1
|
Anderle S, Bonnar O, Henderson J, Shaw K, Chagas AM, McMullan L, Webber A, McGowan K, King SL, Hall CN. APOE4 and sedentary lifestyle synergistically impair neurovascular function in the visual cortex of awake mice. Commun Biol 2025; 8:144. [PMID: 39880935 PMCID: PMC11779976 DOI: 10.1038/s42003-025-07585-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
Reduced cerebral blood flow occurs early in the development of Alzheimer's disease (AD), but the factors producing this reduction are unknown. Here, we ask whether genetic and lifestyle risk factors for AD-the ε4 allele of the Apolipoprotein (APOE) gene, and physical activity-can together produce this reduction in cerebral blood flow which leads eventually to AD. Using in vivo two-photon microscopy and haemodynamic measures, we record neurovascular function from the visual cortex of physically active or sedentary mice expressing APOE3 and APOE4 in place of murine APOE. Energy supply and demand are mismatched in APOE4 mice, with smaller increases in cerebral blood flow, blood volume and blood oxygenation occurring during neuronal activation as blood vessels frequently fail to dilate. Exercise dose-dependently overall improves neurovascular function, with an increased impact of exercise apparent after longer exposure times. Several haemodynamic measures show a larger beneficial effect of exercise in APOE4 vs. APOE3 mice. Thus, APOE4 genotype in conjunction with sedentary behaviour produces the worst neurovascular function. Promotion of physical activity may therefore be particularly important to improve cerebrovascular function and reduce dementia risk in APOE4 carriers.
Collapse
Affiliation(s)
- Silvia Anderle
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Orla Bonnar
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Joseph Henderson
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Kira Shaw
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Andre M Chagas
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Letitia McMullan
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Alexandra Webber
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Kirsty McGowan
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Sarah L King
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Catherine N Hall
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK.
| |
Collapse
|
2
|
Merkus D, Muller-Delp J, Heaps CL. Coronary microvascular adaptations distal to epicardial artery stenosis. Am J Physiol Heart Circ Physiol 2021; 320:H2351-H2370. [PMID: 33961506 DOI: 10.1152/ajpheart.00992.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Until recently, epicardial coronary stenosis has been considered the primary outcome of coronary heart disease, and clinical interventions have been dedicated primarily to the identification and removal of flow-limiting stenoses. However, a growing body of literature indicates that both epicardial stenosis and microvascular dysfunction contribute to damaging myocardial ischemia. In this review, we discuss the coexistence of macro- and microvascular disease, and how the structure and function of the distal microcirculation is impacted by the hemodynamic consequences of an epicardial, flow-limiting stenosis. Mechanisms of endothelial dysfunction as well as alterations of smooth muscle function in the coronary microcirculation distal to stenosis are discussed. Risk factors including diabetes, metabolic syndrome, and aging exacerbate microvascular dysfunction in the myocardium distal to a stenosis, and our current understanding of the role of these factors in limiting collateralization and angiogenesis of the ischemic myocardium is presented. Importantly, exercise training has been shown to promote collateral growth and improve microvascular function distal to stenosis; thus, the current literature reporting the mechanisms that underlie the beneficial effects of exercise training in the microcirculation distal to epicardial stenosis is reviewed. We also discuss recent studies of therapeutic interventions designed to improve microvascular function and stimulate angiogenesis in clinically relevant animal models of epicardial stenosis and microvascular disease. Finally, microvascular adaptation to removal of epicardial stenosis is considered.
Collapse
Affiliation(s)
- Daphne Merkus
- Institute for Surgical Research, Walter Brendel Center of Experimental Medicine (WBex), University Clinic, LMU Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Munich, Germany.,Department of Cardiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Judy Muller-Delp
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida
| | - Cristine L Heaps
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas.,Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
3
|
Hu L, Xu YN, Wang Q, Liu MJ, Zhang P, Zhao LT, Liu F, Zhao DY, Pei HN, Yao XB, Hu HG. Aerobic exercise improves cardiac function in rats with chronic heart failure through inhibition of the long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:340. [PMID: 33708967 PMCID: PMC7944272 DOI: 10.21037/atm-20-8250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background To explore the beneficial effects and underlying mechanisms of aerobic exercise on chronic heart failure (CHF). Methods A CHF rat model was induced via left anterior descending coronary artery ligation. Four weeks post-surgery, CHF rats received aerobic exercise training over an 8-week period and cardiac function indexes including xxx were analyzed. To investigate the mechanisms involved in the aerobic exercise-induced benefits on CHF, overexpression of the long non-coding RNA MALAT1 was examined both in vivo and in vitro. Furthermore, the interaction between MALAT1 and the microRNA miR-150-5p and the downstream PI3K/Akt signaling pathway was investigated. Results Compared to the control group, the CHF rats showed evidence of left ventricular dysfunction including aggravated cardiac function indexes and lung to body weight ratio. The Masson staining demonstrated a significant degree of blue-stained fibrotic myocardial tissue in CHF rats compared to control rats. Furthermore, the levels of collagen I and collagen II were also markedly increased in CHF rats. Aerobic exercise improved cardiac function and left ventricular remodeling in rats with CHF. There was a significant reduction in the levels of the reactive oxygen species (ROS), inflammatory cytokines including TNF-α, IL-6, and IL-1β, and inflammatory mediums containing the matrix metalloproteinases (MMPs) MMP-2 and MMP-9. Moreover, CHF rats receiving aerobic exercise showed decreased myocardial apoptosis and increased expression of autophagy-related proteins including beclin-1 and LC3B-II. Overexpression of the lncRNA MALAT1 eliminated all the beneficial effects related to aerobic exercise in CHF rats. Subsequent investigations demonstrated that miR-150-5p expression was up-regulated in CHF-Tr rats and down-regulated in CHF-Tr-MALAT1 rats. Furthermore, the downstream PI3K/Akt signaling pathway was re-activated in CHF-Tr-MALAT1 rats. In vitro experiments revealed that overexpression of MALAT1 reduced the miR-150-5p levels, resulting in increased cellular apoptosis and less autophagy. In addition, overexpression of MALAT1 suppressed the downstream PI3K/Akt signaling pathway. Restoring miR-150-5p level with a miR-150-5p mimic decreased the cellular apoptosis and increased autophagy, and the downstream PI3K/Akt signaling pathway was re-activated. Conclusions Aerobic exercise improved cardiac function through inhibition of the lncRNA MALAT1 in CHF, and the potential mechanisms may be mediated via the miR-150-5p/PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Ling Hu
- Department of Internal Medicine, Beijing Xiaotangshan Hospital, Beijing, China
| | - Ya-Nan Xu
- Department of Cardiopulmonary Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Qian Wang
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Mei-Jie Liu
- Medical Experiment Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Zhang
- Department of Cardiology, Beijing Tsinghua Changgung Hospital affiliated with Tsinghua University, Beijing, China
| | - Lan-Ting Zhao
- Department of Cardiology, Beijing Tsinghua Changgung Hospital affiliated with Tsinghua University, Beijing, China
| | - Fang Liu
- Department of Cardiology, Beijing Tsinghua Changgung Hospital affiliated with Tsinghua University, Beijing, China
| | - Dong-Yan Zhao
- Department of Cardiopulmonary Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - He-Nan Pei
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Xing-Bao Yao
- Department of Sports Injury, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Hua-Gang Hu
- Research Office, Beijing Xiaotangshan Hospital, Beijing, China
| |
Collapse
|
4
|
Aerobic Exercise Prevents Insulin Resistance Through the Regulation of miR-492/Resistin Axis in Aortic Endothelium. J Cardiovasc Transl Res 2018; 11:450-458. [DOI: 10.1007/s12265-018-9828-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023]
|
5
|
Williams RP, Asrress KN, Lumley M, Arri S, Patterson T, Ellis H, Manou‐Stathopoulou V, Macfarlane C, Chandran S, Moschonas K, Oakeshott P, Lockie T, Chiribiri A, Clapp B, Perera D, Plein S, Marber MS, Redwood SR. Deleterious Effects of Cold Air Inhalation on Coronary Physiological Indices in Patients With Obstructive Coronary Artery Disease. J Am Heart Assoc 2018; 7:e008837. [PMID: 30762468 PMCID: PMC6064824 DOI: 10.1161/jaha.118.008837] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/11/2018] [Indexed: 01/09/2023]
Abstract
Background Cold air inhalation during exercise increases cardiac mortality, but the pathophysiology is unclear. During cold and exercise, dual-sensor intracoronary wires measured coronary microvascular resistance ( MVR ) and blood flow velocity ( CBF ), and cardiac magnetic resonance measured subendocardial perfusion. Methods and Results Forty-two patients (62±9 years) undergoing cardiac catheterization, 32 with obstructive coronary stenoses and 10 without, performed either (1) 5 minutes of cold air inhalation (5°F) or (2) two 5-minute supine-cycling periods: 1 at room temperature and 1 during cold air inhalation (5°F) (randomized order). We compared rest and peak stress MVR , CBF , and subendocardial perfusion measurements. In patients with unobstructed coronary arteries (n=10), cold air inhalation at rest decreased MVR by 6% ( P=0.41), increasing CBF by 20% ( P<0.01). However, in patients with obstructive stenoses (n=10), cold air inhalation at rest increased MVR by 17% ( P<0.01), reducing CBF by 3% ( P=0.85). Consequently, in patients with obstructive stenoses undergoing the cardiac magnetic resonance protocol (n=10), cold air inhalation reduced subendocardial perfusion ( P<0.05). Only patients with obstructive stenoses performed this protocol (n=12). Cycling at room temperature decreased MVR by 29% ( P<0.001) and increased CBF by 61% ( P<0.001). However, cold air inhalation during cycling blunted these adaptations in MVR ( P=0.12) and CBF ( P<0.05), an effect attributable to defective early diastolic CBF acceleration ( P<0.05) and associated with greater ST -segment depression ( P<0.05). Conclusions In patients with obstructive coronary stenoses, cold air inhalation causes deleterious changes in MVR and CBF . These diminish or abolish the normal adaptations during exertion that ordinarily match myocardial blood supply to demand.
Collapse
Affiliation(s)
- Rupert P. Williams
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| | - Kaleab N. Asrress
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| | - Matthew Lumley
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| | - Satpal Arri
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| | - Tiffany Patterson
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| | - Howard Ellis
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| | | | - Catherine Macfarlane
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| | - Shruthi Chandran
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| | - Kostantinos Moschonas
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| | - Pippa Oakeshott
- Population Health Research InstituteSt George's University of LondonUnited Kingdom
| | - Timothy Lockie
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| | - Amedeo Chiribiri
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| | - Brian Clapp
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| | - Divaka Perera
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| | - Sven Plein
- Leeds UniversityLeeds Teaching Hospitals NHS TrustLeedsUnited Kingdom
| | - Michael S. Marber
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| | - Simon R. Redwood
- Cardiovascular DivisionRayne InstituteSt Thomas’ HospitalKing's College LondonLondonUnited Kingdom
| |
Collapse
|
6
|
Olver TD, Edwards JC, Ferguson BS, Hiemstra JA, Thorne PK, Hill MA, Laughlin MH, Emter CA. Chronic interval exercise training prevents BK Ca channel-mediated coronary vascular dysfunction in aortic-banded miniswine. J Appl Physiol (1985) 2018; 125:86-96. [PMID: 29596016 DOI: 10.1152/japplphysiol.01138.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Conventional treatments have failed to improve the prognosis of heart failure with preserved ejection fraction (HFpEF) patients. Thus, the purpose of this study was to determine the therapeutic efficacy of chronic interval exercise training (IT) on large-conductance Ca2+-activated K+ (BKCa) channel-mediated coronary vascular function in heart failure. We hypothesized that chronic interval exercise training would attenuate pressure overload-induced impairments to coronary BKCa channel-mediated function. A translational large-animal model with cardiac features of HFpEF was used to test this hypothesis. Specifically, male Yucatan miniswine were divided into three groups ( n = 7/group): control (CON), aortic banded (AB)-heart failure (HF), and AB-interval trained (HF-IT). Coronary blood flow, vascular conductance, and vasodilatory capacity were measured after administration of the BKCa channel agonist NS-1619 both in vivo and in vitro in the left anterior descending coronary artery and isolated coronary arterioles, respectively. Skeletal muscle citrate synthase activity was decreased and left ventricular brain natriuretic peptide levels increased in HF vs. CON and HF-IT animals. A parallel decrease in NS-1619-dependent coronary vasodilatory reserve in vivo and isolated coronary arteriole vasodilatory responsiveness in vitro were observed in HF animals compared with CON, which was prevented in the HF-IT group. Although exercise training prevented BKCa channel-mediated coronary vascular dysfunction, it did not change BKCa channel α-subunit mRNA, protein, or cellular location (i.e., membrane vs. cytoplasm). In conclusion, these results demonstrate the viability of chronic interval exercise training as a therapy for central and peripheral adaptations of experimental heart failure, including BKCa channel-mediated coronary vascular dysfunction. NEW & NOTEWORTHY Conventional treatments have failed to improve the prognosis of heart failure with preserved ejection fraction (HFpEF) patients. Our findings show that chronic interval exercise training can prevent BKCa channel-mediated coronary vascular dysfunction in a translational swine model of chronic pressure overload-induced heart failure with relevance to human HFpEF.
Collapse
Affiliation(s)
- T Dylan Olver
- Department of Biomedical Sciences, University of Missouri-Columbia , Columbia, Missouri
| | - Jenna C Edwards
- Department of Biomedical Sciences, University of Missouri-Columbia , Columbia, Missouri
| | - Brian S Ferguson
- Department of Biomedical Sciences, University of Missouri-Columbia , Columbia, Missouri
| | - Jessica A Hiemstra
- Department of Biomedical Sciences, University of Missouri-Columbia , Columbia, Missouri
| | - Pamela K Thorne
- Department of Biomedical Sciences, University of Missouri-Columbia , Columbia, Missouri
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri-Columbia , Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri-Columbia , Columbia, Missouri
| | - M Harold Laughlin
- Department of Biomedical Sciences, University of Missouri-Columbia , Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri-Columbia , Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri-Columbia , Columbia, Missouri
| | - Craig A Emter
- Department of Biomedical Sciences, University of Missouri-Columbia , Columbia, Missouri
| |
Collapse
|
7
|
Rapoport RM, Merkus D. Endothelin-1 Regulation of Exercise-Induced Changes in Flow: Dynamic Regulation of Vascular Tone. Front Pharmacol 2017; 8:517. [PMID: 29114220 PMCID: PMC5660699 DOI: 10.3389/fphar.2017.00517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/24/2017] [Indexed: 12/12/2022] Open
Abstract
Although endothelin (ET)-1 is a highly potent vasoconstrictor with considerable efficacy in numerous vascular beds, the role of endogenous ET-1 in the regulation of vascular tone remains unclear. The perspective that ET-1 plays little role in the on-going regulation of vascular tone at least under physiologic conditions is supported by findings that potential ET-1 constriction is minimized by the release of the vasodilator and ET-1 synthesis inhibitor, nitric oxide (NO). Indeed, ET-1 release and constriction is self-limited by ET-1-induced, endothelial ETB receptor-mediated release of NO. Moreover, even if the balance between ET-1 and NO were reversed as the result of lowered NO activity, as occurs in a number of pathophysiologies associated with endothelial dysfunction, the well-known resistance of ET-1 constriction to reversal (as determined with exogenous ET-1) precludes ET-1 in the dynamic, i.e., moment-to-moment, regulation of vascular tone. On the other hand, and as presently reviewed, findings of ET-1-dependent modulation of organ blood flow with exercise under physiologic conditions demonstrate the dynamic regulation of vascular tone by ET-1. We speculate that this regulation is mediated at least in part through changes in ET-1 synthesis/release caused by pulsatile flow-induced shear stress and NO.
Collapse
Affiliation(s)
- Robert M Rapoport
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research School COEUR, Erasmus University Medical School Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
8
|
Abstract
The heart is uniquely responsible for providing its own blood supply through the coronary circulation. Regulation of coronary blood flow is quite complex and, after over 100 years of dedicated research, is understood to be dictated through multiple mechanisms that include extravascular compressive forces (tissue pressure), coronary perfusion pressure, myogenic, local metabolic, endothelial as well as neural and hormonal influences. While each of these determinants can have profound influence over myocardial perfusion, largely through effects on end-effector ion channels, these mechanisms collectively modulate coronary vascular resistance and act to ensure that the myocardial requirements for oxygen and substrates are adequately provided by the coronary circulation. The purpose of this series of Comprehensive Physiology is to highlight current knowledge regarding the physiologic regulation of coronary blood flow, with emphasis on functional anatomy and the interplay between the physical and biological determinants of myocardial oxygen delivery. © 2017 American Physiological Society. Compr Physiol 7:321-382, 2017.
Collapse
Affiliation(s)
- Adam G Goodwill
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Gregory M Dick
- California Medical Innovations Institute, 872 Towne Center Drive, Pomona, CA
| | - Alexander M Kiel
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive, Lafayette, IN
| | - Johnathan D Tune
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
9
|
Robles JC, Heaps CL. Adaptations of the endothelin system after exercise training in a porcine model of ischemic heart disease. Microcirculation 2015; 22:68-78. [PMID: 25220869 DOI: 10.1111/micc.12174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/09/2014] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To the test the hypothesis that exercise training would increase endothelin-mediated vasoconstriction in collateral-dependent arteries via enhanced contribution of ET(A). METHODS An ameroid constrictor was surgically placed around the proximal LCX artery to induce gradual occlusion in Yucatan miniature swine. Eight weeks postoperatively, pigs were randomized into sedentary or exercise-training (treadmill; 5 days/week; 14 weeks) groups. Subsequently, arteries (~150 μm diameter) were isolated from collateral-dependent and nonoccluded myocardial regions and studied. RESULTS Following exercise training, ET-1-mediated contraction was significantly enhanced in collateral-dependent arteries. Exercise training induced a disproportionate increase in the ET(A) contribution to the ET-1 contractile response in collateral-dependent arteries, with negligible contributions by ET(B). In collateral-dependent arteries of sedentary pigs, inhibition of ET(A) or ET(B) did not significantly alter ET-1 contractile responses in collateral-dependent arteries, suggesting compensation by the functionally active receptor. These adaptations occurred without significant changes in ET(A), ET(B), or ECE mRNA levels but with significant exercise-training-induced elevations in endothelin levels in both nonoccluded and collateral-dependent myocardial regions. CONCLUSIONS Taken together, these data reveal differential adaptive responses in collateral-dependent arteries based upon physical activity level. ET(A) and ET(B) appear to compensate for one another to maintain contraction in sedentary pigs, whereas exercise-training favors enhanced contribution of ET(A).
Collapse
Affiliation(s)
- Juan Carlos Robles
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | | |
Collapse
|
10
|
Heinonen I, Sorop O, de Beer VJ, Duncker DJ, Merkus D. What can we learn about treating heart failure from the heart's response to acute exercise? Focus on the coronary microcirculation. J Appl Physiol (1985) 2015; 119:934-43. [PMID: 26048972 DOI: 10.1152/japplphysiol.00053.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Coronary microvascular function and cardiac function are closely related in that proper cardiac function requires adequate oxygen delivery through the coronary microvasculature. Because of the close proximity of cardiomyocytes and coronary microvascular endothelium, cardiomyocytes not only communicate their metabolic needs to the coronary microvasculature, but endothelium-derived factors also directly modulate cardiac function. This review summarizes evidence that the myocardial oxygen balance is disturbed in the failing heart because of increased extravascular compressive forces and coronary microvascular dysfunction. The perturbations in myocardial oxygen balance are exaggerated during exercise and are due to alterations in neurohumoral influences, endothelial function, and oxidative stress. Although there is some evidence from animal studies that the myocardial oxygen balance can partly be restored by exercise training, it is largely unknown to what extent the beneficial effects of exercise training include improvements in endothelial function and/or oxidative stress in the coronary microvasculature and how these improvements are impacted by risk factors such as diabetes, obesity, and hypercholesterolemia.
Collapse
Affiliation(s)
- Ilkka Heinonen
- Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; and Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Oana Sorop
- Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; and
| | - Vincent J de Beer
- Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; and
| | - Dirk J Duncker
- Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; and
| | - Daphne Merkus
- Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; and
| |
Collapse
|
11
|
Vascular adaptation to aerobic exercise: A new experimental approach. Sci Sports 2015. [DOI: 10.1016/j.scispo.2014.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
|
13
|
Zhou Z, de Beer VJ, Bender SB, Jan Danser AH, Merkus D, Laughlin MH, Duncker DJ. Phosphodiesterase-5 activity exerts a coronary vasoconstrictor influence in awake swine that is mediated in part via an increase in endothelin production. Am J Physiol Heart Circ Physiol 2014; 306:H918-27. [PMID: 24464751 DOI: 10.1152/ajpheart.00331.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO)-induced coronary vasodilation is mediated through production of cyclic guanosine monophosphate (cGMP) and through inhibition of the endothelin-1 (ET) system. We previously demonstrated that phosphodiesterase-5 (PDE5)-mediated cGMP breakdown and ET each exert a vasoconstrictor influence on coronary resistance vessels. However, little is known about the integrated control of coronary resistance vessel tone by these two vasoconstrictor mechanisms. In the present study, we investigated the contribution of PDE5 and ET to the regulation of coronary resistance vessel tone in swine both in vivo, at rest and during graded treadmill exercise, and in vitro. ETA/ETB receptor blockade with tezosentan (3 mg/kg iv) and PDE5 inhibition with EMD360527 (300 μg·min(-1)·kg(-1) iv) each produced coronary vasodilation at rest and during exercise as well as in preconstricted isolated coronary small arteries. In contrast, tezosentan failed to produce further coronary vasodilation in the presence of EMD360527, both in vivo and in vitro. Importantly, EMD360527 (3 μM) and cGMP analog 8-Br-cGMP (100 μM) had no significant effects on ET-induced contractions of isolated porcine coronary small arteries, suggesting unperturbed ET receptor responsiveness. In contrast, PDE5 inhibition and cGMP blunted the contractions produced by the ET precursor Big ET, but only in vessels with intact endothelium, suggesting that PDE5 inhibition limited ET production in the endothelium of small coronary arteries. In conclusion, PDE5 activity exerts a vasoconstrictor influence on coronary resistance vessels that is mediated, in part, via an increase in endothelial ET production.
Collapse
Affiliation(s)
- Zhichao Zhou
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research School COEUR, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
14
|
Merkus D, Visser M, Houweling B, Zhou Z, Nelson J, Duncker DJ. Phosphodiesterase 5 inhibition-induced coronary vasodilation is reduced after myocardial infarction. Am J Physiol Heart Circ Physiol 2013; 304:H1370-81. [DOI: 10.1152/ajpheart.00410.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The balance between the production and removal of cGMP in coronary vascular smooth muscle is of critical importance in determining coronary vasomotor tone and thus in the regulation of coronary blood flow. cGMP production by soluble guanylyl cyclase is activated by nitric oxide (NO), whereas cGMP breakdown occurs through phosphodiesterase 5 (PDE5). We hypothesized that myocardial infarction (MI) alters the balance between the production and removal of cGMP in the coronary vasculature and thereby alters the control of coronary vasomotor tone. Chronically instrumented swine with and without a 2-wk-old MI were exercised on a treadmill in the absence and presence of the PDE5 inhibitor EMD-360527 (300 μg·kg−1·min−1 iv). Inhibition of PDE5 produced coronary resistance vessel dilation, which was more pronounced at rest than during exercise in normal swine. PDE5 gene expression was markedly reduced in coronary resistance vessels isolated from the remote myocardium of MI swine, which was accompanied by a similarly marked attenuation of coronary vasodilation by PDE5 inhibition in MI swine. The coronary vasoconstriction produced by inhibition of NO synthesis with Nω-nitro-l-arginine (20 mg/kg iv) was only slightly smaller in swine with MI. Interestingly, inhibition of NO synthesis reduced the vasodilator response to subsequent PDE5 inhibition in normal swine but not in MI swine. Conversely, PDE5 inhibition enhanced the coronary vasoconstriction produced by NO synthesis inhibition in normal swine but not in MI swine, suggesting that downregulation of PDE5 mitigated the loss of NO vasodilator influence. In conclusion, the expression and vasoconstrictor influence of PDE5 are markedly attenuated in coronary resistance vessels in the remote myocardium after MI, which appears to serve as a compensatory mechanism to mitigate the loss of NO vasodilator influence.
Collapse
Affiliation(s)
- Daphne Merkus
- Experimental Cardiology, Thoraxcenter, Cardiovascular Research Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marleen Visser
- Experimental Cardiology, Thoraxcenter, Cardiovascular Research Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Birgit Houweling
- Experimental Cardiology, Thoraxcenter, Cardiovascular Research Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Zhichao Zhou
- Experimental Cardiology, Thoraxcenter, Cardiovascular Research Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jessica Nelson
- Experimental Cardiology, Thoraxcenter, Cardiovascular Research Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dirk J. Duncker
- Experimental Cardiology, Thoraxcenter, Cardiovascular Research Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
15
|
Bescós R, Ferrer-Roca V, Galilea PA, Roig A, Drobnic F, Sureda A, Martorell M, Cordova A, Tur JA, Pons A. Sodium nitrate supplementation does not enhance performance of endurance athletes. Med Sci Sports Exerc 2013; 44:2400-9. [PMID: 22811030 DOI: 10.1249/mss.0b013e3182687e5c] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Supplementation with inorganic nitrate has been suggested to be an ergogenic aid for athletes as nitric oxide donor. The purpose of this study was to determine whether ingestion of inorganic sodium nitrate benefits well-trained athletes performing a 40-min exercise test in laboratory conditions. In addition, we investigated the effect of this supplement on plasma levels of endothelin-1 (ET-1) and in nitrated proteins. METHODS Thirteen trained athletes participated in this randomized, double-blind, crossover study. They performed a 40-min cycle ergometer distance-trial test after two 3-d periods of dietary supplementation with sodium nitrate (10 mg·kg of body mass) or placebo. RESULTS Concentration of plasma nitrate (256 ± 35 μM) and nitrite (334 ± 86 nM) increased significantly (P < 0.05) after nitrate supplementation compared with placebo (nitrate: 44 ± 11 μM; nitrite: 187 ± 43 nM). In terms of exercise performance, there were no differences in either the mean distance (nitrate: 26.4 ± 1.1 km; placebo: 26.3 ± 1.2 km; P = 0.61) or mean power output (nitrate: 258 ± 28 W; placebo: 257 ± 28 W; P = 0.89) between treatments. Plasma ET-1 increased significantly (P < 0.05) just after exercise in nitrate (4.0 ± 0.8 pg·mL) and placebo (2.4 ± 0.4 pg·mL) conditions. This increase was significantly greater (P < 0.05) in the nitrate group. Levels of nitrated proteins did not differ between treatments (nitrate: preexercise, 91% ± 23%; postexercise, 81% ± 23%; placebo: preexercise, 95% ± 20%; postexercise, 99% ± 19%). CONCLUSION Sodium nitrate supplementation did not improve a 40-min distance-trial performance in endurance athletes. In addition, concentration of plasma ET-1 increased significantly after exercise after supplementation with sodium nitrate.
Collapse
Affiliation(s)
- Raúl Bescós
- Research Group on Sport Sciences, National Institute of Physical Education (INEFC), University of Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wienbergen H, Hambrecht R. Physical exercise and its effects on coronary artery disease. Curr Opin Pharmacol 2013; 13:218-25. [PMID: 23333176 DOI: 10.1016/j.coph.2012.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/03/2012] [Accepted: 12/08/2012] [Indexed: 01/13/2023]
Abstract
The beneficial effects of physical exercise on stable coronary artery disease (CAD) have been shown by an increasing number of studies. Exercise training leads to an improved bioavailability of the endothelial nitric oxide and partially attenuates endothelial dysfunction. Further effects are an economization of ventricular function and a reduction of cardiovascular risk factors. In clinical studies exercise training was associated with a decreased total and cardiovascular mortality and a reduced angina pectoris threshold. Thus exercise training has developed to an evidence-based therapeutic option of stable CAD with a Class Ia recommendation in the guidelines.
Collapse
Affiliation(s)
- Harm Wienbergen
- Bremer Institut für Herz- und Kreislaufforschung am Klinikum Links der Weser, Germany
| | | |
Collapse
|
17
|
Marshall KD, Muller BN, Krenz M, Hanft LM, McDonald KS, Dellsperger KC, Emter CA. Heart failure with preserved ejection fraction: chronic low-intensity interval exercise training preserves myocardial O2 balance and diastolic function. J Appl Physiol (1985) 2013; 114:131-47. [PMID: 23104696 PMCID: PMC3544520 DOI: 10.1152/japplphysiol.01059.2012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/23/2012] [Indexed: 12/17/2022] Open
Abstract
We have previously reported chronic low-intensity interval exercise training attenuates fibrosis, impaired cardiac mitochondrial function, and coronary vascular dysfunction in miniature swine with left ventricular (LV) hypertrophy (Emter CA, Baines CP. Am J Physiol Heart Circ Physiol 299: H1348-H1356, 2010; Emter CA, et al. Am J Physiol Heart Circ Physiol 301: H1687-H1694, 2011). The purpose of this study was to test two hypotheses: 1) chronic low-intensity interval training preserves normal myocardial oxygen supply/demand balance; and 2) training-dependent attenuation of LV fibrotic remodeling improves diastolic function in aortic-banded sedentary, exercise-trained (HF-TR), and control sedentary male Yucatan miniature swine displaying symptoms of heart failure with preserved ejection fraction. Pressure-volume loops, coronary blood flow, and two-dimensional speckle tracking ultrasound were utilized in vivo under conditions of increasing peripheral mean arterial pressure and β-adrenergic stimulation 6 mo postsurgery to evaluate cardiac function. Normal diastolic function in HF-TR animals was characterized by prevention of increased time constant of isovolumic relaxation, normal LV untwisting rate, and enhanced apical circumferential and radial strain rate. Reduced fibrosis, normal matrix metalloproteinase-2 and tissue inhibitors of metalloproteinase-4 mRNA expression, and increased collagen III isoform mRNA levels (P < 0.05) accompanied improved diastolic function following chronic training. Exercise-dependent improvements in coronary blood flow for a given myocardial oxygen consumption (P < 0.05) and cardiac efficiency (stroke work to myocardial oxygen consumption, P < 0.05) were associated with preserved contractile reserve. LV hypertrophy in HF-TR animals was associated with increased activation of Akt and preservation of activated JNK/SAPK. In conclusion, chronic low-intensity interval exercise training attenuates diastolic impairment by promoting compliant extracellular matrix fibrotic components and preserving extracellular matrix regulatory mechanisms, preserves myocardial oxygen balance, and promotes a physiological molecular hypertrophic signaling phenotype in a large animal model resembling heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Kurt D Marshall
- Department of Biomedical Science, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Synergistic Adaptations to Exercise in the Systemic and Coronary Circulations That Underlie the Warm-Up Angina Phenomenon. Circulation 2012; 126:2565-74. [DOI: 10.1161/circulationaha.112.094292] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background—
The mechanisms of reduced angina on second exertion in patients with coronary arterial disease, also known as the warm-up angina phenomenon, are poorly understood. Adaptations within the coronary and systemic circulations have been suggested but never demonstrated in vivo. In this study we measured central and coronary hemodynamics during serial exercise.
Methods and Results—
Sixteen patients (15 male, 61±4.3 years) with a positive exercise ECG and exertional angina completed the protocol. During cardiac catheterization via radial access, they performed 2 consecutive exertions (Ex1, Ex2) using a supine cycle ergometer. Throughout exertions, distal coronary pressure and flow velocity were recorded in the culprit vessel using a dual sensor wire while central aortic pressure was recorded using a second wire. Patients achieved a similar workload in Ex2 but with less ischemia than in Ex1 (
P
<0.01). A 33% decline in aortic pressure augmentation in Ex2 (
P
<0.0001) coincided with a reduction in tension time index, a major determinant of left ventricular afterload (
P
<0.001). Coronary stenosis resistance was unchanged. A sustained reduction in coronary microvascular resistance resulted in augmented coronary flow velocity on second exertion (both
P
<0.001). These changes were accompanied by a 21% increase in the energy of the early diastolic coronary backward-traveling expansion, or suction, wave on second exercise (
P
<0.05), indicating improved microvascular conductance and enhanced left ventricular relaxation.
Conclusions—
On repeat exercise in patients with effort angina, synergistic changes in the systemic and coronary circulations combine to improve vascular–ventricular coupling and enhance myocardial perfusion, thereby potentially contributing to the warm-up angina phenomenon.
Collapse
|
19
|
The influence of endothelial function and myocardial ischemia on peak oxygen consumption in patients with coronary artery disease. Int J Vasc Med 2012; 2012:274381. [PMID: 23097703 PMCID: PMC3477573 DOI: 10.1155/2012/274381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/16/2012] [Accepted: 09/08/2012] [Indexed: 01/18/2023] Open
Abstract
Impaired endothelial function has been shown to limit exercise in coronary artery disease (CAD) patients and has been implicated in myocardial ischemia. However, the association of endothelial function and ischemia on peak exercise oxygen consumption (VO2) has not been previously reported. A total of 116 CAD patients underwent standard exercise stress testing, during which VO2 was measured. On a separate day, endothelial-dependent and -independent function were assessed by ultrasound using flow-mediated arterial vasodilation (FMD) and sublingual glyceryl trinitrate administration (GTNMD) of the brachial artery. Patients with exercise-induced myocardial ischemia had lower FMD than nonischemic patients (3.64 ± 0.57 versus 4.98 ± 0.36, P = .050), but there was no difference in GTNMD (14.11 ± 0.99 versus 15.47 ± 0.63, P = .249). Analyses revealed that both FMD (P = .006) and GTNMD (P = .019) were related to peak VO2. However, neither the presence of ischemia (P = .860) nor the interaction of ischemia with FMD (P = .382) and GTNMD (P = .151) was related to peak VO2. These data suggest that poor endothelial function, potentially via impaired NO production and smooth muscle dysfunction, may be an important determinant of exercise capacity in patients with CAD, independent of myocardial ischemia.
Collapse
|
20
|
Duncker DJ, Bache RJ, Merkus D. Regulation of coronary resistance vessel tone in response to exercise. J Mol Cell Cardiol 2012; 52:802-13. [DOI: 10.1016/j.yjmcc.2011.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/18/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
|
21
|
Current World Literature. Curr Opin Nephrol Hypertens 2012; 21:106-18. [DOI: 10.1097/mnh.0b013e32834ee42b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|