1
|
Abstract
Vascular smooth muscle cells (VSMC) are now considered important contributors to the pathophysiological and biophysical mechanisms underlying arterial stiffening in aging. Here, we review mechanisms whereby VSMC stiffening alters vascular function and contributes to the changes in vascular stiffening observed in aging and cardiovascular disease. Vascular stiffening in arterial aging was historically associated with changes in the extracellular matrix; however, new evidence suggests that endothelial and vascular smooth muscle cell stiffness also contribute to overall blood vessel stiffness. Furthermore, VSMC play an integral role in regulating matrix deposition and vessel wall contractility via interaction between the actomyosin contractile unit and adhesion structures that anchor the cell within the extracellular matrix. Aged-induce phenotypic modulation of VSMC from a contractile to a synthetic phenotype is associated with decreased cellular contractility and increased cell stiffness. Aged VSMC also display reduced mechanosensitivity and adaptation to mechanical signals from their microenvironment due to impaired intracellular signaling. Finally, evidence for decreased contractility in arteries from aged animals demonstrate that changes at the cellular level result in decreased functional properties at the tissue level.
Collapse
|
2
|
Wu X, Ono M, Kawashima H, Poon EKW, Torii R, Shahzad A, Gao C, Wang R, Barlis P, von Birgelen C, Reiber JHC, Bourantas CV, Tu S, Wijns W, Serruys PW, Onuma Y. Angiography-Based 4-Dimensional Superficial Wall Strain and Stress: A New Diagnostic Tool in the Catheterization Laboratory. Front Cardiovasc Med 2021; 8:667310. [PMID: 34222366 PMCID: PMC8249568 DOI: 10.3389/fcvm.2021.667310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/21/2021] [Indexed: 12/23/2022] Open
Abstract
A novel method for four-dimensional superficial wall strain and stress (4D-SWS) is derived from the arterial motion as pictured by invasive coronary angiography. Compared with the conventional finite element analysis of cardiovascular biomechanics using the estimated pulsatile pressure, the 4D-SWS approach can calculate the dynamic mechanical state of the superficial wall in vivo, which could be directly linked with plaque rupture or stent fracture. The validation of this approach using in silico models showed that the distribution and maximum values of superficial wall stress were similar to those calculated by conventional finite element analysis. The in vivo deformation was validated on 16 coronary arteries, from the comparison of centerlines predicted by the 4D-SWS approach against the actual centerlines reconstructed from angiograms at a randomly selected time-point, which demonstrated a good agreement of the centerline morphology between both approaches (scaling: 0.995 ± 0.018 and dissimilarity: 0.007 ± 0.014). The in silico vessel models with softer plaque and larger plaque burden presented more variation in mean lumen diameter and resulted in higher superficial wall stress. In more than half of the patients (n = 16), the maximum superficial wall stress was found at the proximal lesion shoulder. Additionally, in three patients who later suffered from acute coronary syndrome, the culprit plaque rupture sites co-localized with the site of highest superficial wall stress on their baseline angiography. These representative cases suggest that angiography-based superficial wall dynamics have the potential to identify coronary segments at high-risk of plaque rupture and fracture sites of implanted stents. Ongoing studies are focusing on identifying weak spots in coronary bypass grafts, and on exploring the biomechanical mechanisms of coronary arterial remodeling and aneurysm formation. Future developments involve integration of fast computational techniques to allow online availability of superficial wall strain and stress in the catheterization laboratory.
Collapse
Affiliation(s)
- Xinlei Wu
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Smart Sensors Lab, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Masafumi Ono
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Hideyuki Kawashima
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Eric K W Poon
- Department of Medicine, Melbourne Medical School, St Vincent's Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Atif Shahzad
- Smart Sensors Lab, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Chao Gao
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Department of Cardiology, Xijing Hospital, Xi'an, China
| | - Rutao Wang
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Department of Cardiology, Xijing Hospital, Xi'an, China
| | - Peter Barlis
- Department of Medicine, Melbourne Medical School, St Vincent's Hospital, University of Melbourne, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry Health Sciences, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| | - Clemens von Birgelen
- Thoraxcentrum Twente, Medisch Spectrum Twente, Enschede, Netherlands.,Department of Health Technology and Services Research, Technical Medical Centre, Faculty of Behavioural, Management, and Social Sciences, University of Twente, Enschede, Netherlands
| | - Johan H C Reiber
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Christos V Bourantas
- Institute of Cardiovascular Science, University College London, London, United Kingdom.,Department of Cardiology, Barts Heart Centre, London, United Kingdom
| | - Shengxian Tu
- School of Biomedical Engineering, Biomedical Instrument Institute, Shanghai Jiao Tong University, Shanghai, China
| | - William Wijns
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Smart Sensors Lab, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Patrick W Serruys
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Imperial College London, National Heart and Lung Institute, London, United Kingdom
| | - Yoshinobu Onuma
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| |
Collapse
|
3
|
Fluid-structure interactions (FSI) based study of low-density lipoproteins (LDL) uptake in the left coronary artery. Sci Rep 2021; 11:4803. [PMID: 33637804 PMCID: PMC7910311 DOI: 10.1038/s41598-021-84155-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/12/2021] [Indexed: 11/08/2022] Open
Abstract
The purpose of this study is to compare the effect of the different physical factors on low-density lipoproteins (LDL) accumulation from flowing blood to the arterial wall of the left coronary arteries. The three-dimensional (3D) computational model of the left coronary arterial tree is reconstructed from a patient-specific computed tomography angiography (CTA) image. The endothelium of the coronary artery is represented by a shear stress dependent three-pore model. Fluid–structure interaction (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$FSI$$\end{document}FSI) based numerical method is used to study the LDL transport from vascular lumen into the arterial wall. The results show that the high elastic property of the arterial wall decreases the complexity of the local flow field in the coronary bifurcation system. The places of high levels of LDL uptake coincide with the regions of low wall shear stress. In addition, hypertension promotes LDL uptake from flowing blood in the arterial wall, while the thickened arterial wall decreases this process. The present computer strategy combining the methods of coronary CTA image 3D reconstruction, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$FSI$$\end{document}FSI simulation, and three-pore modeling was illustrated to be effective on the simulation of the distribution and the uptake of LDL. This may have great potential for the early prediction of the local atherosclerosis lesion in the human left coronary artery.
Collapse
|
4
|
Li X, Ni Q, He X, Kong J, Lim SM, Papoian GA, Trzeciakowski JP, Trache A, Jiang Y. Tensile force-induced cytoskeletal remodeling: Mechanics before chemistry. PLoS Comput Biol 2020; 16:e1007693. [PMID: 32520928 PMCID: PMC7326277 DOI: 10.1371/journal.pcbi.1007693] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/30/2020] [Accepted: 04/21/2020] [Indexed: 12/31/2022] Open
Abstract
Understanding cellular remodeling in response to mechanical stimuli is a critical step in elucidating mechanical activation of biochemical signaling pathways. Experimental evidence indicates that external stress-induced subcellular adaptation is accomplished through dynamic cytoskeletal reorganization. To study the interactions between subcellular structures involved in transducing mechanical signals, we combined experimental data and computational simulations to evaluate real-time mechanical adaptation of the actin cytoskeletal network. Actin cytoskeleton was imaged at the same time as an external tensile force was applied to live vascular smooth muscle cells using a fibronectin-functionalized atomic force microscope probe. Moreover, we performed computational simulations of active cytoskeletal networks under an external tensile force. The experimental data and simulation results suggest that mechanical structural adaptation occurs before chemical adaptation during filament bundle formation: actin filaments first align in the direction of the external force by initializing anisotropic filament orientations, then the chemical evolution of the network follows the anisotropic structures to further develop the bundle-like geometry. Our findings present an alternative two-step explanation for the formation of actin bundles due to mechanical stimulation and provide new insights into the mechanism of mechanotransduction. Remodeling the cytoskeletal network in response to external force is key to cellular mechanotransduction. Despite much focus on cytoskeletal remodeling in recent years, a comprehensive understanding of actin remodeling in real-time in cells under mechanical stimuli is still lacking. We integrated tensile stress-induced 3D actin remodeling and 3D computational simulations of actin cytoskeleton to study how the actin cytoskeleton form bundles and how these bundles evolve over time upon external tensile stress. We found that actin network remodels through a two-step process in which rapid alignment of actin filaments is followed by slower actin bundling. Based on these results, we propose a “mechanics before chemistry” model of actin cytoskeleton remodeling under external tensile force.
Collapse
Affiliation(s)
- Xiaona Li
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia, United States of America
| | - Qin Ni
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland, United States of America
| | - Xiuxiu He
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia, United States of America
| | - Jun Kong
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia, United States of America
| | - Soon-Mi Lim
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Garegin A. Papoian
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland, United States of America
| | - Jerome P. Trzeciakowski
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Andreea Trache
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, Texas, United States of America
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Yi Jiang
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
5
|
Gooch KJ, Firstenberg MS, Shrefler BS, Scandling BW. Biomechanics and Mechanobiology of Saphenous Vein Grafts. J Biomech Eng 2019; 140:2666246. [PMID: 29222565 DOI: 10.1115/1.4038705] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Indexed: 11/08/2022]
Abstract
Within several weeks of use as coronary artery bypass grafts (CABG), saphenous veins (SV) exhibit significant intimal hyperplasia (IH). IH predisposes vessels to thrombosis and atherosclerosis, the two major modes of vein graft failure. The fact that SV do not develop significant IH in their native venous environment coupled with the rapidity with which they develop IH following grafting into the arterial circulation suggests that factors associated with the isolation and preparation of SV and/or differences between the venous and arterial environments contribute to disease progression. There is strong evidence suggesting that mechanical trauma associated with traditional techniques of SV preparation can significantly damage the vessel and might potentially reduce graft patency though modern surgical techniques reduces these injuries. In contrast, it seems possible that modern surgical technique, specifically endoscopic vein harvest, might introduce other mechanical trauma that could subtly injure the vein and perhaps contribute to the reduced patency observed in veins harvested using endoscopic techniques. Aspects of the arterial mechanical environment influence remodeling of SV grafted into the arterial circulation. Increased pressure likely leads to thickening of the medial wall but its role in IH is less clear. Changes in fluid flow, including increased average wall shear stress, may reduce IH while disturbed flow likely increase IH. Nonmechanical stimuli, such as exposure to arterial levels of oxygen, may also have a significant but not widely recognized role in IH. Several potentially promising approaches to alter the mechanical environment to improve graft patency are including extravascular supports or altered graft geometries are covered.
Collapse
Affiliation(s)
- Keith J Gooch
- Department of Biomedical Engineering, The Ohio State University, 290 Bevis Hall 1080 Carmack Drive, Columbus, OH 43210.,Davis Heart Lung Research Institute, The Ohio State University, Columbus, OH 43210 e-mail:
| | - Michael S Firstenberg
- Surgery and Integrative Medicine, Northeast Ohio Medical Universities, Akron, OH 44309
| | - Brittany S Shrefler
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Benjamin W Scandling
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
6
|
Arterial wall remodeling under sustained axial twisting in rats. J Biomech 2017; 60:124-133. [PMID: 28693818 DOI: 10.1016/j.jbiomech.2017.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 01/03/2023]
Abstract
Blood vessels often experience torsion along their axes and it is essential to understand their biological responses and wall remodeling under torsion. To this end, a rat model was developed to investigate the arterial wall remodeling under sustained axial twisting in vivo. Rat carotid arteries were twisted at 180° along the longitudinal axis through a surgical procedure and maintained for different durations up to 4weeks. The wall remodeling in these twisted arteries was examined using histology, immunohistochemistry and fluorescent microscopy. Our data showed that arteries remodeled under twisting in a time-dependent manner during the 4weeks post-surgery. Cell proliferation, MMP-2 and MMP-9 expressions, medial wall thickness and lumen diameter increased while collagen to elastin ratio decreased. The size and number of internal elastic lamina fenestrae increased with elongated shapes, while the endothelial cells elongated and aligned towards the blood flow direction gradually. These results demonstrated that sustained axial twisting results in artery remodeling in vivo. The rat carotid artery twisting model is an effective in vivo model for studying arterial wall remodeling under long-term torsion. These results enrich our understanding of vascular biology and arterial wall remodeling under mechanical stresses.
Collapse
|
7
|
Abstract
Microfluidics is invaluable for studying microvasculature, development of organ-on-chip models and engineering microtissues. Microfluidic design can cleverly control geometry, biochemical gradients and mechanical stimuli, such as shear and interstitial flow, to more closely mimic in vivo conditions. In vitro vascular networks are generated by two distinct approaches: via endothelial-lined patterned channels, or by self-assembled networks. Each system has its own benefits and is amenable to the study of angiogenesis, vasculogenesis and cancer metastasis. Various techniques are employed in order to generate rapid perfusion of these networks within a variety of tissue and organ-mimicking models, some of which have shown recent success following implantation in vivo. Combined with tuneable hydrogels, microfluidics holds great promise for drug screening as well as in the development of prevascularized tissues for regenerative medicine.
Collapse
Affiliation(s)
- Kristina Haase
- Department of Mechanical Engineering, MIT, Cambridge, MA, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Singapore MIT Alliance for Research & Technology, Singapore, Singapore
| |
Collapse
|
8
|
Luo W, Guth CM, Jolayemi O, Duvall CL, Brophy CM, Cheung-Flynn J. Subfailure Overstretch Injury Leads to Reversible Functional Impairment and Purinergic P2X7 Receptor Activation in Intact Vascular Tissue. Front Bioeng Biotechnol 2016; 4:75. [PMID: 27747211 PMCID: PMC5040722 DOI: 10.3389/fbioe.2016.00075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/13/2016] [Indexed: 11/30/2022] Open
Abstract
Vascular stretch injury is associated with blunt trauma, vascular surgical procedures, and harvest of human saphenous vein for use in vascular bypass grafting. A model of subfailure overstretch in rat abdominal aorta was developed to characterize surgical vascular stretch injury. Longitudinal stretch of rat aorta was characterized ex vivo. Stretch to the haptic endpoint, where the tissues would no longer lengthen, occurred at twice the resting length. The stress produced at this length was greater than physiologic mechanical forces but well below the level of mechanical disruption. Functional responses were determined in a muscle bath, and this subfailure overstretch injury led to impaired smooth muscle function that was partially reversed by treatment with purinergic receptor (P2X7R) antagonists. These data suggest that vasomotor dysfunction caused by subfailure overstretch injury may be due to the activation of P2X7R. These studies have implications for our understanding of mechanical stretch injury of blood vessels and offer novel therapeutic opportunities.
Collapse
Affiliation(s)
- Weifeng Luo
- Department of Surgery, Vanderbilt University, Nashville, TN, USA
| | - Christy M. Guth
- Department of Surgery, Vanderbilt University, Nashville, TN, USA
| | - Olukemi Jolayemi
- Department of Surgery, Vanderbilt University, Nashville, TN, USA
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Colleen Marie Brophy
- Department of Surgery, Vanderbilt University, Nashville, TN, USA
- VA Tennessee Valley Healthcare System, Nashville, TN, USA
| | | |
Collapse
|
9
|
Xiao Y, Hayman D, Khalafvand SS, Lindsey ML, Han HC. Artery buckling stimulates cell proliferation and NF-κB signaling. Am J Physiol Heart Circ Physiol 2015; 307:H542-51. [PMID: 24929858 DOI: 10.1152/ajpheart.00079.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tortuous carotid arteries are often seen in aged populations and are associated with atherosclerosis, but the underlying mechanisms to explain this preference are unclear. Artery buckling has been suggested as one potential mechanism for the development of tortuous arteries. The objective of this study, accordingly, was to determine the effect of buckling on cell proliferation and associated NF-κB activation in arteries. We developed a technique to generate buckling in porcine carotid arteries using long artery segments in organ culture without changing the pressure, flow rate, and axial stretch ratio. Using this technique, we examined the effect of buckling on arterial wall remodeling in 4-day organ culture under normal and hypertensive pressures. Cell proliferation, NF-κB p65, IκB-α, ERK1/2, and caspase-3 were detected using immunohistochemistry staining and immunoblot analysis. Our results showed that cell proliferation was elevated 5.8-fold in the buckling group under hypertensive pressure (n = 7, P < 0.01) with higher levels of NF-κB nuclear translocation and IκB-α degradation (P < 0.05 for both). Greater numbers of proliferating cells were observed on the inner curve side of the buckled arteries compared with the outer curve side (P < 0.01). NF-κB colocalized with proliferative nuclei. Computational simulations using a fluid-structure interaction model showed reduced wall stress on the inner side of buckled arteries and elevated wall stress on the outer side. We conclude that arterial buckling promotes site-specific wall remodeling with increased cell proliferation and NF-κB activation. These findings shed light on the biomechanical and molecular mechanisms of the pathogenesis of atherosclerosis in tortuous arteries.
Collapse
|
10
|
Scavenger receptor class A member 5 (SCARA5) and suprabasin (SBSN) are hub genes of coexpression network modules associated with peripheral vein graft patency. J Vasc Surg 2015; 64:202-209.e6. [PMID: 25935274 DOI: 10.1016/j.jvs.2014.12.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/18/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Approximately 30% of autogenous vein grafts develop luminal narrowing and fail because of intimal hyperplasia or negative remodeling. We previously found that vein graft cells from patients who later develop stenosis proliferate more in vitro in response to growth factors than cells from patients who maintain patent grafts. To discover novel determinants of vein graft outcome, we have analyzed gene expression profiles of these cells using a systems biology approach to cluster the genes into modules by their coexpression patterns and to correlate the results with growth data from our prior study and with new studies of migration and matrix remodeling. METHODS RNA from 4-hour serum- or platelet-derived growth factor (PDGF)-BB-stimulated human saphenous vein cells obtained from the outer vein wall (20 cell lines) was used for microarray analysis of gene expression, followed by weighted gene coexpression network analysis. Cell migration in microchemotaxis chambers in response to PDGF-BB and cell-mediated collagen gel contraction in response to serum were also determined. Gene function was determined using short-interfering RNA to inhibit gene expression before subjecting cells to growth or collagen gel contraction assays. These cells were derived from samples of the vein grafts obtained at surgery, and the long-term fate of these bypass grafts was known. RESULTS Neither migration nor cell-mediated collagen gel contraction showed a correlation with graft outcome. Although 1188 and 1340 genes were differentially expressed in response to treatment with serum and PDGF, respectively, no single gene was differentially expressed in cells isolated from patients whose grafts stenosed compared with those that remained patent. Network analysis revealed four unique groups of genes, which we term modules, associated with PDGF responses, and 20 unique modules associated with serum responses. The "yellow" and "skyblue" modules, from PDGF and serum analyses, respectively, correlated with later graft stenosis (P = .005 and P = .02, respectively). In response to PDGF, yellow was also associated with increased cell growth. For serum, skyblue was also associated with inhibition of collagen gel contraction. The hub genes for yellow and skyblue (ie, the gene most connected to other genes in the module), scavenger receptor class A member 5 (SCARA5) and suprabasin (SBSN), respectively, were tested for effects on proliferation and collagen contraction. Knockdown of SCARA5 increased proliferation by 29.9% ± 7.8% (P < .01), whereas knockdown of SBSN had no effect. Knockdown of SBSN increased collagen gel contraction by 24.2% ± 8.6% (P < .05), whereas knockdown of SCARA5 had no effect. CONCLUSIONS Using weighted gene coexpression network analysis of cultured vein graft cell gene expression, we have discovered two small gene modules, which comprise 42 genes, that are associated with vein graft failure. Further experiments are needed to delineate the venous cells that express these genes in vivo and the roles these genes play in vein graft healing, starting with the module hub genes SCARA5 and SBSN, which have been shown to have modest effects on cell proliferation or collagen gel contraction.
Collapse
|
11
|
Huang AH, Lee YU, Calle EA, Boyle M, Starcher BC, Humphrey JD, Niklason LE. Design and Use of a Novel Bioreactor for Regeneration of Biaxially Stretched Tissue-Engineered Vessels. Tissue Eng Part C Methods 2015; 21:841-51. [PMID: 25669988 DOI: 10.1089/ten.tec.2014.0287] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Conventional bioreactors are used to enhance extracellular matrix (ECM) production and mechanical strength of tissue-engineered vessels (TEVs) by applying circumferential strain, which is uniaxial stretching. However, the resulting TEVs still suffer from inadequate mechanical properties, where rupture strengths and compliance values are still very different from native arteries. The biomechanical milieu of native arteries consists of both circumferential and axial loading. Therefore, to better simulate the physiological stresses acting on native arteries, we built a novel bioreactor system to enable biaxial stretching of engineered arteries during culture. This new bioreactor system allows for independent control of circumferential and axial stretching parameters, such as displacement and beat rate. The assembly and setup processes for this biaxial bioreactor system are reliable with a success rate greater than 75% for completion of long-term sterile culture. This bioreactor also supports side-by-side assessments of TEVs that are cultured under three types of mechanical conditions (static, uniaxial, and biaxial), all within the same biochemical environment. Using this bioreactor, we examined the impact of biaxial stretching on arterial wall remodeling of TEVs. Biaxial TEVs developed the greatest wall thickness compared with static and uniaxial TEVs. Unlike uniaxial loading, biaxial loading led to undulated collagen fibers that are commonly found in native arteries. More importantly, the biaxial TEVs developed the most mature elastin in the ECM, both qualitatively and quantitatively. The presence of mature extracellular elastin along with the undulated collagen fibers may contribute to the observed vascular compliance in the biaxial TEVs. The current work shows that biaxial stretching is a novel and promising means to improve TEV generation. Furthermore, this novel system allows us to optimize biomechanical conditioning by unraveling the interrelationships among the applied mechanical stress, the resulting ECM properties, and the mechanics of TEVs.
Collapse
Affiliation(s)
- Angela Hai Huang
- 1 Department of Biomedical Engineering, Yale University , New Haven, Connecticut
| | - Yong-Ung Lee
- 2 Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital , Columbus, Ohio
| | - Elizabeth A Calle
- 1 Department of Biomedical Engineering, Yale University , New Haven, Connecticut
| | - Michael Boyle
- 1 Department of Biomedical Engineering, Yale University , New Haven, Connecticut
| | - Barry C Starcher
- 3 Department of Biochemistry, The University of Texas Health Science Center , Tyler, Texas
| | - Jay D Humphrey
- 1 Department of Biomedical Engineering, Yale University , New Haven, Connecticut
| | - Laura E Niklason
- 1 Department of Biomedical Engineering, Yale University , New Haven, Connecticut.,4 Department of Anesthesiology, Yale University , New Haven, Connecticut
| |
Collapse
|
12
|
Huang AH, Niklason LE. Engineering of arteries in vitro. Cell Mol Life Sci 2014; 71:2103-18. [PMID: 24399290 PMCID: PMC4024341 DOI: 10.1007/s00018-013-1546-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 12/20/2022]
Abstract
This review will focus on two elements that are essential for functional arterial regeneration in vitro: the mechanical environment and the bioreactors used for tissue growth. The importance of the mechanical environment to embryological development, vascular functionality, and vascular graft regeneration will be discussed. Bioreactors generate mechanical stimuli to simulate biomechanical environment of arterial system. This system has been used to reconstruct arterial grafts with appropriate mechanical strength for implantation by controlling the chemical and mechanical environments in which the grafts are grown. Bioreactors are powerful tools to study the effect of mechanical stimuli on extracellular matrix architecture and mechanical properties of engineered vessels. Hence, biomimetic systems enable us to optimize chemo-biomechanical culture conditions to regenerate engineered vessels with physiological properties similar to those of native arteries. In addition, this article reviews various bioreactors designed especially to apply axial loading to engineered arteries. This review will also introduce and examine different approaches and techniques that have been used to engineer biologically based vascular grafts, including collagen-based grafts, fibrin-gel grafts, cell sheet engineering, biodegradable polymers, and decellularization of native vessels.
Collapse
Affiliation(s)
- Angela H Huang
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA,
| | | |
Collapse
|
13
|
Axial prestretch and circumferential distensibility in biomechanics of abdominal aorta. Biomech Model Mechanobiol 2013; 13:783-99. [DOI: 10.1007/s10237-013-0534-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
|
14
|
Strandberg E, Zeltinger J, Schulz DG, Kaluza GL. Late Positive Remodeling and Late Lumen Gain Contribute to Vascular Restoration by a Non-Drug Eluting Bioresorbable Scaffold. Circ Cardiovasc Interv 2012; 5:39-46. [DOI: 10.1161/circinterventions.111.964270] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
The interplay between mechanical dilatation, resorption, and arterial response following implantation of bioresorbable scaffolds is still poorly understood.
Methods and Results—
Long-term geometric changes in porcine coronary arteries in relation to gradual degradation of bioresorbable scaffolds were assessed in comparison with bare metal stents (BMS). Intravascular ultrasound (IVUS)-derived lumen, outer stent/scaffold, and reference vessel areas were evaluated in 94 polymer scaffolds and 46 BMS at 5 days and 3, 6, 12, 18, 24, and 55 months, in addition to polymer scaffold radial crush strength and molecular weight (M
W
) at 3, 6, and 12 months. BMS outer stent area and lumen area remained constant through 55 months (
P
=0.05, but within 1 standard deviation of 100%, and
P
=0.58, respectively), while significant increases were exhibited by polymer-scaffolded vessels with the maximum late lumen gain at 24 months, paralleled by the outer scaffold area increase, and then remaining at that increased level at 55 months (
P
<0.01). By 12 months polymer scaffolds experienced significant reductions in radial strength and M
W
, while the animals underwent the largest weight gain. At 3 months and beyond, the patency ratio (lumen area/reference vessel area) of BMS remained constant (0.71 to 0.85,
P
=0.49). In contrast, that of polymer scaffolds increased and approached 1 (
P
=0.13).
Conclusions—
Bioresorbable polymer scaffolds allow restoration of the treated segment's ability to remodel outward to achieve level lumen transition between reference vessel and scaffold-treated regions, a process mediated by animal growth and scaffold degradation. This also introduces a challenge to standard analyses of IVUS outcomes relying on constant stent diameters over time.
Collapse
Affiliation(s)
- Erika Strandberg
- From the REVA Medical, Inc, San Diego, CA (E.S., J.Z.); Center for Research in Cardiovascular Interventions, The Methodist Hospital Research Institute, Houston, TX (D.G.S.); Jack H. Skirball Center for Cardiovascular Research, Orangeburg, NY (G.L.K.)
| | - Joan Zeltinger
- From the REVA Medical, Inc, San Diego, CA (E.S., J.Z.); Center for Research in Cardiovascular Interventions, The Methodist Hospital Research Institute, Houston, TX (D.G.S.); Jack H. Skirball Center for Cardiovascular Research, Orangeburg, NY (G.L.K.)
| | - Daryl G. Schulz
- From the REVA Medical, Inc, San Diego, CA (E.S., J.Z.); Center for Research in Cardiovascular Interventions, The Methodist Hospital Research Institute, Houston, TX (D.G.S.); Jack H. Skirball Center for Cardiovascular Research, Orangeburg, NY (G.L.K.)
| | - Greg L. Kaluza
- From the REVA Medical, Inc, San Diego, CA (E.S., J.Z.); Center for Research in Cardiovascular Interventions, The Methodist Hospital Research Institute, Houston, TX (D.G.S.); Jack H. Skirball Center for Cardiovascular Research, Orangeburg, NY (G.L.K.)
| |
Collapse
|
15
|
Horny L, Adamek T, Gultova E, Zitny R, Vesely J, Chlup H, Konvickova S. Correlations between age, prestrain, diameter and atherosclerosis in the male abdominal aorta. J Mech Behav Biomed Mater 2011; 4:2128-32. [PMID: 22098912 DOI: 10.1016/j.jmbbm.2011.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/01/2011] [Accepted: 07/18/2011] [Indexed: 11/28/2022]
Abstract
The longitudinal prestrain of arteries facilitates their physiological function. Remodeling, adaptation and aging result in an age-dependent magnitude of the pretension. Although the phenomenon is known, detailed statistics, especially for human arteries, are lacking. This study was designed to propose the regression model capable of estimating the prestrain of the human abdominal aorta. The length of the abdominal aorta before, l, and after excision from the body, L, the diameter, heart weight, thickness of left ventricle and degree of atherosclerosis were collected in autopsies of 156 male cadavers of known age. Longitudinal prestrain was quantified by means of the stretch ratio λ=l/L. Statistical analysis revealed significant dependence between age, prestrain, diameter and atherosclerosis, which were best fitted to the power law equation. Longitudinal prestretch reduced with age significantly; λmean=1.30±0.07 for age<30 (n=29), whereas λmean=1.06±0.03 for age>59 (n=31) with p-value<0.0001. Raw data gave linear correlation coefficients as follows: λ-age (R=-0.842); l-age (R=0.023); L-age (R=0.476); (l-L)-age (R=-0.811). It was concluded that longitudinal prestrain decreases nonlinearly with age and both age and diameter are suitable predictors of the prestrain. Data suggests that unloaded length elongates with age in contrast to the elastic retraction.
Collapse
Affiliation(s)
- Lukas Horny
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 166 07, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
16
|
Crapo PM, Wang Y. Hydrostatic pressure independently increases elastin and collagen co-expression in small-diameter engineered arterial constructs. J Biomed Mater Res A 2011; 96:673-81. [PMID: 21268239 DOI: 10.1002/jbm.a.33019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 08/30/2010] [Accepted: 12/01/2010] [Indexed: 11/06/2022]
Abstract
Prior studies have demonstrated that smooth muscle cell (SMC) proliferation, migration, and extracellular matrix production increase with hydrostatic pressure in vitro. We have engineered highly compliant small-diameter arterial constructs by culturing primary adult baboon arterial SMCs under pulsatile perfusion on tubular, porous, elastomeric scaffolds composed of poly(glycerol sebacate) (PGS). This study investigates the effect of hydrostatic pressure on the biological and mechanical properties of PGS-based engineered arterial constructs. Pressure was raised using a downstream needle valve during perfusion while preserving flow rate and pulsatility, and constructs were evaluated by pressure-diameter testing and biochemical assays for collagen and elastin. Pressurized constructs contained half as much insoluble elastin as baboon common carotid arteries but were significantly less compliant, while constructs cultured at low hydrostatic pressure contained one-third as much insoluble elastin as baboon carotids and were similar in compliance. Hydrostatic pressure significantly increased construct burst pressure, collagen and insoluble elastin content, and soluble elastin concentration in culture medium. All arteries and constructs exhibited elastic recovery during pressure cycling. Hydrostatic pressure did not appear to affect radial distribution of SMCs, collagens I and III, and elastin. These results provide insights into the control of engineered smooth muscle tissue properties using hydrostatic pressure.
Collapse
Affiliation(s)
- Peter M Crapo
- Department of Surgery and the McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, Pennsylvania 15219, USA
| | | |
Collapse
|
17
|
Hoenicka M, Wiedemann L, Puehler T, Hirt S, Birnbaum DE, Schmid C. Effects of Shear Forces and Pressure on Blood Vessel Function and Metabolism in a Perfusion Bioreactor. Ann Biomed Eng 2010; 38:3706-23. [DOI: 10.1007/s10439-010-0116-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
|
18
|
Joddar B, Shaffer RJG, Reen RK, Gooch KJ. Arterial pO₂ stimulates intimal hyperplasia and serum stimulates inward eutrophic remodeling in porcine saphenous veins cultured ex vivo. Biomech Model Mechanobiol 2010; 10:161-75. [PMID: 20512609 DOI: 10.1007/s10237-010-0224-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 05/03/2010] [Indexed: 10/19/2022]
Abstract
Ex vivo culture of arteries and veins is an established tool for investigating mechanically induced remodeling. Porcine saphenous veins (PSV) cultured ex vivo with a venous mechanical environment, serum-supplemented cell-culture medium and standard cell-culture conditions (5% CO₂ and 95% balance air ~140 mmHg pO₂) develop intimal hyperplasia (IH), increased cellular proliferation, decreased compliance and exhibit inward eutrophic remodeling thereby suggesting that nonmechanical factors stimulate some changes observed ex vivo. Herein we explore the contribution of exposure to greater than venous pO₂ and serum to these changes in cultured veins. Removing serum from culture medium did not inhibit development of IH, but did reduce cellular proliferation and inward eutrophic remodeling. In contrast, veins perfused using reduced pO₂ (75 mmHg) showed reduced IH. Among the statically cultured vessels, veins cultured at arterial pO₂ (95 mmHg) and above showed IH as well as increase in proliferation and vessel weight compared to fresh veins; veins cultured at venous pO₂ did not. Taken together, these data suggest that exposure of SV to arterial pO₂ stimulates IH and cellular proliferation independent of changes in the mechanical environment, which might provide insight into the etiology of IH in SV used as arterial grafts.
Collapse
Affiliation(s)
- Binata Joddar
- Department of Biomedical Engineering, Ohio State University, 1080 Carmack Road, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
19
|
Current world literature. Curr Opin Organ Transplant 2010; 15:254-61. [PMID: 20351662 DOI: 10.1097/mot.0b013e328337a8db] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Lawrence AR, Gooch KJ. Differences in transmural pressure and axial loading ex vivo affect arterial remodeling and material properties. J Biomech Eng 2010; 131:101009. [PMID: 19831479 DOI: 10.1115/1.3200910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Arterial axial strains, present in the in vivo environment, often become reduced due to either bypass grafting or the normal aging process. Since the prevalence of hypertension increases with aging, arteries are often exposed to both decreased axial stretch and increased transmural pressure. The combined effects of these mechanical stimuli on the mechanical properties of vessels have not previously been determined. Porcine carotid arteries were cultured for 9 days at normal and reduced axial stretch ratios in the presence of normotensive and hypertensive transmural pressures using ex vivo perfusion techniques. Measurements of the amount of axial stress were obtained through longitudinal tension tests while inflation-deflation test results were used to determine circumferential stresses and incremental moduli. Macroscopic changes in artery geometry and zero-stress state opening angles were measured. Arteries cultured ex vivo remodeled in response to the mechanical environment, resulting in changes in arterial dimensions of up to approximately 25% and changes in zero-stress opening angles of up to approximately 55 degrees . While pressure primarily affected circumferential remodeling and axial stretch primarily affected axial remodeling, there were clear examples of interactions between these mechanical stimuli. Culture with hypertensive pressure, especially when coupled with reduced axial loading, resulted in a rightward shift in the pressure-diameter relationship relative to arteries cultured with normotensive pressure. The observed differences in the pressure-diameter curves for cultured arteries were due to changes in artery geometry and, in some cases, changes in the arteries' intrinsic mechanical properties. Relative to freshly isolated arteries, arteries cultured under mechanical conditions similar to in vivo conditions were stiffer, suggesting that aspects of the ex vivo culture other than the mechanical environment also influenced changes in the arteries' mechanical properties. These results confirm the well-known importance of transmural pressure with regard to arterial wall mechanics while highlighting additional roles for axial stretch in determining mechanical behavior.
Collapse
Affiliation(s)
- Amanda R Lawrence
- Department of Bioengineering and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, 19104, USA
| | | |
Collapse
|