration of the BKCa channel agonist NS-1619 both in vivo and in vitro in the left anterior descending coronary artery and isolated coronary arterioles, respectively. Skeletal muscle citrate synthase activity was decreased and left ventricular brain natriuretic peptide levels increased in HF vs. CON and HF-IT animals. A parallel decrease in NS-1619-dependent coronary vasodilatory reserve in vivo and isolated coronary arteriole vasodilatory responsiveness in vitro were observed in HF animals compared with CON, which was prevented in the HF-IT group. Although exercise training prevented BKCa channel-mediated coronary vascular dysfunction, it did not change BKCa channel α-subunit mRNA, protein, or cellular location (i.e., membrane vs. cytoplasm). In conclusion, these results demonstrate the viability of chronic interval exercise training as a therapy for central and peripheral adaptations of experimental heart failure, including BKCa channel-mediated coronary vascular dysfunction. NEW & NOTEWORTHY Conventional treatments have failed to improve the prognosis of heart failure with preserved ejection fraction (HFpEF) patients. Our findings show that chronic interval exercise training can prevent BKCa channel-mediated coronary vascular dysfunction in a translational swine model of chronic pressure overload-induced heart failure with relevance to human HFpEF.
Collapse
Affiliation(s)
- T Dylan Olver
- Department of Biomedical Sciences, University of Missouri-Columbia , Columbia, Missouri
| | - Jenna C Edwards
- Department of Biomedical Sciences, University of Missouri-Columbia , Columbia, Missouri
| | - Brian S Ferguson
- Department of Biomedical Sciences, University of Missouri-Columbia , Columbia, Missouri
| | - Jessica A Hiemstra
- Department of Biomedical Sciences, University of Missouri-Columbia , Columbia, Missouri
| | - Pamela K Thorne
- Department of Biomedical Sciences, University of Missouri-Columbia , Columbia, Missouri
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri-Columbia , Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri-Columbia , Columbia, Missouri
| | - M Harold Laughlin
- Department of Biomedical Sciences, University of Missouri-Columbia , Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri-Columbia , Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri-Columbia , Columbia, Missouri
| | - Craig A Emter
- Department of Biomedical Sciences, University of Missouri-Columbia , Columbia, Missouri
| |
Collapse
|
5
|
Phillips-Eakley AK, McKenney-Drake ML, Bahls M, Newcomer SC, Radcliffe JS, Wastney ME, Van Alstine WG, Jackson G, Alloosh M, Martin BR, Sturek M, Weaver CM. Effect of High-Calcium Diet on Coronary Artery Disease in Ossabaw Miniature Swine With Metabolic Syndrome. J Am Heart Assoc 2015; 4:e001620. [PMID: 26272654 PMCID: PMC4599451 DOI: 10.1161/jaha.114.001620] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background Calcium is a shortfall essential nutrient that has been a mainstay of osteoporosis management. Recent and limited findings have prompted concern about the contribution of calcium supplementation to cardiovascular risk. A proposed mechanism is through the acceleration of coronary artery calcification. Determining causality between calcium intake and coronary artery calcification has been hindered by a lack of sensitive methodology to monitor early vascular calcium accumulation. The primary study aim was to assess the impact of high calcium intake on coronary artery calcification using innovative calcium tracer kinetic modeling in Ossabaw swine with diet-induced metabolic syndrome. Secondary end points (in vitro wire myography, histopathology, intravascular ultrasound) assessed coronary disease. Methods and Results Pigs (n =24; aged ≈15 months) were fed an atherogenic diet with adequate calcium (0.33% by weight) or high calcium (1.90% from calcium carbonate or dairy) for 6 months. Following 5 months of feeding, all pigs were dosed intravenously with 41Ca, a rare isotope that can be measured in serum and tissues at a sensitivity of 10−18 mol/L by accelerator mass spectrometry. Kinetic modeling evaluated early coronary artery calcification using 41Ca values measured in serial blood samples (collected over 27 days) and coronary artery samples obtained at sacrifice. Serum disappearance of 41Ca and total coronary artery 41Ca accumulation did not differ among groups. Secondary end points demonstrated no treatment differences in coronary artery disease or function. Conclusion There was no detectable effect of high calcium diets (from dairy or calcium carbonate) on coronary artery calcium deposition in metabolic syndrome swine.
Collapse
Affiliation(s)
- Alyssa K Phillips-Eakley
- Department of Nutrition Science, Purdue University, West Lafayette, IN (A.K.P.E., M.E.W., B.R.M., C.M.W.)
| | - Mikaela L McKenney-Drake
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN (M.L.M.K.D., M.A., M.S.)
| | - Martin Bahls
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN (M.B., S.C.N.) Department of Internal Medicine B, Universitätsmedizin Greifswald, Greifswald, Germany (M.B.) German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany (M.B.)
| | - Sean C Newcomer
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN (M.B., S.C.N.) Department of Kinesiology, California State University San Marcos, San Marcos, CA (S.C.N.)
| | - John S Radcliffe
- Department of Animal Sciences, Purdue University, West Lafayette, IN (J.S.R.)
| | - Meryl E Wastney
- Department of Nutrition Science, Purdue University, West Lafayette, IN (A.K.P.E., M.E.W., B.R.M., C.M.W.)
| | - William G Van Alstine
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN (W.G.V.A.)
| | - George Jackson
- Purdue Rare Isotope Measurement Laboratory, Purdue University, West Lafayette, IN (G.J.)
| | - Mouhamad Alloosh
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN (M.L.M.K.D., M.A., M.S.)
| | - Berdine R Martin
- Department of Nutrition Science, Purdue University, West Lafayette, IN (A.K.P.E., M.E.W., B.R.M., C.M.W.)
| | - Michael Sturek
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN (M.L.M.K.D., M.A., M.S.)
| | - Connie M Weaver
- Department of Nutrition Science, Purdue University, West Lafayette, IN (A.K.P.E., M.E.W., B.R.M., C.M.W.)
| |
Collapse
|
6
|
Milian J, Goldfine AB, Zuflacht JP, Parmer C, Beckman JA. Atazanavir improves cardiometabolic measures but not vascular function in patients with long-standing type 1 diabetes mellitus. Acta Diabetol 2015; 52:709-15. [PMID: 25563478 PMCID: PMC4496330 DOI: 10.1007/s00592-014-0708-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/22/2014] [Indexed: 12/24/2022]
Abstract
AIMS Vascular disease is the leading cause of morbidity and mortality in type 1 diabetes mellitus (T1DM). We previously demonstrated that patients with T1DM have impaired endothelial function, a forme fruste of atherosclerosis, as a result of increased oxidative stress. Bilirubin has emerged as a potent endogenous antioxidant with higher concentrations associated with lower rates of myocardial infarction and stroke. METHODS We tested the hypothesis that increasing endogenous bilirubin using atazanavir would improve cardiometabolic risk factors and vascular function in patients with T1DM to determine whether targeting bilirubin may be a novel therapeutic approach to reduce cardiovascular disease risk in this population. In this single-arm, open-label study, we evaluated blood pressure, lipid profile, and conduit artery function in fifteen subjects (mean age 45 ± 9 years) with T1DM following a 4-day treatment with atazanavir. RESULTS As anticipated, atazanavir significantly increased both serum total bilirubin levels (p < 0.0001) and plasma total antioxidant capacity (p < 0.0001). Reductions in total cholesterol (p = 0.04), LDL cholesterol (p = 0.04), and mean arterial pressure (p = 0.04) were also observed following atazanavir treatment. No changes were seen in either flow-mediated endothelium-dependent (p = 0.92) or nitroglycerine-mediated endothelium-independent (p = 0.68) vasodilation, measured by high-resolution B-mode ultrasonography at baseline and post-treatment. CONCLUSION Increasing serum bilirubin levels with atazanavir in subjects with T1DM over 4 days favorably reduces LDL and blood pressure but is not associated with improvements in endothelial function of conduit arteries.
Collapse
Affiliation(s)
- Jessica Milian
- Cardiovascular Division, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115, USA
| | | | - Jonah P. Zuflacht
- Cardiovascular Division, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Caitlin Parmer
- Cardiovascular Division, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Joshua A. Beckman
- Cardiovascular Division, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
7
|
Crissey JM, Padilla J, Vieira-Potter VJ, Thorne PK, Koch LG, Britton SL, Thyfault JP, Laughlin MH. Divergent role of nitric oxide in insulin-stimulated aortic vasorelaxation between low- and high-intrinsic aerobic capacity rats. Physiol Rep 2015. [PMID: 26197933 PMCID: PMC4552535 DOI: 10.14814/phy2.12459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Low-intrinsic aerobic capacity is associated with increased risk for cardiovascular and metabolic diseases and is a strong predictor of early mortality. The effects of intrinsic aerobic capacity on the vascular response to insulin are largely unknown. We tested the hypothesis that rats selectively bred for a low capacity to run (LCR) exhibit vascular dysfunction and impaired vascular reactivity to insulin compared to high capacity running (HCR) rats. Mature female LCR (n = 21) and HCR (n = 17) rats were maintained under sedentary conditions, and in vitro thoracic aortic vascular function was assessed. LCR exhibited greater body mass (13%), body fat (35%), and subcutaneous, perigonadal, and retroperitoneal adipose tissue mass, than HCR. During an intraperitoneal glucose tolerance test, glucose area under the curve (AUC) was not different but insulin AUC was 2-fold greater in LCR than HCR. Acetylcholine and insulin-stimulated aortic vasorelaxation was significantly greater in LCR (65.2 ± 3.8%, and 32.7 ± 4.1%) than HCR (55.0 ± 3.3%, and 16.7 ± 2.8%). Inhibition of nitric oxide synthase (NOS) with L-NAME entirely abolished insulin-mediated vasorelaxation in the aorta of LCR, with no effect in HCR. LCR rats exhibited greater expression of Insulin Receptor protein, lower Endothelin Receptor-A protein, a down-regulation of transcripts for markers of immune cell infiltration (CD11C, CD4, and F4/80) and up-regulation of pro-atherogenic inflammatory genes (VCAM-1 and MCP-1) in the aorta wall. Contrary to our hypothesis, low-aerobic capacity was associated with enhanced aortic endothelial function and NO-mediated reactivity to insulin, despite increased adiposity and evidence of whole body insulin resistance.
Collapse
Affiliation(s)
| | - Jaume Padilla
- Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri Child Health, University of Missouri, Columbia, Missouri
| | | | - Pamela K Thorne
- Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Lauren G Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - John P Thyfault
- Department of Molecular and Integrative Physiology, Kansas University Medical Center, Kansas, Kansas
| | - M Harold Laughlin
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri Biomedical Sciences, University of Missouri, Columbia, Missouri Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| |
Collapse
|
8
|
Sanzari JK, Billings PC, Wilson JM, Diffenderfer ES, Arce-Esquivel AA, Thorne PK, Laughlin MH, Kennedy AR. Effect of electron radiation on vasomotor function of the left anterior descending coronary artery. LIFE SCIENCES IN SPACE RESEARCH 2015; 4:6-10. [PMID: 26072960 PMCID: PMC4452954 DOI: 10.1016/j.lssr.2014.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The left anterior descending (LAD, interventricular) coronary artery provides the blood supply to the mid-region of the heart and is a major site of vessel stenosis. Changes in LAD function can have major effects on heart function. In this report, we examined the effect of electron simulated solar particle event (eSPE) radiation on LAD function in a porcine animal model. Vasodilatory responses to adenosine diphosphate (ADP; 10(−9)–10(−4) M), bradykinin (BK; 10(−11)–10(−6) M), and sodium nitroprusside (SNP; 10(−10)–10(−4) M) were assessed. The LAD arteries from Control (non-irradiated) and the eSPE (irradiated) animals were isolated and exhibited a similar relaxation response following treatment with either ADP or SNP. In contrast, a significantly reduced relaxation response to BK treatment was observed in the eSPE irradiated group, compared to the control group. These data demonstrate that simulated SPE radiation exposure alters LAD function.
Collapse
Affiliation(s)
- Jenine K. Sanzari
- 3620 Hamilton Walk, Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul C. Billings
- 3620 Hamilton Walk, Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jolaine M. Wilson
- 3620 Hamilton Walk, Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric S. Diffenderfer
- 3620 Hamilton Walk, Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arturo A. Arce-Esquivel
- E102 Veterinary Medicine, Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
- 3900 University Blvd., Department of Health and Kinesiology, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Pamela K. Thorne
- E102 Veterinary Medicine, Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - M. H. Laughlin
- E102 Veterinary Medicine, Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Ann R. Kennedy
- 3620 Hamilton Walk, Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Oliver E, Flacco N, Arce C, Ivorra MD, D'Ocon MP, Noguera MA. Changes in adrenoceptors and G-protein-coupled receptor kinase 2 in L-NAME-induced hypertension compared to spontaneous hypertension in rats. J Vasc Res 2014; 51:209-20. [PMID: 24942010 DOI: 10.1159/000360400] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/31/2014] [Indexed: 11/19/2022] Open
Abstract
This work compares the expression of adrenoceptors (ARs) and G-protein-coupled receptor kinase (GRK) 2 (RT-PCR and immunoblotting) and functional responses in conductance (aorta) and resistance vessels (mesenteric resistance arteries; MRA) in two different models of rat hypertension: hypertension induced by chronic treatment with L-NAME (N(G)-nitro-L-arginine methyl-ester) (L-NAME-treated rats; LNHR), and genetically induced hypertension (spontaneously hypertensive rats; SHR). Changes found in the aorta, but not in the MRA, were: (1) a loss of contractile capacity, more evidently in α1-AR-mediated contraction, and an impairment of endothelium-dependent vasorelaxation, with both changes occurring independently of the hypertensive model; (2) a diminished sensitivity to α1-AR-induced vasoconstriction along with increased β2-AR-mediated vasodilation in LNHR, and (3) a lower expression of ARs and GRK2 in LNHR. The two latter changes are the opposite of those previously found in aortas of SHR. In the MRA of LNHR, a diminished sensitivity to isoprenaline, in parallel with a reduced expression of β1-AR, was observed without changes in GRK2 expression. In the MRA of SHR, the increased GRK2 expression was not accompanied by significant changes in either β-AR expression or the vasorelaxant potency of isoprenaline. The present results highlight that changes in AR function differ not only between vessels but also between hypertensive models. Moreover, they suggest that changes in GRK2 expression could contribute to regulating β2-AR function in conductance vessels but not β1-AR function in resistance vessels.
Collapse
Affiliation(s)
- Eduardo Oliver
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Delaney LE, Arce-Esquivel AA, Kuroki K, Laughlin MH. Exercise training improves vasoreactivity in the knee artery. Int J Sports Med 2011; 33:114-22. [PMID: 22095322 DOI: 10.1055/s-0031-1291186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Physical activity has been shown to enhance endothelial function of central and peripheral vascular beds. The primary purpose of the present study was to test the hypothesis that a short-term exercise training program would result in enhanced endothelium-dependent vasorelaxation of a major artery supplying blood flow to the knee joint, the middle genicular artery. Female Yucatan miniature swine were randomly assigned into exercise trained (n=7) or sedentary (n=7) groups. Exercise trained pigs underwent a daily exercise training program on treadmills for 7 days. In vitro assessment of vasorelaxation was determined in a dose response manner by administrating increasing doses of 3 different dilators; adenosine diphosphate, bradykinin, and sodium nitroprusside. The role of nitric oxide synthase and cyclooxygenase pathways in vasomotor responses was evaluated with specific inhibitors using nitro-L-arginine methyl ester and indomethacin incubation, respectively. The results of this investigation indicate that adenosine and bradykinin-induced endothelium-dependent vasorelaxation were significantly enhanced in middle genicular artery from exercise trained pigs (p<0.05). Endothelium-independent vasorelaxation was not altered with exercise training as determined by the response to sodium nitroprusside. The findings of the present investigation indicate that short-term exercise training enhances endothelial function of middle genicular artery through adaptations in the nitric oxide synthase and by non-nitric oxide synthase, non-cyclooxygenase pathways.
Collapse
Affiliation(s)
- L E Delaney
- Department of Biomedical Sciences, University of Missouri, Columbia 65203, United States
| | | | | | | |
Collapse
|
11
|
Stapleton PA, Goodwill AG, James ME, Brock RW, Frisbee JC. Hypercholesterolemia and microvascular dysfunction: interventional strategies. JOURNAL OF INFLAMMATION-LONDON 2010; 7:54. [PMID: 21087503 PMCID: PMC2996379 DOI: 10.1186/1476-9255-7-54] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 11/18/2010] [Indexed: 11/10/2022]
Abstract
Hypercholesterolemia is defined as excessively high plasma cholesterol levels, and is a strong risk factor for many negative cardiovascular events. Total cholesterol levels above 200 mg/dl have repeatedly been correlated as an independent risk factor for development of peripheral vascular (PVD) and coronary artery disease (CAD), and considerable attention has been directed toward evaluating mechanisms by which hypercholesterolemia may impact vascular outcomes; these include both results of direct cholesterol lowering therapies and alternative interventions for improving vascular function. With specific relevance to the microcirculation, it has been clearly demonstrated that evolution of hypercholesterolemia is associated with endothelial cell dysfunction, a near-complete abrogation in vascular nitric oxide bioavailability, elevated oxidant stress, and the creation of a strongly pro-inflammatory condition; symptoms which can culminate in profound impairments/alterations to vascular reactivity. Effective interventional treatments can be challenging as certain genetic risk factors simply cannot be ignored. However, some hypercholesterolemia treatment options that have become widely used, including pharmaceutical therapies which can decrease circulating cholesterol by preventing either its formation in the liver or its absorption in the intestine, also have pleiotropic effects with can directly improve peripheral vascular outcomes. While physical activity is known to decrease PVD/CAD risk factors, including obesity, psychological stress, impaired glycemic control, and hypertension, this will also increase circulating levels of high density lipoprotein and improving both cardiac and vascular function. This review will provide an overview of the mechanistic consequences of the predominant pharmaceutical interventions and chronic exercise to treat hypercholesterolemia through their impacts on chronic sub-acute inflammation, oxidative stress, and microvascular structure/function relationships.
Collapse
Affiliation(s)
- Phoebe A Stapleton
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV 26506, USA.
| | | | | | | | | |
Collapse
|
12
|
Bunker AK, Arce-Esquivel AA, Rector RS, Booth FW, Ibdah JA, Laughlin MH. Physical activity maintains aortic endothelium-dependent relaxation in the obese type 2 diabetic OLETF rat. Am J Physiol Heart Circ Physiol 2010; 298:H1889-901. [PMID: 20304812 DOI: 10.1152/ajpheart.01252.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that physical activity can attenuate the temporal decline of ACh-induced endothelium-dependent relaxation during type 2 diabetes mellitus progression in the Otsuka Long-Evans Tokushima fatty (OLETF) rat. Sedentary OLETF rats exhibited decreased ACh-induced abdominal aortic endothelium-dependent relaxation from 13 to 20 wk of age (20-35%) and from 13 to 40 wk of age (35-50%). ACh-induced endothelium-dependent relaxation was maintained in the physically active OLETF group and control sedentary Long-Evans Tokushima Otsuka (LETO) group from 13 to 40 wk of age. Aortic pretreatment with N(G)-nitro-l-arginine (l-NNA), indomethacin (Indo), and l-NNA + Indo did not alter the temporal decline in ACh-induced endothelium-dependent relaxation. Temporal changes in the protein expression of SOD isoforms in the aortic endothelium or smooth muscle did not contribute to the temporal decline in ACh-induced endothelium-dependent relaxation in sedentary OLETF rats. A significant increase in the 40-wk-old sedentary LETO and physically active OLETF rat aortic phosphorylated endothelial nitric oxide (p-eNOS)-to-eNOS ratio was observed versus 13- and 20-wk-old rats in each group that was not seen in the 40- versus 13- and 20-wk-old sedentary OLETF rats. These results suggest that temporal changes in the antioxidant system, EDHF, and cycloxygenase metabolite production in sedentary OLETF rat aortas do not contribute to the temporal decline in sedentary OLETF rat aortic ACh-induced endothelium-dependent relaxation seen with type 2 diabetes mellitus progression. We also report that physical activity in conjunction with aging in the OLETF rat results in a temporal increase in the aortic endothelial p-eNOS-to-eNOS ratio that was not seen in sedentary OLETF rats. These results suggest that the sustained aortic ACh-induced endothelium-dependent relaxation in aged physically active OLETF rats may be the result of an increase in active aortic eNOS.
Collapse
Affiliation(s)
- Aaron K Bunker
- Dept. of Biomedical Sciences, Univ. of Missouri, E102 Veterinary Medicine Bldg., 1600 E. Rollins Rd., Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
13
|
Newcomer SC, Taylor JC, McAllister RM, Laughlin MH. Effects of chronic nitric oxide synthase inhibition on endothelium-dependent and -independent relaxation in arteries that perfuse skeletal muscle of swine. ACTA ACUST UNITED AC 2008; 15:17-31. [PMID: 18568942 DOI: 10.1080/10623320802092211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The purpose of this investigation was to test the hypothesis that chronic N(G)-nitro-l-arginine methyl ester (l-NAME) treatment produces differential effects on conduit artery and resistance arteriole relaxation responses to endothelium-dependent and -independent vasodilators in arteries that perfuse skeletal muscle of swine. To test this hypothesis, conduit skeletal muscle arteries and second-order skeletal muscle (2A) arterioles were harvested from 14 Yucatan swine that were chronically administered l-NAME and from 16 controls. In vitro assessments of vasorelaxation to increasing doses of acetylcholine (ACH), bradykinin (BK), and sodium nitroprusside (SNP) were performed in both conduit and 2A arterioles. l-NAME treatment produced a significant reduction in both BK and ACH relaxation responses in the conduit arteries. In contrast, the relaxation response and/or sensitivity to SNP were significantly greater in the intact, but not denuded, conduit arterial rings from chronically l-NAME-treated swine. There were no significant effects of chronic l-NAME treatment on vasodilation of skeletal muscle arterioles. These findings suggest (1) that unlike arterioles, skeletal muscle conduit arteries do not functionally compensate for a lack of NO through the upregulation of alternative vasodilator pathways; (2) that the greater relaxation response in conduit arteries of chronically l-NAME-treated swine to SNP can be explained by alterations to the endothelium.
Collapse
Affiliation(s)
- S C Newcomer
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | | | | | | |
Collapse
|
14
|
McAllister RM, Newcomer SC, Pope ER, Turk JR, Laughlin MH. Effects of chronic nitric oxide synthase inhibition on responses to acute exercise in swine. J Appl Physiol (1985) 2007; 104:186-97. [PMID: 17975123 DOI: 10.1152/japplphysiol.00731.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) is potentially involved in several responses to acute exercise. We tested the hypotheses that inhibition of NO formation reduces maximal O(2) delivery to muscle, but does not affect O(2) utilization by muscle, therefore lowering maximal O(2) consumption. To test these hypotheses, swine (approximately 30 kg) drank either tap water (Con, n = 25) or water with N(G)-nitro-l-arginine methyl ester (8.0 +/- 0.4 mg x kg(-1) x day(-1) for >or=4 wk; LN, n = 24). Treatment efficacy was reflected by higher mean arterial pressure and lower plasma NO metabolite concentration in LN than Con (both P < 0.05). Swine completed two graded treadmill running tests to maximum. In the first test, O(2) consumption was determined at rest through maximal exercise intensity. O(2) consumption did not differ between groups at rest or at most exercise intensities, including maximum (Con, 40.8 +/- 1.8 ml x min(-1) x kg(-1); LN, 40.4 +/- 2.9; not significant). In the second test, tissue-specific blood flows were determined using the radiolabeled-microsphere technique. At rest, blood flows were lower (P < 0.05) in LN compared with Con for a number of tissues, including kidney, adrenal, lung, and several skeletal muscles. During both submaximal and maximal exercise, however, blood flows were similar between Con and LN for all 16 muscles examined; only blood flows to kidney (Con, 99 +/- 16 ml x min(-1) x 100 g; LN, 55 +/- 15; P < 0.05) and pancreas (Con, 25 +/- 7; LN, 6 +/- 2; P < 0.05) were lower in LN at maximum. Endothelium-dependent, but not -independent, relaxation of renal arterial segments was reduced (P < 0.05) in vitro. These data indicate that exercise-induced increases in muscle blood flows are maintained with chronic inhibition of NO formation and that maximal O(2) consumption is therefore preserved. Redundant vasodilatory pathways and/or upregulation of these pathways may underlie these findings.
Collapse
Affiliation(s)
- Richard M McAllister
- Dept. of Biomedical Sciences, Univ. of Missouri, E102 Vet. Med. Bldg., 1600 E. Rollins, Columbia, MO 65211, USA.
| | | | | | | | | |
Collapse
|