1
|
Wu S, Lu J. Liposome-Enabled Nanomaterials for Muscle Regeneration. SMALL METHODS 2025:e2402154. [PMID: 39967365 DOI: 10.1002/smtd.202402154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/08/2025] [Indexed: 02/20/2025]
Abstract
Muscle regeneration is a vital biological process that is crucial for maintaining muscle function and integrity, particularly for the treatment of muscle diseases such as sarcopenia and muscular dystrophy. Generally, muscular tissues can self-repair and regenerate under various conditions, including acute or chronic injuries, aging, and genetic mutation. However, regeneration becomes challenging beyond a certain threshold, particularly in severe muscle injuries or progressive diseases. In recent years, liposome-based nanotechnologies have shown potential as promising therapeutic strategies for muscle regeneration. Liposomes offer an adaptable platform for targeted drug delivery due to their cell membrane-like structure and excellent biocompatibility. They can enhance drug solubility, stability, and targeted delivery while minimizing systemic side effects by different mechanisms. This review summarizes recent advancements, discusses current applications and mechanisms, and highlights challenges and future directions for possible clinical translation of liposome-based nanomaterials in the treatment of muscle diseases. It is hoped this review offers new insights into the development of liposome-enabled nanomedicine to address current limitations.
Collapse
Affiliation(s)
- Shuang Wu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
- Clinical and Translational Oncology Program, The University of Arizona Cancer Center, Tucson, AZ, 85721, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ, 85721, USA
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
2
|
Zhao Y, Li C, Zhou S, Xu Z, Huang X, Wen L. Hydrogen gas inhalation prior to high-intensity training reduces attenuation of nitric oxide bioavailability in male rugby players. PeerJ 2024; 12:e18503. [PMID: 39703911 PMCID: PMC11657200 DOI: 10.7717/peerj.18503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/18/2024] [Indexed: 12/21/2024] Open
Abstract
Background Inhalation of hydrogen gas (H2) as an antioxidant supplement may alleviate exercise-induced oxidative damage and protect post-exercise hydrogen peroxide signaling, which may help mediate beneficial exercise adaptation. The aims of this study were to determine the effects of H2 inhalation on plasma nitric oxide (NO) level and its synthesis precursor in professional athletes. Methods A randomized, placebo-controlled, double-blind, crossover trial was conducted with professional male rugby players for 3 weeks. Participants underwent 1 week of H2 supplementation and 1 week of placebo treatment prior to daily sessions of high-intensity exercise training, separated by 1 week of low-intensity training as a washout. Results Two-way (supplementation and time) repeated-measures analyses of variance showed that NO, L-arginine, and tetrahydrobiopterin levels in the H2 inhalation group were significantly higher than those in the placebo group after exercise (D6) and remained higher after 24 h of rest (D7). Levels of hydroxydeoxyguanosine and interleukin 6 were lower in the H2 inhalation week than in the placebo week on D6 and D7. In addition, total antioxidant levels were significantly higher with H2 inhalation than with placebo. Significance These results suggest that H2 inhalation helps to maintain NO signaling after exercise and to alleviate inflammation and oxidative stress induced by high-intensity exercise training in professional athletes.
Collapse
Affiliation(s)
- Yuqi Zhao
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
- School of Social Sports and Health Sciences, Tianjin University of Sport, Tianjin, China
| | - Chaoqun Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Shi Zhou
- Faculty of Health, Southern Cross University, Lismore, Australia
| | - Zhiguang Xu
- School of Social Sports and Health Sciences, Tianjin University of Sport, Tianjin, China
| | - Xin Huang
- School of Social Sports and Health Sciences, Tianjin University of Sport, Tianjin, China
| | - Li Wen
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
- School of Social Sports and Health Sciences, Tianjin University of Sport, Tianjin, China
| |
Collapse
|
3
|
Kang Y, Dillon KN, Martinez MA, Maharaj A, Fischer SM, Figueroa A. L-Citrulline Supplementation Improves Arterial Blood Flow and Muscle Oxygenation during Handgrip Exercise in Hypertensive Postmenopausal Women. Nutrients 2024; 16:1935. [PMID: 38931289 PMCID: PMC11206967 DOI: 10.3390/nu16121935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Endothelial dysfunction decreases exercise limb blood flow (BF) and muscle oxygenation. Acute L-Citrulline supplementation (CIT) improves muscle tissue oxygen saturation index (TSI) and deoxygenated hemoglobin (HHb) during exercise. Although CIT improves endothelial function (flow-mediated dilation [FMD]) in hypertensive women, the impact of CIT on exercise BF and muscle oxygenation (TSI) and extraction (HHb) are unknown. We examined the effects of CIT (10 g/day) and a placebo for 4 weeks on blood pressure (BP), arterial vasodilation (FMD, BF, and vascular conductance [VC]), and forearm muscle oxygenation (TSI and HHb) at rest and during exercise in 22 hypertensive postmenopausal women. Compared to the placebo, CIT significantly (p < 0.05) increased FMD (Δ-0.7 ± 0.6% vs. Δ1.6 ± 0.7%) and reduced aortic systolic BP (Δ3 ± 5 vs. Δ-4 ± 6 mmHg) at rest and improved exercise BF (Δ17 ± 12 vs. Δ48 ± 16 mL/min), VC (Δ-21 ± 9 vs. Δ41 ± 14 mL/mmHg/min), TSI (Δ-0.84 ± 0.58% vs. Δ1.61 ± 0.46%), and HHb (Δ1.03 ± 0.69 vs. Δ-2.76 ± 0.77 μM). Exercise BF and VC were positively correlated with improved FMD and TSI during exercise (all p < 0.05). CIT improved exercise artery vasodilation and muscle oxygenation via increased endothelial function in hypertensive postmenopausal women.
Collapse
Affiliation(s)
- Yejin Kang
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (Y.K.); (K.N.D.); (M.A.M.)
| | - Katherine N. Dillon
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (Y.K.); (K.N.D.); (M.A.M.)
| | - Mauricio A. Martinez
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (Y.K.); (K.N.D.); (M.A.M.)
| | - Arun Maharaj
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Stephen M. Fischer
- Department of Family and Community Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Arturo Figueroa
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (Y.K.); (K.N.D.); (M.A.M.)
| |
Collapse
|
4
|
Menêses A, Krastins D, Nam M, Bailey T, Quah J, Sankhla V, Lam J, Jha P, Schulze K, O'Donnell J, Magee R, Golledge J, Greaves K, Askew CD. Toward a Better Understanding of Muscle Microvascular Perfusion During Exercise in Patients With Peripheral Artery Disease: The Effect of Lower-Limb Revascularization. J Endovasc Ther 2024; 31:115-125. [PMID: 35898156 DOI: 10.1177/15266028221114722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Leg muscle microvascular blood flow (perfusion) is impaired in response to maximal exercise in patients with peripheral artery disease (PAD); however, during submaximal exercise, microvascular perfusion is maintained due to a greater increase in microvascular blood volume compared with that seen in healthy adults. It is unclear whether this submaximal exercise response reflects a microvascular impairment, or whether it is a compensatory response for the limited conduit artery flow in PAD. Therefore, to clarify the role of conduit artery blood flow, we compared whole-limb blood flow and skeletal muscle microvascular perfusion responses with exercise in patients with PAD (n=9; 60±7 years) prior to, and following, lower-limb endovascular revascularization. MATERIALS AND METHODS Microvascular perfusion (microvascular volume × flow velocity) of the medial gastrocnemius muscle was measured before and immediately after a 5 minute bout of submaximal intermittent isometric plantar-flexion exercise using contrast-enhanced ultrasound imaging. Exercise contraction-by-contraction whole-leg blood flow and vascular conductance were measured using strain-gauge plethysmography. RESULTS With revascularization there was a significant increase in whole-leg blood flow and conductance during exercise (p<0.05). Exercise-induced muscle microvascular perfusion response did not change with revascularization (pre-revascularization: 3.19±2.32; post-revascularization: 3.89±1.67 aU.s-1; p=0.38). However, the parameters that determine microvascular perfusion changed, with a reduction in the microvascular volume response to exercise (pre-revascularization: 6.76±3.56; post-revascularization: 2.42±0.69 aU; p<0.01) and an increase in microvascular flow velocity (pre-revascularization: 0.25±0.13; post-revascularization: 0.59±0.25 s-1; p=0.02). CONCLUSION These findings suggest that patients with PAD compensate for the conduit artery blood flow impairment with an increase in microvascular blood volume to maintain muscle perfusion during submaximal exercise. CLINICAL IMPACT The findings from this study support the notion that the impairment in conduit artery blood flow in patients with PAD leads to compensatory changes in microvascular blood volume and flow velocity to maintain muscle microvascular perfusion during submaximal leg exercise. Moreover, this study demonstrates that these microvascular changes are reversed and become normalized with successful lower-limb endovascular revascularization.
Collapse
Affiliation(s)
- Annelise Menêses
- VasoActive Research Group, School of Health, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Digby Krastins
- VasoActive Research Group, School of Health, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Michael Nam
- Department of Cardiology, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Tom Bailey
- VasoActive Research Group, School of Health, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre for Research on Exercise, Physical Activity & Health, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jing Quah
- Department of Cardiology, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Vaibhav Sankhla
- Department of Cardiology, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Jeng Lam
- Department of Cardiology, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Pankaj Jha
- Department of Vascular Surgery, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Karl Schulze
- Sunshine Vascular Clinic, Buderim, QLD, Australia
| | - Jill O'Donnell
- Department of Vascular Surgery, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Rebecca Magee
- Department of Vascular Surgery, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University and Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, QLD, Australia
| | - Kim Greaves
- Department of Cardiology, Sunshine Coast University Hospital, Birtinya, QLD, Australia
- Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, QLD, Australia
| | - Christopher D Askew
- VasoActive Research Group, School of Health, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, QLD, Australia
| |
Collapse
|
5
|
Košir M, Možina H, Podbregar M. Skeletal muscle oxygenation during cardiopulmonary resuscitation as a predictor of return of spontaneous circulation: a pilot study. Eur J Med Res 2023; 28:418. [PMID: 37821950 PMCID: PMC10566100 DOI: 10.1186/s40001-023-01393-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/23/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Near-infrared spectroscopy (NIRS) provides regional tissue oxygenation (rSO2) even in pulseless states, such as out-of-hospital cardiac arrest (OHCA). Brain rSO2 seems to be important predictor of return of spontaneous circulation (ROSC) during cardiopulmonary resuscitation (CPR). Aim of our study was to explore feasibility for monitoring and detecting changes of skeletal muscle rSO2 during resuscitation. METHODS Skeletal muscle and brain rSO2 were measured by NIRS (SenSmart Model X-100, Nonin, USA) during CPR in adult patient with OHCA. Start (basal) rSO2, maximal during CPR (maximal) and difference between maximal-minimal rSO2 (delta-rSO2), were recorded. Patients were divided into ROSC and NO-ROSC group. RESULTS 20 patients [age: 66.0ys (60.5-79.5), 65% male] with OHCA [50% witnessed, 70% BLS, time to ALS 13.5 min (11.0-19.0)] were finally analyzed. ROSC was confirmed in 5 (25%) patients. Basal and maximal skeletal muscle rSO2 were higher in ROSC compared to NO-ROSC group [49.0% (39.7-53.7) vs. 15.0% (12.0-25.2), P = 0.006; 76.0% (52.7-80.5) vs. 34.0% (18.0-49.5), P = 0.005, respectively]. There was non-linear cubic relationship between time of collapse and basal skeletal muscle rSO2 in witnessed OHCA and without BLS (F-ratio = 9.7713, P = 0.0261). There was correlation between maximal skeletal muscle and brain rSO2 (n = 18, rho: 0.578, P = 0.0121). CONCLUSIONS Recording of skeletal muscle rSO2 during CPR in patients with OHCA is feasible. Basal and maximal skeletal muscle rSO2 were higher in ROSC compared to NO-ROSC group. Clinical trial registration number ClinicalTrials.gov, NCT04058925, registered on: 16th August 2019. URL of trial registry record: https://www. CLINICALTRIALS gov/ct2/show/NCT04058925?titles=Tissue+Oxygenation+During+Cardiopulmonary+Resuscitation+as+a+Predictor+of+Return+of+Spontaneous+Circulation&draw=2&rank=1 .
Collapse
Affiliation(s)
- Miha Košir
- Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia
- Unit SNMP, Community Health Centre Ljubljana, Bohoričeva Ulica 4, 1000, Ljubljana, Slovenia
| | - Hugon Možina
- Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia
- Emergency Department, University Medical Center Ljubljana, Zaloška Cesta 4, 1000, Ljubljana, Slovenia
| | - Matej Podbregar
- Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia.
- Department for Internal Intensive Care, General Hospital Celje, Oblakova Ulica 5, 3000, Celje, Slovenia.
| |
Collapse
|
6
|
Karlas A, Fasoula NA, Katsouli N, Kallmayer M, Sieber S, Schmidt S, Liapis E, Halle M, Eckstein HH, Ntziachristos V. Skeletal muscle optoacoustics reveals patterns of circulatory function and oxygen metabolism during exercise. PHOTOACOUSTICS 2023; 30:100468. [PMID: 36950518 PMCID: PMC10025091 DOI: 10.1016/j.pacs.2023.100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Imaging skeletal muscle function and metabolism, as reported by local hemodynamics and oxygen kinetics, can elucidate muscle performance, severity of an underlying disease or outcome of a treatment. Herein, we used multispectral optoacoustic tomography (MSOT) to image hemodynamics and oxygen kinetics within muscle during exercise. Four healthy volunteers underwent three different hand-grip exercise challenges (60s isometric, 120s intermittent isometric and 60s isotonic). During isometric contraction, MSOT showed a decrease of HbO2, Hb and total blood volume (TBV), followed by a prominent increase after the end of contraction. Corresponding hemodynamic behaviors were recorded during the intermittent isometric and isotonic exercises. A more detailed analysis of MSOT readouts revealed insights into arteriovenous oxygen differences and muscle oxygen consumption during all exercise schemes. These results demonstrate an excellent capability of visualizing both circulatory function and oxygen metabolism within skeletal muscle under exercise, with great potential implications for muscle research, including relevant disease diagnostics.
Collapse
Affiliation(s)
- Angelos Karlas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Nikolina-Alexia Fasoula
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Nikoletta Katsouli
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Michael Kallmayer
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sabine Sieber
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sebastian Schmidt
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Evangelos Liapis
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Martin Halle
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Department of Prevention and Sports Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
7
|
Zhang Y, Yan J, Jin X, Yang H, Zhang Y, Ma H, Ma R. Sports Participation and Academic Performance in Primary School: A Cross-Sectional Study in Chinese Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3678. [PMID: 36834372 PMCID: PMC9961712 DOI: 10.3390/ijerph20043678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Previous studies have demonstrated that the effect of sports participation on student health and academic performance is significant. However, the relationship between sports participation and academic performance in specific subjects (e.g., English) in the Chinese population is not clear, especially in primary schools. Therefore, the present cross-sectional study aimed to investigate the relationship between sports participation and academic performance in Chinese elementary schools. METHODS All study participants were asked to self-report their sociodemographic factors (e.g., sex, grade, age), independence, and outcomes. Alongside that, a self-reported questionnaire was used to assess participation in sports and academic performance of three core subjects in China's schooling system (Chinese; math; English; from A to F, with A indicating the best academic performance). An ordered logistic regression, with an odds ratio (OR) at 95%CI confidence interval, was performed to examine the association between sports team participation and academic performance. RESULTS The final analysis included 27,954 children aged 10-14. Children in the fifth and sixth grades accounted for 50.2% and 49.8%. Chinese, math, and English academic performance were positively correlated with participation in sports. Compared with students who never participate in sports, those students who participate in sports 1-3 times a month, 1-2 times a week, and 3 or more times a week, were more likely to achieve better grades. In terms of math, compared with students who never participate in sports, those students who participate in sports 1-3 times a month, 1-2 times a week, and 3 or more times a week, were more likely to achieve better grades. Regarding English, compared with students who never participate in sports, those students who participate in sports 1-3 times a month, 1-2 times a week, and 3 or more times a week, were more likely to achieve better grades. CONCLUSIONS Consistent with previous studies, the current study confirms the positive effect of sports participation on children's academic performance. For an academic-related outreach, gender-, grade- and area-specific strategies should be considered in future research.
Collapse
Affiliation(s)
- Yao Zhang
- Institute of Sports and Health, Zhengzhou Shengda University, Zhengzhou 451191, China
| | - Jin Yan
- Centre for Active Living and Learning, University of Newcastle, Callaghan, NSW 2308, Australia
- College of Human and Social Futures, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Xiao Jin
- Department of Physical Education, Tianjin University of Technology, Tianjin 300384, China
| | - Hongying Yang
- Library of Beijing Sport University, Beijing 100084, China
| | - Ying Zhang
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Huijun Ma
- School of Physical Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Rui Ma
- Postdoctoral Research Station in Public Administration, School of Physical Education, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
8
|
DeLorey DS, Clifford PS. Does sympathetic vasoconstriction contribute to metabolism: Perfusion matching in exercising skeletal muscle? Front Physiol 2022; 13:980524. [PMID: 36171966 PMCID: PMC9510655 DOI: 10.3389/fphys.2022.980524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/17/2022] [Indexed: 11/14/2022] Open
Abstract
The process of matching skeletal muscle blood flow to metabolism is complex and multi-factorial. In response to exercise, increases in cardiac output, perfusion pressure and local vasodilation facilitate an intensity-dependent increase in muscle blood flow. Concomitantly, sympathetic nerve activity directed to both exercising and non-active muscles increases as a function of exercise intensity. Several studies have reported the presence of tonic sympathetic vasoconstriction in the vasculature of exercising muscle at the onset of exercise that persists through prolonged exercise bouts, though it is blunted in an exercise-intensity dependent manner (functional sympatholysis). The collective evidence has resulted in the current dogma that vasoactive molecules released from skeletal muscle, the vascular endothelium, and possibly red blood cells produce local vasodilation, while sympathetic vasoconstriction restrains vasodilation to direct blood flow to the most metabolically active muscles/fibers. Vascular smooth muscle is assumed to integrate a host of vasoactive signals resulting in a precise matching of muscle blood flow to metabolism. Unfortunately, a critical review of the available literature reveals that published studies have largely focused on bulk blood flow and existing experimental approaches with limited ability to reveal the matching of perfusion with metabolism, particularly between and within muscles. This paper will review our current understanding of the regulation of sympathetic vasoconstriction in contracting skeletal muscle and highlight areas where further investigation is necessary.
Collapse
Affiliation(s)
- Darren S. DeLorey
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Darren S. DeLorey,
| | - Philip S. Clifford
- College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
9
|
Tong KP, Intine R, Wu S. Vitamin C and the management of diabetic foot ulcers: a literature review. J Wound Care 2022; 31:S33-S44. [PMID: 36113854 DOI: 10.12968/jowc.2022.31.sup9.s33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The lifetime risk of developing a diabetic foot ulcer (DFU) in people with diabetes is as high as 25%. A trio of factors constitute the diabetic foot syndrome that characterises DFUs, including neuropathy, vascular disease and infections. Vitamin C has important functions in the nervous, cardiovascular, and immune systems that are implicated in DFU development. Furthermore, vitamin C deficiency has been observed in individuals with DFUs, suggesting an important function of vitamin C in DFU management and treatment. Therefore, this literature review evaluates the role of vitamin C in the nervous, cardiovascular and immune systems in relation to wound healing and DFUs, as well as discussing vitamin C's lesser known role in depression, a condition that affects many individuals with a DFU. METHOD A literature search was done using PubMed, Cochrane Library, Embase, Ovid, Computer Retrieval of Information on Scientific Projects, and NIH Clinical Center. Search terms included 'diabetic foot ulcer,' 'diabetic foot,' 'vitamin C,' and 'ascorbic acid.' RESULTS Of the 71 studies initially identified, seven studies met the inclusion criteria, and only three were human clinical trials. Overall, the literature on this subject is limited, with mainly observational and animal studies, and few human clinical trials. CONCLUSION There is a need for additional human clinical trials on vitamin C supplementation in individuals with a DFU to fill the knowledge gap and guide clinical practice.
Collapse
Affiliation(s)
- Khanh Phuong Tong
- Dr William M Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, Illinois, US
| | - Robert Intine
- School of Graduate and Postdoctoral Studies, College of Health Professions, Rosalind Franklin University of Medicine and Science, Illinois, US
| | - Stephanie Wu
- Dr William M Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, Illinois, US
| |
Collapse
|
10
|
Lundberg JO, Weitzberg E. Nitric oxide signaling in health and disease. Cell 2022; 185:2853-2878. [DOI: 10.1016/j.cell.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 10/16/2022]
|
11
|
Mawhinney C, Heinonen I, Low DA, Han C, Jones H, Kalliokoski KK, Kirjavainen A, Kemppainen J, DI Salvo V, Lolli L, Cable NT, Gregson W. Cool-Water Immersion Reduces Postexercise Quadriceps Femoris Muscle Perfusion More Than Cold-Water Immersion. Med Sci Sports Exerc 2022; 54:1085-1094. [PMID: 35220370 DOI: 10.1249/mss.0000000000002898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The muscle perfusion response to postexercise cold-water immersion (CWI) is not well understood. We examined the effects of graded postexercise CWI upon global and regional quadriceps femoris muscle perfusion using positron emission tomography and [15O]H2O. METHODS Using a matched-group design, 30 healthy men performed cycle ergometer exercise at 70% V̇O2peak to a core body temperature of 38°C, followed by either 10 min of CWI at 8°C, 22°C, or seated rest (control). Quadriceps muscle perfusion; thigh and calf cutaneous vascular conductance; intestinal, muscle, and local skin temperatures; thermal comfort; mean arterial pressure; and heart rate were assessed at preexercise, postexercise, and after CWI. RESULTS Global quadriceps perfusion was reduced beyond the predefined minimal clinically relevant threshold (0.75 mL per 100 g·min-1) in 22°C water versus control (difference (95% confidence interval (CI)), -2.5 (-3.9 to -1.1) mL per 100 g·min-1). Clinically relevant decreases in muscle perfusion were observed in the rectus femoris (-2.0 (-3.0 to -1.0) mL per 100 g·min-1) and vastus lateralis (-3.5 (-4.9 to -2.0) mL per 100 g·min-1) in 8°C water, and in the vastus lateralis (-3.3 (-4.8 to -1.9) mL per 100 g·min-1) in 22°C water versus control. The mean effects for vastus intermedius and vastus medialis perfusion were not clinically relevant. Clinically relevant decreases in thigh and calf cutaneous vascular conductance were observed in both cooling conditions. CONCLUSIONS The present findings revealed that less noxious CWI (22°C) promoted clinically relevant postexercise decreases in global quadriceps muscle perfusion, whereas noxious cooling (8°C) elicited no effect.
Collapse
Affiliation(s)
| | | | - David A Low
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UNITED KINGDOM
| | - Chunlei Han
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, FINLAND
| | - Helen Jones
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UNITED KINGDOM
| | - Kari K Kalliokoski
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, FINLAND
| | - Anna Kirjavainen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, FINLAND
| | - Jukka Kemppainen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, FINLAND
| | | | | | - N Tim Cable
- Institute of Sport, Manchester Metropolitan University, Manchester, UNITED KINGDOM
| | | |
Collapse
|
12
|
Travers G, Kippelen P, Trangmar SJ, González-Alonso J. Physiological Function during Exercise and Environmental Stress in Humans-An Integrative View of Body Systems and Homeostasis. Cells 2022; 11:383. [PMID: 35159193 PMCID: PMC8833916 DOI: 10.3390/cells11030383] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/26/2022] Open
Abstract
Claude Bernard's milieu intérieur (internal environment) and the associated concept of homeostasis are fundamental to the understanding of the physiological responses to exercise and environmental stress. Maintenance of cellular homeostasis is thought to happen during exercise through the precise matching of cellular energetic demand and supply, and the production and clearance of metabolic by-products. The mind-boggling number of molecular and cellular pathways and the host of tissues and organ systems involved in the processes sustaining locomotion, however, necessitate an integrative examination of the body's physiological systems. This integrative approach can be used to identify whether function and cellular homeostasis are maintained or compromised during exercise. In this review, we discuss the responses of the human brain, the lungs, the heart, and the skeletal muscles to the varying physiological demands of exercise and environmental stress. Multiple alterations in physiological function and differential homeostatic adjustments occur when people undertake strenuous exercise with and without thermal stress. These adjustments can include: hyperthermia; hyperventilation; cardiovascular strain with restrictions in brain, muscle, skin and visceral organs blood flow; greater reliance on muscle glycogen and cellular metabolism; alterations in neural activity; and, in some conditions, compromised muscle metabolism and aerobic capacity. Oxygen supply to the human brain is also blunted during intense exercise, but global cerebral metabolism and central neural drive are preserved or enhanced. In contrast to the strain seen during severe exercise and environmental stress, a steady state is maintained when humans exercise at intensities and in environmental conditions that require a small fraction of the functional capacity. The impact of exercise and environmental stress upon whole-body functions and homeostasis therefore depends on the functional needs and differs across organ systems.
Collapse
Affiliation(s)
- Gavin Travers
- The European Astronaut Centre, The European Space Agency, Linder Höhe, 51147 Cologne, Germany;
| | - Pascale Kippelen
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge UB8 3PH, UK;
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Steven J. Trangmar
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK;
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge UB8 3PH, UK;
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| |
Collapse
|
13
|
Carter KJ, Ward AT, Kellawan JM, Eldridge MW, Al-Subu A, Walker BJ, Lee JW, Wieben O, Schrage WG. Nitric oxide synthase inhibition in healthy adults reduces regional and total cerebral macrovascular blood flow and microvascular perfusion. J Physiol 2021; 599:4973-4989. [PMID: 34587648 PMCID: PMC9009720 DOI: 10.1113/jp281975] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/28/2021] [Indexed: 11/08/2022] Open
Abstract
The importance of nitric oxide (NO) in regulating cerebral blood flow (CBF) remains unresolved, due in part to methodological approaches, which lack a comprehensive assessment of both global and regional effects. Importantly, NO synthase (NOS) expression and activity appear greater in some anterior brain regions, suggesting region-specific NOS influence on CBF. We hypothesized that NO contributes to basal CBF in healthy adults, in a regionally distinct pattern that predominates in the anterior circulation. Fourteen healthy adults (7 females; 24 ± 5 years) underwent two magnetic resonance imaging (MRI) study visits with saline (placebo) or the NOS inhibitor, L-NMMA, administered in a randomized, single-blind approach. 4D flow MRI quantified total and regional macrovascular CBF, whereas arterial spin labelling (ASL) MRI quantified total and regional microvascular perfusion. L-NMMA (or volume-matched saline) was infused intravenously for 5 min prior to imaging. L-NMMA reduced CBF (L-NMMA: 722 ± 100 vs. placebo: 771 ± 121 ml/min, P = 0.01) with similar relative reductions (5-7%) in anterior and posterior cerebral circulations, due in part to the reduced cross-sectional area of 9 of 11 large cerebral arteries. Global microvascular perfusion (ASL) was reduced by L-NMMA (L-NMMA: 42 ± 7 vs. placebo: 47 ± 8 ml/100g/min, P = 0.02), with 7-11% reductions in both hemispheres of the frontal, parietal and temporal lobes, and in the left occipital lobe. We conclude that NO contributes to macrovascular and microvascular regulation including larger artery resting diameter. Contrary to our hypothesis, the influence of NO on cerebral perfusion appears regionally uniform in healthy young adults. KEY POINTS: Cerebral blood flow (CBF) is vital for brain health, but the signals that are key to regulating CBF remain unclear. Nitric oxide (NO) is produced in the brain, but its importance in regulating CBF remains controversial since prior studies have not studied all regions of the brain simultaneously. Using modern MRI approaches, a drug that inhibits the enzymes that make NO (L-NMMA) reduced CBF by up to 11% in different brain regions. NO helps maintain proper CBF in healthy adults. These data will help us understand whether the reductions in CBF that occur during ageing or cardiovascular disease are related to shifts in NO signalling.
Collapse
Affiliation(s)
- Katrina J Carter
- Department of Kinesiology, University of Wisconsin, Madison, WI, USA
| | - Aaron T Ward
- Department of Kinesiology, University of Wisconsin, Madison, WI, USA
| | - J Mikhail Kellawan
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
| | | | - Awni Al-Subu
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA
| | - Benjamin J Walker
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Jeffrey W Lee
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
- Department of Radiology, University of Wisconsin, Madison, WI, USA
| | - William G Schrage
- Department of Kinesiology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
14
|
Broatch JR, O'Riordan SF, Keske MA, Betik AC, Bishop DJ, Halson SL, Parker L. Reduced post-exercise muscle microvascular perfusion with compression is offset by increased muscle oxygen extraction: Assessment by contrast-enhanced ultrasound. FASEB J 2021; 35:e21499. [PMID: 33811697 DOI: 10.1096/fj.202002205rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/11/2022]
Abstract
The microvasculature is important for both health and exercise tolerance in a range of populations. However, methodological limitations have meant changes in microvascular blood flow are rarely assessed in humans during interventions designed to affect skeletal muscle blood flow such as the wearing of compression garments. The aim of this study is, for the first time, to use contrast-enhanced ultrasound to directly measure the effects of compression on muscle microvascular blood flow alongside measures of femoral artery blood flow and muscle oxygenation following intense exercise in healthy adults. It was hypothesized that both muscle microvascular and femoral artery blood flows would be augmented with compression garments as compared with a control condition. Ten recreationally active participants completed two repeated-sprint exercise sessions, with and without lower-limb compression tights. Muscle microvascular blood flow, femoral arterial blood flow (2D and Doppler ultrasound), muscle oxygenation (near-infrared spectroscopy), cycling performance, and venous blood samples were measured/taken throughout exercise and the 1-hour post-exercise recovery period. Compared with control, compression reduced muscle microvascular blood volume and attenuated the exercise-induced increase in microvascular velocity and flow immediately after exercise and 1 hour post-exercise. Compression increased femoral artery diameter and augmented the exercise-induced increase in femoral arterial blood flow during exercise. Markers of blood oxygen extraction in muscle were increased with compression during and after exercise. Compression had no effect on blood lactate, glucose, or exercise performance. We provide new evidence that lower-limb compression attenuates the exercise-induced increase in skeletal muscle microvascular blood flow following exercise, despite a divergent increase in femoral artery blood flow. Decreased muscle microvascular perfusion is offset by increased muscle oxygen extraction, a potential mechanism allowing for the maintenance of exercise performance.
Collapse
Affiliation(s)
- James R Broatch
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia.,Australia Institute of Sport, Canberra, ACT, Australia
| | - Shane F O'Riordan
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia.,Australia Institute of Sport, Canberra, ACT, Australia
| | - Michelle A Keske
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Andrew C Betik
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - David J Bishop
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
| | - Shona L Halson
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
15
|
Arazi H, Eghbali E. Possible Effects of Beetroot Supplementation on Physical Performance Through Metabolic, Neuroendocrine, and Antioxidant Mechanisms: A Narrative Review of the Literature. Front Nutr 2021; 8:660150. [PMID: 34055855 PMCID: PMC8155490 DOI: 10.3389/fnut.2021.660150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
Athletes often seek to use dietary supplements to increase performance during exercise. Among various supplements, much attention has been paid to beetroot in recent years. Beetroot is a source of carbohydrates, fiber, protein, minerals, and vitamins; also, it is a natural source of nitrate and associated with improved sports performance. Nitrates can the modification of skeletal muscle contractile proteins or calcium handling after translation. The time to reach the peak plasma nitrate is between 1 and 3 h after consumption of a single dose of nitrate. Nitrate is metabolized by conversion to nitrite and subsequently nitric oxide. Beetroot can have various effects on athletic performance through nitric oxide. Nitric oxide is an intracellular and extracellular messenger for regulating certain cellular functions and causes vasodilation of blood vessels and increases blood flow. Nitric oxide seems to be effective in improving athletic performance by increasing oxygen, glucose, and other nutrients for better muscle fueling. Nitric oxide plays the main role in anabolic hormones, modulates the release of several neurotransmitters and the major mediators of stress involved in the acute hypothalamic-pituitary-adrenal response to exercise. Beetroot is an important source of compounds such as ascorbic acid, carotenoids, phenolic acids, flavonoids, betaline, and highly active phenolics and has high antioxidant properties. Beetroot supplement provides an important source of dietary polyphenols and due to the many health benefits. Phytochemicals of Beetroot through signaling pathways inhibit inflammatory diseases. In this study, the mechanisms responsible for these effects were examined and the research in this regard was reviewed.
Collapse
Affiliation(s)
- Hamid Arazi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| | - Ehsan Eghbali
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
16
|
Witthauer L, Cascales JP, Roussakis E, Li X, Goss A, Chen Y, Evans CL. Portable Oxygen-Sensing Device for the Improved Assessment of Compartment Syndrome and other Hypoxia-Related Conditions. ACS Sens 2021; 6:43-53. [PMID: 33325684 DOI: 10.1021/acssensors.0c01686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Measurement of intramuscular oxygen could play a key role in the early diagnosis of acute compartment syndrome, a common condition occurring after severe trauma leading to ischemia and long-term consequences including rhabdomyolysis, limb loss, and death. However, to date, there is no existing oxygen sensor approved for such a purpose. To address the need to improve the assessment of compartment syndrome, a portable fiber-optic device for intramuscular oxygen measurements was developed. The device is based on phosphorescence quenching, where the tip of an optical fiber was coated with a poly(propyl methacrylate) (PPMA) matrix containing a brightly emitting Pt(II)-core porphyrin. The optoelectronic circuit is highly portable and is based on a microspectrometer and a microcontroller readout with a smartphone. Results from an in vivo tourniquet porcine model show that the sensor is sensitive across the physiological oxygen partial pressure range of 0-80 mmHg and exhibits an appropriate and reproducible response to changes in intramuscular oxygen. A commercial laboratory oxygen sensor based on a lifetime measurement did not respond as expected.
Collapse
Affiliation(s)
- Lilian Witthauer
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Juan Pedro Cascales
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Emmanuel Roussakis
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Xiaolei Li
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Avery Goss
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Yenyu Chen
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Conor L. Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
17
|
Wiesner HM, Balla DZ, Scheffler K, Uğurbil K, Zhu XH, Chen W, Uludağ K, Pohmann R. Quantitative and simultaneous measurement of oxygen consumption rates in rat brain and skeletal muscle using 17 O MRS imaging at 16.4T. Magn Reson Med 2020; 85:2232-2246. [PMID: 33104248 DOI: 10.1002/mrm.28552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/27/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Oxygen-17 (17 O) MRS imaging, successfully used in the brain, is extended by imaging the oxygen metabolic rate in the resting skeletal muscle and used to determine the total whole-body oxygen metabolic rate in the rat. METHODS During and after inhalations of 17 O2 gas, dynamic 17 O MRSI was performed in rats (n = 8) ventilated with N2 O or N2 at 16.4 T. Time courses of the H2 17 O concentration from regions of interest located in brain and muscle tissue were examined and used to fit an animal-adapted 3-phase metabolic model of oxygen consumption. CBF was determined with an independent washout method. Finally, body oxygen metabolic rate was calculated using a global steady-state approach. RESULTS Cerebral metabolic rate of oxygen consumption was 1.97 ± 0.19 μmol/g/min on average. The resting metabolic rate of oxygen consumption in skeletal muscle was 0.32 ± 0.12 μmol/g/min and >6 times lower than cerebral metabolic rate of oxygen consumption. Global oxygen consumed by the body was 24.2 ± 3.6 mL O2 /kg body weight/min. CBF was estimated to be 0.28 ± 0.02 mL/g/min and 0.34 ± 0.06 mL/g/min for the N2 and N2 O ventilation condition, respectively. CONCLUSION We have evaluated the feasibility of 17 O MRSI for imaging and quantifying the oxygen consumption rate in low metabolizing organs such as the skeletal muscle at rest. Additionally, we have shown that CBF is slightly increased in the case of ventilation with N2 O. We expect this study to be beneficial to the application of 17 O MRSI to a wider range of organs, although further validation is advised.
Collapse
Affiliation(s)
- Hannes M Wiesner
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dávid Z Balla
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Klaus Scheffler
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Department of Biomedical Magnetic Resonance, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiao-Hong Zhu
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wei Chen
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kâmil Uludağ
- Techna Institute and Koerner Scientist in MR Imaging, University Health Network, Toronto, Ontario, Canada.,Center for Neuroscience Imaging Research, Institute for Basic Science and Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Rolf Pohmann
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
18
|
Abstract
The skeletal muscle is the largest organ in the body, by mass. It is also the regulator of glucose homeostasis, responsible for 80% of postprandial glucose uptake from the circulation. Skeletal muscle is essential for metabolism, both for its role in glucose uptake and its importance in exercise and metabolic disease. In this article, we give an overview of the importance of skeletal muscle in metabolism, describing its role in glucose uptake and the diseases that are associated with skeletal muscle metabolic dysregulation. We focus on the role of skeletal muscle in peripheral insulin resistance and the potential for skeletal muscle-targeted therapeutics to combat insulin resistance and diabetes, as well as other metabolic diseases like aging and obesity. In particular, we outline the possibilities and pitfalls of the quest for exercise mimetics, which are intended to target the molecular mechanisms underlying the beneficial effects of exercise on metabolic disease. We also provide a description of the molecular mechanisms that regulate skeletal muscle glucose uptake, including a focus on the SNARE proteins, which are essential regulators of glucose transport into the skeletal muscle. © 2020 American Physiological Society. Compr Physiol 10:785-809, 2020.
Collapse
Affiliation(s)
- Karla E. Merz
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, California, USA
- The Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California, USA
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, California, USA
| |
Collapse
|
19
|
Mawhinney C, Heinonen I, Low DA, Han C, Jones H, Kalliokoski KK, Kirjavainen A, Kemppainen J, Di Salvo V, Weston M, Cable T, Gregson W. Changes in quadriceps femoris muscle perfusion following different degrees of cold-water immersion. J Appl Physiol (1985) 2020; 128:1392-1401. [PMID: 32352343 DOI: 10.1152/japplphysiol.00833.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We examined the influence of graded cold-water immersion (CWI) on global and regional quadriceps muscle perfusion with positron emission tomography (PET) and [15O]H2O. In 30 healthy men [33 ± 8 yr; 81 ± 10 kg; 184 ± 5 cm; percentage body fat: 13 ± 5%; peak oxygen uptake (V̇o2peak): 47 ± 8 mL·kg-1·min-1] quadriceps perfusion, thigh and calf cutaneous vascular conductance (CVC), intestinal, muscle, and local skin temperatures, thermal comfort, mean arterial pressure, and heart rate were assessed before and after 10 min of CWI at 8°C, 15°C, or 22°C. Global quadriceps perfusion did not change beyond a clinically relevant threshold (0.75 mL·100 g·min-1) in any condition and was similar between conditions {range of differences [95% confidence interval (CI)]: 0.1 mL·100 g·min-1 (-0.9 to 1.2 mL·100 g·min-1) to 0.9 mL·100 g·min-1 (-0.2 to 1.9 mL·100 g·min-1)}. Muscle perfusion was greater in vastus intermedius (VI) compared with vastus lateralis (VL) (2.2 mL·100 g·min-1; 95% CI 1.5 to 3.0 mL·100 g·min-1) and rectus femoris (RF) (2.2 mL·100 g·min-1; 1.4 to 2.9 mL·100 g·min-1). A clinically relevant increase in VI muscle perfusion after immersion at 8°C and a decrease in RF muscle perfusion at 15°C were observed. A clinically relevant increase in perfusion was observed in VI in 8°C compared with 22°C water (2.3 mL·100 g·min-1; 1.1 to 3.5 mL·100 g·min-1). There were no clinically relevant between-condition differences in thigh CVC. Our findings suggest that CWI (8-22°C) does not reduce global quadriceps muscle perfusion to a clinically relevant extent; however, colder water increases (8°C) deep muscle perfusion and reduces (15°C) superficial muscle (RF) perfusion in the quadriceps muscle.NEW & NOTEWORTHY Using positron emission tomography, we report for the first time muscle perfusion heterogeneity in the quadriceps femoris in response to different degrees of cold-water immersion (CWI). Noxious CWI temperatures (8°C) increase perfusion in the deep quadriceps muscle, whereas superficial quadriceps muscle perfusion is reduced in cooler (15°C) water. Therefore, these data have important implications for the selection of CWI approaches used in the treatment of soft tissue injury, while also increasing our understanding of the potential mechanisms underpinning CWI.
Collapse
Affiliation(s)
- Chris Mawhinney
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,College of Sports Science and Technology, Mahidol University, Salaya, Thailand
| | - Ilkka Heinonen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine, University of Turku, Turku, Finland.,Rydberg Laboratory of Applied Sciences, University of Halmstad, Halmstad, Sweden
| | - David A Low
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Chunlei Han
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Helen Jones
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Kari K Kalliokoski
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Anna Kirjavainen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Jukka Kemppainen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Valter Di Salvo
- Football Performance and Science Department, Aspire Academy, Doha, Qatar
| | - Matthew Weston
- School of Health and Social Care, Teesside University, Middlesbrough, United Kingdom.,Football Performance and Science Department, Aspire Academy, Doha, Qatar
| | - Tim Cable
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Warren Gregson
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,Football Performance and Science Department, Aspire Academy, Doha, Qatar
| |
Collapse
|
20
|
Angleys H, Østergaard L. Krogh’s capillary recruitment hypothesis, 100 years on: Is the opening of previously closed capillaries necessary to ensure muscle oxygenation during exercise? Am J Physiol Heart Circ Physiol 2020; 318:H425-H447. [DOI: 10.1152/ajpheart.00384.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In 1919, August Krogh published his seminal work on skeletal muscle oxygenation. Krogh’s observations indicated that muscle capillary diameter is actively regulated, rather than a passive result of arterial blood flow regulation. Indeed, combining a mathematical model with the number of ink-filled capillaries he observed in muscle cross sections taken at different workloads, Krogh was able to account for muscle tissue’s remarkably efficient oxygen extraction during exercise in terms of passive diffusion from nearby capillaries. Krogh was awarded the 1920 Nobel Prize for his account of muscle oxygenation. Today, his observations are engrained in the notion of capillary recruitment: the opening of previously closed capillaries. While the binary distinction between “closed” and “open” was key to Krogh’s model argument, he did in fact report a continuum of capillary diameters, degrees of erythrocyte deformation, and perfusion states. Indeed, modern observations question the presence of closed muscle capillaries. We therefore examined whether changes in capillary flow patterns and hematocrit among open capillaries can account for oxygen extraction in muscle across orders-of-magnitude changes in blood flow. Our four-compartment model of oxygen extraction in muscle confirms this notion and provides a framework for quantifying the impact of changes in microvascular function on muscle oxygenation in health and disease. Our results underscore the importance of capillary function for oxygen extraction in muscle tissue as first proposed by Krogh. While Krogh’s model calculations still hold, our model predictions support that capillary recruitment can be viewed in the context of continuous, rather than binary, erythrocyte distributions among capillaries. NEW & NOTEWORTHY Oxygen extraction in working muscle is extremely efficient in view of single capillaries properties. The underlying mechanisms have been widely debated. Here, we develop a four-compartment model to quantify the influence of each of the hypothesized mechanisms on muscle oxygenation. Our results show that changes in capillary flow pattern and hematocrit can account for the high oxygen extraction observed in working muscle, while capillary recruitment is not required to account for these extraction properties.
Collapse
Affiliation(s)
- Hugo Angleys
- Center of Functionally Integrative Neuroscience and MindLab, Aarhus University, Aarhus, Denmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience and MindLab, Aarhus University, Aarhus, Denmark
- Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
21
|
Rizzoto G, Kastelic JP. A new paradigm regarding testicular thermoregulation in ruminants? Theriogenology 2019; 147:166-175. [PMID: 31785861 DOI: 10.1016/j.theriogenology.2019.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 02/05/2023]
Abstract
Increased testicular temperature reduces percentages of morphologically normal and motile sperm and fertility. Specific sperm defects appear at consistent intervals after testicular hyperthermia, with degree and duration of changes related to intensity and duration of the thermal insult. Regarding pathogenesis of testicular hyperthermia on sperm quality and fertility, there is a long-standing paradigm that: 1) testes operate near hypoxia; 2) blood flow to the testes does not increase in response to increased testicular temperature; and 3) an ensuing hypoxia is the underlying cause of heat-induced changes in sperm morphology and function. There are very limited experimental data to support this paradigm, but we have data that refute it. In 2 × 3 factorial studies, mice and rams were exposed to two testicular temperatures (normal and increased) and three concentrations of O2 in inspired air (hyperoxia, normoxia and hypoxia). As expected, increased testicular temperature had deleterious effects on sperm motility and morphology; however, hyperoxia did not prevent these changes nor did hypoxia replicate them. In two follow-up experiments, anesthetized rams were sequentially exposed to: 1) three O2 concentrations (100, 21 and 13% O2); or 2) three testicular temperatures (33, 37 and 40 °C). As O2, decreased, testis maintained O2 delivery and uptake by increasing testicular blood flow and O2 extraction, with no indication of anaerobic metabolism. Furthermore, as testicular temperature increased, testicular metabolic rate nearly doubled, but increased blood flow and O2 extraction prevented testicular hypoxia and anaerobic metabolism. In conclusion, our data, in combination with other reports, challenged the paradigm that testicular hyperthermia fails to increase testicular blood flow and the ensuing hypoxia disrupts spermatogenesis.
Collapse
Affiliation(s)
- G Rizzoto
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, 3280 Hospital Drive, Calgary, AB, Canada, T2N 4Z6
| | - J P Kastelic
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, 3280 Hospital Drive, Calgary, AB, Canada, T2N 4Z6.
| |
Collapse
|
22
|
Wang J, Ji Y, Zhou L, Xiang Y, Heinonen I, Zhang P. A New Method to Improve Running Economy and Maximal Aerobic Power in Athletes: Endurance Training With Periodic Carbon Monoxide Inhalation. Front Physiol 2019; 10:701. [PMID: 31244675 PMCID: PMC6562501 DOI: 10.3389/fphys.2019.00701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/20/2019] [Indexed: 11/14/2022] Open
Abstract
Background Altitude training stimulates erythropoietin hormone (EPO) release and increases blood hemoglobin (Hb) mass, which may result in improved oxygen (O2) transport capacity. It was hypothesized in the present study that periodic inhalation of carbon monoxide (CO) might elicit similar physiological adaptations compared to altitude training. Methods Twelve male college student athletes, who were well-trained soccer players, participated. They performed a 4-week treadmill-training program, five times a week. Participants were randomly assigned into an experimental group with inhaling CO (INCO) (1 mL/kg body weight for 2 min) in O2 (4 L) before all training sessions and a control group without inhaling CO (NOCO). CO and EPO concentrations in venous blood were first measured acutely at the 1st, 2nd, 4th, 6th, and 8th hour after INCO, and total hemoglobin mass (tHb), running economy and VO2max were measured before and after the 4 weeks training intervention. Results HbCO% increased from 0.7 to 4.4% (P < 0.05) after 1 h of CO inhalation and EPO increased from 1.9 to 2.7 mIU/mL after 4 h post CO inhalation (P < 0.05) acutely before the intervention. After the training, the tHb and VO2max in the INCO group increased significantly by 3.7 and 2.7%, respectively, while no significant differences were observed in the NOCO condition. O2 uptake at given submaximal speeds declined by approximately 4% in the INCO group. Conclusion Acutely, EPO increased sharply post CO inhalation, peaking at 4 h post inhalation. 4-weeks of training with CO inhalation before exercise sessions improved tHb and VO2max as well as running economy, suggesting that moderate CO inhalation could be a new method to improve the endurance performance in athletes.
Collapse
Affiliation(s)
- Jun Wang
- The Belt and Road Joint Laboratory for Winter Sports, Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Yunhui Ji
- Department of Physical Education, Shanxi Medical University, Taiyuan, China
| | - Li Zhou
- The Belt and Road Joint Laboratory for Winter Sports, Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Yang Xiang
- School of Physical Education, Yan'an University, Yan'an, China
| | - Ilkka Heinonen
- Turku PET Centre, Department of Clinical Physiology and Nuclear Medicine, University of Turku, Turku, Finland.,Rydberg Laboratory for Applied Sciences, Department of Environmental and Biosciences, Halmstad University, Halmstad, Sweden
| | - Peng Zhang
- Department of Exercise Science, East Stroudsburg University of Pennsylvania, East Stroudsburg, PA, United States
| |
Collapse
|
23
|
Increase of Glucose Uptake in Human Bone Marrow With Increasing Exercise Intensity. Int J Sport Nutr Exerc Metab 2019; 29:254-258. [DOI: 10.1123/ijsnem.2018-0094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Human bone marrow is a metabolically active tissue that responds to acute low-intensity exercise by having increased glucose uptake (GU). Here, the authors studied whether bone marrow GU increases more with increased exercise intensities. Femoral bone marrow GU was measured using positron emission tomography and [18F]-fluorodeoxyglucose in six healthy young men during cycling at intensities of 30% (low), 55% (moderate), and 75% (high) of maximal oxygen consumption on three separate days. Bone marrow GU at low was 17.2 µmol·kg−1·min−1 (range 9.0–25.4) and increased significantly (p = .003) at moderate (31.2 µmol·kg−1·min−1, 22.9–39.4) but was not significant from moderate to high (37.4 µmol·kg−1·min−1, 29.0–45.7, p = .26). Furthermore, the ratio between bone and muscle GU decreased from low to moderate exercise intensity (p < .01) but not (p = .99) from moderate to high exercise intensity. In conclusion, these results show that although the increase is not as large as observed in exercising skeletal muscle, GU in femoral bone marrow increases with increasing exercise intensity at least from low- to moderate-intensity effort, which may be important for bone and whole-body metabolic health.
Collapse
|
24
|
An acute dose of inorganic dietary nitrate does not improve high-intensity, intermittent exercise performance in temperate or hot and humid conditions. Eur J Appl Physiol 2019; 119:723-733. [PMID: 30617465 PMCID: PMC6394696 DOI: 10.1007/s00421-018-04063-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/21/2018] [Indexed: 01/13/2023]
Abstract
Purpose Dietary nitrate (NO3−) has repeatedly been shown to improve endurance and intermittent, high-intensity events in temperate conditions. However, the ergogenic effects of dietary NO3− on intermittent exercise performance in hot conditions have yet to be investigated. Methods In a randomised, counterbalanced, double-blind crossover study, 12 recreationally trained males ingested a nitrate-rich beetroot juice shot (BRJ) (6.2 mmol NO3−) or a nitrate-depleted placebo (PLA) (< 0.004 mmol NO3−) 3 h prior to an intermittent sprint test (IST) in temperate (22 °C, 35% RH) and hot conditions (30 °C, 70% RH). The cycle ergometer IST consisted of twenty maximal 6 s sprints interspersed by 114 s of active recovery. Work done, power output, heart rate and RPE were measured throughout; tympanic temperature was measured prior to and upon completion. Results There were no significant effects of supplement on sprint performance in either temperate or hot, humid conditions (p > 0.05). There was a reduced peak (BRJ: 659 ± 100W vs. PLA: 693 ± 139W; p = 0.056) and mean power (BRJ: 543 ± 29W vs. PLA: 575 ± 38W; p = 0.081) following BRJ compared to PLA in the hot and humid condition, but this was not statistically significant. There was no effect of supplement on total work done irrespective of environmental condition. However, ~ 75% of participants experienced performance decreases following BRJ in the hot and humid environment. No differences were observed between trials for tympanic temperature measured at the conclusion of the exercise trial. Conclusion In conclusion, an acute dose of inorganic dietary NO3− does not improve repeated-sprint performance in either temperate, or hot and humid conditions.
Collapse
|
25
|
Silva DV, Waclawovsky G, Kramer AB, Stein C, Eibel B, Grezzana GB, Schaun MI, Lehnen AM. Comparison of Cardiac and Vascular Parameters in Powerlifters and Long-Distance Runners: Comparative Cross-Sectional Study. Arq Bras Cardiol 2018; 111:772-781. [PMID: 30281689 PMCID: PMC6263448 DOI: 10.5935/abc.20180167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cardiac remodeling is a specific response to exercise training and time exposure. We hypothesized that athletes engaging for long periods in high-intensity strength training show heart and/or vascular damage. OBJECTIVE To compare cardiac characteristics (structure and function) and vascular function (flow-mediated dilation [FMD] and peripheral vascular resistance [PVR]) in powerlifters and long-distance runners. METHODS We evaluated 40 high-performance athletes (powerlifters [PG], n = 16; runners [RG], n = 24) and assessed heart structure and function (echocardiography), systolic and diastolic blood pressure (SBP/DBP), FMD, PVR, maximum force (squat, bench press, and deadlift), and maximal oxygen uptake (spirometry). A Student's t Test for independent samples and Pearson's linear correlation were used (p < 0.05). RESULTS PG showed higher SBP/DBP (p < 0.001); greater interventricular septum thickness (p < 0.001), posterior wall thickness (p < 0.001) and LV mass (p < 0.001). After adjusting LV mass by body surface area (BSA), no difference was observed. As for diastolic function, LV diastolic volume, wave E, wave e', and E/e' ratio were similar for both groups. However, LA volume (p = 0.016) and BSA-adjusted LA volume were lower in PG (p < 0.001). Systolic function (end-systolic volume and ejection fraction), and FMD were similar in both groups. However, higher PVR in PG was observed (p = 0.014). We found a correlation between the main cardiovascular changes and total weight lifted in PG. CONCLUSIONS Cardiovascular adaptations are dependent on training modality and the borderline structural cardiac changes are not accompanied by impaired function in powerlifters. However, a mild increase in blood pressure seems to be related to PVR rather than endothelial function.
Collapse
Affiliation(s)
- Diego Vidaletti Silva
- Instituto de Cardiologia - Fundação
Universitária de Cardiologia (IC/FUC), Porto Alegre, RS - Brazil
| | - Gustavo Waclawovsky
- Instituto de Cardiologia - Fundação
Universitária de Cardiologia (IC/FUC), Porto Alegre, RS - Brazil
| | - Ana Beatriz Kramer
- Instituto de Cardiologia - Fundação
Universitária de Cardiologia (IC/FUC), Porto Alegre, RS - Brazil
- Faculdade Sogipa de Educação Física, Porto
Alegre, RS - Brazil
| | - Cinara Stein
- Instituto de Cardiologia - Fundação
Universitária de Cardiologia (IC/FUC), Porto Alegre, RS - Brazil
| | - Bruna Eibel
- Instituto de Cardiologia - Fundação
Universitária de Cardiologia (IC/FUC), Porto Alegre, RS - Brazil
| | - Guilherme Brasil Grezzana
- Instituto de Cardiologia - Fundação
Universitária de Cardiologia (IC/FUC), Porto Alegre, RS - Brazil
| | - Maximiliano Isoppo Schaun
- Instituto de Cardiologia - Fundação
Universitária de Cardiologia (IC/FUC), Porto Alegre, RS - Brazil
| | - Alexandre Machado Lehnen
- Instituto de Cardiologia - Fundação
Universitária de Cardiologia (IC/FUC), Porto Alegre, RS - Brazil
- Faculdade Sogipa de Educação Física, Porto
Alegre, RS - Brazil
| |
Collapse
|
26
|
Davison G, Vinaixa M, McGovern R, Beltran A, Novials A, Correig X, McClean C. Metabolomic Response to Acute Hypoxic Exercise and Recovery in Adult Males. Front Physiol 2018; 9:1682. [PMID: 30534085 PMCID: PMC6275205 DOI: 10.3389/fphys.2018.01682] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 11/08/2018] [Indexed: 12/28/2022] Open
Abstract
Metabolomics is a relatively new “omics” approach used to characterize metabolites in a biological system at baseline and following a diversity of stimuli. However, the metabolomic response to exercise in hypoxia currently remains unknown. To examine this, 24 male participants completed 1 h of exercise at a workload corresponding to 75% of pre-determined O2max in hypoxia (Fio2 = 0.16%), and repeated in normoxia (Fio2 = 0.21%), while pre- and post-exercise and 3 h post-exercise metabolites were analyzed using a LC ESI-qTOF-MS untargeted metabolomics approach in serum samples. Exercise in hypoxia and in normoxia independently increased metabolism as shown by a change in a combination of twenty-two metabolites associated with lipid metabolism (p < 0.05, pre vs. post-exercise), though hypoxia per se did not induce a greater metabolic change when compared with normoxia (p > 0.05). Recovery from exercise in hypoxia independently decreased seventeen metabolites associated with lipid metabolism (p < 0.05, post vs. 3 h post-exercise), compared with twenty-two metabolites in normoxia (p < 0.05, post vs. 3 h post-exercise). Twenty-six metabolites were identified as responders to exercise and recovery (pooled hypoxia and normoxia pre vs. recovery, p < 0.05), including metabolites associated with purine metabolism (adenine, adenosine and hypoxanthine), the amino acid phenylalanine, and several acylcarnitine molecules. Our novel data provides preliminary evidence of subtle metabolic differences to exercise and recovery in hypoxia and normoxia. Specifically, exercise in hypoxia activates metabolic pathways aligned to purine and lipid metabolism, but this effect is not selectively different from exercise in normoxia. We also show that exercise per se can activate pathways associated with lipid, protein and purine nucleotide metabolism.
Collapse
Affiliation(s)
- Gareth Davison
- Sport and Exercise Science Research Institute, Ulster University, Antrim, United Kingdom
| | - Maria Vinaixa
- Metabolomics Platform of the Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, IISPV - Rovira i Virgili University, Tarragona, Spain
| | - Rose McGovern
- Sport and Exercise Science Research Institute, Ulster University, Antrim, United Kingdom
| | - Antoni Beltran
- Metabolomics Platform of the Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, IISPV - Rovira i Virgili University, Tarragona, Spain
| | - Anna Novials
- Department of Endocrinology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Xavier Correig
- Metabolomics Platform of the Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, IISPV - Rovira i Virgili University, Tarragona, Spain
| | - Conor McClean
- Sport and Exercise Science Research Institute, Ulster University, Antrim, United Kingdom
| |
Collapse
|
27
|
Gliemann L, Mortensen SP, Hellsten Y. Methods for the determination of skeletal muscle blood flow: development, strengths and limitations. Eur J Appl Physiol 2018; 118:1081-1094. [PMID: 29756164 DOI: 10.1007/s00421-018-3880-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/26/2018] [Indexed: 11/26/2022]
Abstract
Since the first measurements of limb blood flow at rest and during nerve stimulation were conducted in the late 1800s, a number of methods have been developed for the determination of limb and skeletal muscle blood flow in humans. The methods, which have been applied in the study of aspects such as blood flow regulation, oxygen uptake and metabolism, differ in terms of strengths and degree of limitations but most have advantages for specific settings. The purpose of this review is to describe the origin and the basic principles of the methods, important aspects and requirements of the procedures. One of the earliest methods, venous occlusion plethysmography, is a noninvasive method which still is extensively used and which provides similar values as other more direct blood flow methods such as ultrasound Doppler. The constant infusion thermodilution method remains the most appropriate for the determination of blood flow during maximal exercise. For resting blood flow and light-to-moderate exercise, the non-invasive ultrasound Doppler methodology, if handled by a skilled operator, is recommendable. Positron emission tomography with radiolabeled water is an advanced method which requires highly sophisticated equipment and allows for the determination of muscle-specific blood flow, regional blood flows and estimate of blood flow heterogeneity within a muscle. Finally, the contrast-enhanced ultrasound method holds promise for assessment of muscle-specific blood flow, but the interpretation of the data obtained remains uncertain. Currently lacking is high-resolution methods for continuous visualization and monitoring of the skeletal muscle microcirculation in humans.
Collapse
Affiliation(s)
- Lasse Gliemann
- Department of Nutrition Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Stefan P Mortensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Ylva Hellsten
- Department of Nutrition Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
28
|
Heinonen I, Boushel R, Hellsten Y, Kalliokoski K. Regulation of bone blood flow in humans: The role of nitric oxide, prostaglandins, and adenosine. Scand J Med Sci Sports 2018; 28:1552-1558. [PMID: 29377406 DOI: 10.1111/sms.13064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2017] [Indexed: 12/23/2022]
Abstract
The mechanisms that regulate bone blood flow (BBF) in humans are largely unknown. Animal studies suggest that nitric oxide (NO) could be involved, and in this study, we investigated the effects of inhibition of nitric oxide synthase (NOS) alone and in combination with inhibition of cyclooxygenase (COX) enzyme, thus prostaglandin (PG) synthesis on femoral bone marrow blood flow by positron emission tomography in healthy young men at rest and during one-leg dynamic exercise. In an additional group of healthy men, the role of adenosine (ADO) in the regulation of BBF during exercise was investigated by use of an adenosine receptor blocker (aminophylline). Inhibitors were directly infused into the femoral artery. Resting BBF was 1.1 ± 0.4 mL 100 g-1 min-1 and increased to almost sixfold in response to exercise (6.3 ± 1.5 mL 100 g-1 min-1 ). Inhibition of NOS reduced BBF at rest to 0.7 ± 0.3 mL 100 g-1 min-1 (P = .036), but did not affect BBF significantly during exercise (5.5 ± 1.4 mL 100 g-1 min-1 , P = .25). On the other hand, while combined NOS and COX inhibition did not cause any further reduction of blood flow at rest (0.6 ± 0.2 mL 100 g-1 min-1 ), the combined blockade reduced BBF during exercise by ~21%, to 5.0 ± 1.8 mL 100 g-1 min-1 (P = .014). Finally, the ADO inhibition during exercise reduced BBF from 5.5 ± 1.9 mL 100 g-1 min-1 to 4.6 ± 1.2 mL 100 g-1 min-1 (P = .045). In conclusion, our results support the view that NO is involved in controlling bone marrow blood flow at rest, and NO, PG, and ADO play important roles in controlling human BBF during exercise.
Collapse
Affiliation(s)
- I Heinonen
- Turku PET Centre, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine, University of Turku, Turku, Finland.,Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - R Boushel
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Y Hellsten
- Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
29
|
Woessner MN, McIlvenna LC, Ortiz de Zevallos J, Neil CJ, Allen JD. Dietary nitrate supplementation in cardiovascular health: an ergogenic aid or exercise therapeutic? Am J Physiol Heart Circ Physiol 2018; 314:H195-H212. [DOI: 10.1152/ajpheart.00414.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oral consumption of inorganic nitrate, which is abundant in green leafy vegetables and roots, has been shown to increase circulating plasma nitrite concentration, which can be converted to nitric oxide in low oxygen conditions. The associated beneficial physiological effects include a reduction in blood pressure, modification of platelet aggregation, and increases in limb blood flow. There have been numerous studies of nitrate supplementation in healthy recreational and competitive athletes; however, the ergogenic benefits are currently unclear due to a variety of factors including small sample sizes, different dosing regimens, variable nitrate conversion rates, the heterogeneity of participants’ initial fitness levels, and the types of exercise tests used. In clinical populations, the study results seem more promising, particularly in patients with cardiovascular diseases who typically present with disruptions in the ability to transport oxygen from the atmosphere to working tissues and reduced exercise tolerance. Many of these disease-related, physiological maladaptations, including endothelial dysfunction, increased reactive oxygen species, reduced tissue perfusion, and muscle mitochondrial dysfunction, have been previously identified as potential targets for nitric oxide restorative effects. This review is the first of its kind to outline the current evidence for inorganic nitrate supplementation as a therapeutic intervention to restore exercise tolerance and improve quality of life in patients with cardiovascular diseases. We summarize the factors that appear to limit or maximize its effectiveness and present a case for why it may be more effective in patients with cardiovascular disease than as ergogenic aid in healthy populations.
Collapse
Affiliation(s)
- Mary N. Woessner
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Western Health, Melbourne, Victoria, Australia
| | - Luke C. McIlvenna
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
| | - Joaquin Ortiz de Zevallos
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia
| | - Christopher J. Neil
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Western Health, Melbourne, Victoria, Australia
| | - Jason D. Allen
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Western Health, Melbourne, Victoria, Australia
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
30
|
Voluntary exercise training restores anticontractile effect of NO in coronary arteries of adult rats with antenatal/early postnatal hypothyroidism. Nitric Oxide 2018; 74:10-18. [PMID: 29307633 DOI: 10.1016/j.niox.2018.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/19/2017] [Accepted: 01/02/2018] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Our recent study showed that NO-mediated anticontractile effect of endothelium is absent in coronary arteries of adult rats, which suffered from antenatal/early postnatal hypothyroidism. This study tested the hypothesis that exercise training would improve such detrimental consequences of early thyroid deficiency. DESIGN AND METHODS Wistar dams received propylthiouracil (PTU, 7 ppm) in drinking water during gestation and two weeks postpartum; control dams received tap water. Six-week-old male offspring of control (CON) and PTU dams was divided into sedentary (CON-Sed, n = 12; PTU-Sed, n = 10) and trained (CON-Tr, n = 12; PTU-Tr, n = 10) groups; the latter had 24-h access to running wheels. Eight weeks later coronary arteries were studied by wire myography. Anticontractile effect of NO was assessed by the effects of NOS inhibitor L-NNA on the basal tone and contractile response to U46619. Oxidative phosphorylation complexes and eNOS were estimated by Western blotting. RESULTS T3/T4 and TSH levels (ELISA) were normalized in the progeny of PTU-treated dams at the age of 6 weeks and were not affected by training. Total running distance did not differ between CON-Tr and PTU-Tr. The contents of oxidative phosphorylation complexes were increased post-training in triceps brachii muscle from CON-Tr and PTU-Tr and in heart from PTU-Tr. Coronary arteries of PTU-Sed compared to CON-Sed demonstrated higher basal tone and contractile response to U46619, which were not further increased by L-NNA. The effects of L-NNA on the basal tone and contractile response to U46619 did not differ in CON-Tr and PTU-Tr groups, but were elevated in PTU-Tr compared to PTU-Sed group. PTU-Tr rats in comparison to PTU-Sed group had higher eNOS content in heart. Responses of coronary arteries to DEA/NO did not differ among all experimental groups. CONCLUSIONS Long-lasting coronary endothelial dysfunction resulted from transient thyroid deficiency during the antenatal/early postnatal period can be corrected by voluntary exercise training.
Collapse
|
31
|
Chen HJ, Roy TL, Wright GA. Perfusion measures for symptom severity and differential outcome of revascularization in limb ischemia: Preliminary results with arterial spin labeling reactive hyperemia. J Magn Reson Imaging 2017; 47:1578-1588. [PMID: 29193492 DOI: 10.1002/jmri.25910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/13/2017] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Previously, a theoretical model based on microvascular physiology was established to facilitate the interpretation of calf perfusion dynamics recorded by arterial spin labeling (ASL). PURPOSE To investigate the clinical relevance of novel perfusion indices by comparing them to the symptoms, response to revascularization, and short-term functional outcome in patients with peripheral arterial disease (PAD). STUDY TYPE Prospective cohort study. POPULATION Nineteen patients with PAD. FIELD STRENGTH/SEQUENCE Pulsed ASL at 3T. ASSESSMENT The mid-calf reactive hyperemia induced by 2 minutes of arterial occlusion was recorded in PAD patients. The perfusion responses were characterized by the peak, time-to-peak, and physiological model-derived indices including the baseline perfusion fr , arterial resistance Ra , and compliance Ca , and sensitivity gATP and response time τATP of downstream microvasculature to metabolic stress. These indices were compared to the disease severity and outcome within 6 months after revascularization assessed by self-reported symptoms and the ankle-brachial index. Disease severity was categorized as asymptomatic, claudication, or critical limb ischemia. The outcome was categorized as symptom resolved or limited improvement. STATISTICAL TESTS Severity and outcome groups were compared using Mann-Whitney and Kruskal-Wallis tests with Holm-Sidak adjustments. RESULTS The peak perfusion decreased and model arterial resistance increased progressively with increasing severity of limb ischemia (P = 0.0402 and 0.0413, respectively). Eleven patients had a successful endovascular procedure, including six patients who had symptoms resolved, four patients who had remaining leg pain, and one patient lost to follow-up. The subjects with limited improvement had significantly lower preintervention microvascular sensitivity gATP than those with symptoms resolved (8.72 ± 1.46 vs. 4.93 ± 0.91, P = 0.0466). DATA CONCLUSION ASL reactive hyperemia reflects multiple aspects of the pathophysiology. Measures of macrovascular arterial disease are related to the manifested symptom severity, whereas preintervention gATP associated with microvascular dysfunction is related to prognosis following revascularization. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2018;47:1578-1588.
Collapse
Affiliation(s)
- Hou-Jen Chen
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Schulich Heart Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Trisha L Roy
- Schulich Heart Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Division of Vascular Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Graham A Wright
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Schulich Heart Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Gonzales JU, Raymond A, Ashley J, Kim Y. Does l-citrulline supplementation improve exercise blood flow in older adults? Exp Physiol 2017; 102:1661-1671. [PMID: 28940638 PMCID: PMC5999519 DOI: 10.1113/ep086587] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does short-term supplementation with l-citrulline in order to increase l-arginine improve exercise blood flow and peripheral dilatation responses to exercise in older adults? What is the main finding and its importance? l-Citrulline increased femoral blood flow by 11% and vascular conductance by 14% during lower-limb exercise in older men, whereas no changes were observed in older women. This modest improvement in bulk muscle blood flow in older men has implications for altering muscle metabolism that may result in enhanced exercise tolerance in older adults. l-Citrulline (Cit) increases l-arginine (Arg), the primary substrate for nitric oxide biosynthesis. We tested the hypothesis that muscle blood flow during exercise would be enhanced by Cit supplementation in older adults. Femoral artery blood flow was measured during calf exercise using Doppler ultrasound, and vascular conductance (FVC) was calculated in 25 older adults (13 women and 12 men) before and after 14 days of Cit (6 g day-1 ) and placebo (maltodextrin) in a randomized, double-blind, crossover study. Plasma [Arg] and resting blood pressure were also measured before and after each condition. Women and men were analysed separately because of significant sex-by-condition interactions for the change in exercise blood flow and FVC. Plasma [Arg] was increased by 30 and 35% after Cit (P < 0.01) in women and men, respectively, with no change after placebo. Citrulline lowered diastolic blood pressure in men (75 ± 9 versus 71 ± 6 mmHg, P = 0.02), but this variable remained unchanged in women. Blood flow and FVC during exercise at higher workloads were increased after Cit in men (flow, 521 ± 134 versus 584 ± 166 ml min-1 , P = 0.04; FVC, 5.0 ± 1.5 versus 5.8 ± 1.7 m, min mmHg-1 , P = 0.01) but were not different after placebo. These variables were not altered by Cit in women. Adjusting for baseline diastolic blood pressure removed (P = 0.10) the difference in FBF and FVC following Cit in men. These results indicate that l-citrulline has a modest effect of improving muscle blood flow during submaximal exercise in older men.
Collapse
Affiliation(s)
- Joaquin U Gonzales
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Andrea Raymond
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - John Ashley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Youngdeok Kim
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
33
|
Heinonen I, Vuolteenaho O, Koskenvuo J, Arjamaa O, Nikinmaa M. Systemic Hypoxia Increases Circulating Concentration of Apelin in Humans. High Alt Med Biol 2017; 18:292-295. [DOI: 10.1089/ham.2017.0017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Ilkka Heinonen
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, University of Turku, Turku, Finland
- Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Olli Vuolteenaho
- Department of Physiology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Juha Koskenvuo
- Department of Clinical Physiology and Nuclear Medicine, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Olli Arjamaa
- Biodiversity Unit, Turku University Hospital, University of Turku, Turku, Finland
| | - Mikko Nikinmaa
- Department of Biology, Turku University Hospital, University of Turku, Turku, Finland
| |
Collapse
|
34
|
Kent JA, Ørtenblad N, Hogan MC, Poole DC, Musch TI. No Muscle Is an Island: Integrative Perspectives on Muscle Fatigue. Med Sci Sports Exerc 2017; 48:2281-2293. [PMID: 27434080 DOI: 10.1249/mss.0000000000001052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Muscle fatigue has been studied with a variety approaches, tools and technologies. The foci of these studies have ranged tremendously, from molecules to the entire organism. Single cell and animal models have been used to gain mechanistic insight into the fatigue process. The theme of this review is the concept that the mechanisms of muscle fatigue do not occur in isolation in vivo: muscular work is supported by many complex physiological systems, any of which could fail during exercise and thus contribute to fatigue. To advance our overall understanding of fatigue, a combination of models and approaches is necessary. In this review, we examine the roles that neuromuscular properties, intracellular glycogen, oxygen metabolism, and blood flow play in the fatigue process during exercise and pathological conditions.
Collapse
Affiliation(s)
- Jane A Kent
- 1Department of Kinesiology, University of Massachusetts, Amherst MA; 2Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, DENMARK; 3Department of Health Sciences, Mid Sweden University, Östersund, SWEDEN; 4Department of Medicine, University of California, San Diego, CA; and 5Department of Kinesiology, Kansas State University, Manhattan, KS
| | | | | | | | | |
Collapse
|
35
|
Kolb L, Orbegozo D, Creteur J, Preiser JC, Vincent JL, De Backer D. Oral Nitrate Increases Microvascular Reactivity and the Number of Visible Perfused Microvessels in Healthy Volunteers. J Vasc Res 2017; 54:209-216. [DOI: 10.1159/000468541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 03/05/2017] [Indexed: 12/13/2022] Open
|
36
|
Heinonen I, Saltin B, Hellsten Y, Kalliokoski KK. The effect of nitric oxide synthase inhibition with and without inhibition of prostaglandins on blood flow in different human skeletal muscles. Eur J Appl Physiol 2017; 117:1175-1180. [PMID: 28432421 DOI: 10.1007/s00421-017-3604-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/22/2017] [Indexed: 10/24/2022]
Abstract
PURPOSE Animal studies suggest that the inhibition of nitric oxide synthase (NOS) affects blood flow differently in different skeletal muscles according to their muscle fibre type composition (oxidative vs glycolytic). Quadriceps femoris (QF) muscle consists of four different muscle parts: vastus intermedius (VI), rectus femoris (RF), vastus medialis (VM), and vastus lateralis (VL) of which VI is located deep within the muscle group and is generally regarded to consist mostly of oxidative muscle fibres. METHODS We studied the effect of NOS inhibition on blood flow in these four different muscles by positron emission tomography in eight young healthy men at rest and during one-leg dynamic exercise, with and without combined blockade with prostaglandins. RESULTS At rest blood flow in the VI (2.6 ± 1.1 ml/100 g/min) was significantly higher than in VL (1.9 ± 0.6 ml/100 g/min, p = 0.015) and RF (1.7 ± 0.6 ml/100 g/min, p = 0.0015), but comparable to VM (2.4 ± 1.1 ml/100 g/min). NOS inhibition alone or with prostaglandins reduced blood flow by almost 50% (p < 0.001), but decrements were similar in all four muscles (drug × muscle interaction, p = 0.43). During exercise blood flow was also the highest in VI (45.4 ± 5.5 ml/100 g/min) and higher compared to VL (35.0 ± 5.5 ml/100 g/min), RF (38.4 ± 7.4 ml/100 g/min), and VM (36.2 ± 6.8 ml/100 g/min). NOS inhibition alone did not reduce exercise hyperemia (p = 0.51), but combined NOS and prostaglandin inhibition reduced blood flow during exercise (p = 0.002), similarly in all muscles (drug × muscle interaction, p = 0.99). CONCLUSION NOS inhibition, with or without prostaglandins inhibition, affects blood flow similarly in different human QF muscles both at rest and during low-to-moderate intensity exercise.
Collapse
Affiliation(s)
- Ilkka Heinonen
- Turku PET Centre, University of Turku, PO Box 52, 20521, Turku, Finland. .,Department of Clinical Physiology and Nuclear Medicine, University of Turku, Turku, Finland. .,Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Bengt Saltin
- Copenhagen Muscle Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Ylva Hellsten
- Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
37
|
Louvaris Z, Habazettl H, Asimakos A, Wagner H, Zakynthinos S, Wagner PD, Vogiatzis I. Heterogeneity of blood flow and metabolism during exercise in patients with chronic obstructive pulmonary disease. Respir Physiol Neurobiol 2017; 237:42-50. [PMID: 28057577 DOI: 10.1016/j.resp.2016.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/19/2016] [Accepted: 12/28/2016] [Indexed: 11/17/2022]
Abstract
The study investigated whether the capacity to regulate muscle blood flow (Q) relative to metabolic demand (VO2) is impaired in COPD. Using six NIRS optodes over the upper, middle and lower vastus lateralis in 6 patients, (FEV1:46±12%predicted) we recorded from each: a) Q by indocyanine green dye injection, b) VO2/Q ratios based on fractional tissue O2 saturation and c) VO2 as their product, during constant-load exercise (at 20%, 50% and 80% of peak capacity) in normoxia and hyperoxia (FIO2:1.0). At 50 and 80%, relative dispersion (RD) for Q, but not for VO2, was greater in normoxia (0.67±0.07 and 0.79±0.08, respectively) compared to hyperoxia (0.57±0.12 and 0.72±0.07, respectively). In both conditions, RD for VO2 and Q significantly increased throughout exercise; however, RD of VO2/Q ratio was minimal (normoxia: 0.12-0.08 vs hyperoxia: 0.13-0.09). Muscle Q and VO2 appear closely matched in COPD patients, indicating a minimal impact of heterogeneity on muscle oxygen availability at submaximal levels of exercise.
Collapse
Affiliation(s)
- Zafeiris Louvaris
- Faculty of Physical Education and Sport Sciences, National and Kapodistrian University of Athens, Greece; 1st Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, "M. Simou, and G.P. Livanos Laboratories", National and Kapodistrian University of Athens, Greece; Faculty of Kinesiology and Rehabilitation Sciences, Division of Respiratory Rehabilitation, Department of Rehabilitation Sciences KU Leuven, University Hospital Leuven, Leuven, Belgium.
| | - Helmut Habazettl
- Institute of Physiology, Charité Campus Benjamin Franklin, Berlin, Germany; Institute of Anesthesiology, Deutsches Herzzentrum Berlin, Germany
| | - Andreas Asimakos
- 1st Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, "M. Simou, and G.P. Livanos Laboratories", National and Kapodistrian University of Athens, Greece
| | - Harrieth Wagner
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Spyros Zakynthinos
- 1st Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, "M. Simou, and G.P. Livanos Laboratories", National and Kapodistrian University of Athens, Greece
| | - Peter D Wagner
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ioannis Vogiatzis
- Faculty of Physical Education and Sport Sciences, National and Kapodistrian University of Athens, Greece; 1st Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, "M. Simou, and G.P. Livanos Laboratories", National and Kapodistrian University of Athens, Greece; Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University Newcastle, UK
| |
Collapse
|
38
|
Pereira RM, Moura LPD, Muñoz VR, Silva ASRD, Gaspar RS, Ropelle ER, Pauli JR. Molecular mechanisms of glucose uptake in skeletal muscle at rest and in response to exercise. MOTRIZ: REVISTA DE EDUCACAO FISICA 2017. [DOI: 10.1590/s1980-6574201700si0004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
| | | | | | | | | | | | - José Rodrigo Pauli
- Universidade Estadual de Campinas, Brazil; Universidade Estadual de Campinas, Brazil
| |
Collapse
|
39
|
Nguyen A, Ledoux JB, Omoumi P, Becce F, Forget J, Federau C. Selective microvascular muscle perfusion imaging in the shoulder with intravoxel incoherent motion (IVIM). Magn Reson Imaging 2017; 35:91-97. [DOI: 10.1016/j.mri.2016.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/24/2016] [Accepted: 08/20/2016] [Indexed: 10/21/2022]
|
40
|
Potentiation of the NO-cGMP pathway and blood flow responses during dynamic exercise in healthy humans. Eur J Appl Physiol 2016; 117:237-246. [PMID: 28013386 DOI: 10.1007/s00421-016-3523-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE Previous work has shown nitric oxide (NO) contributes to ~15% of the hyperemic response to dynamic exercise in healthy humans. This NO-mediated vasodilation occurs, in part, via increases in intracellular cyclic guanosine monophosphate (cGMP), which is catabolized by phosphodiesterase. We sought to examine the effect of phosphodiesterase-5 (PDE-5) inhibition on forearm blood flow (FBF) responses to dynamic handgrip exercise in healthy humans and the role of NO. We hypothesized exercise hyperemia would be augmented by sildenafil citrate (SDF, PDE-5 inhibitor). We further hypothesized any effect of SDF on exercise hyperemia would be abolished with intra-arterial infusion of the NO synthase (NOS) inhibitor L-NG-monomethyl arginine (L-NMMA). METHODS FBF (Doppler ultrasound) was assessed at rest and during 5 min of dynamic forearm handgrip exercise at 15% of maximal voluntary contraction under control (saline) conditions and during 3 experimental protocols: (1) oral SDF (n = 10), (2) intra-arterial L-NMMA (n = 20), (3) SDF and L-NMMA (n = 10). FBF responses to intra-arterial sodium nitroprusside (NTP, NO donor) were also assessed. RESULTS FBF increased with exercise (p < 0.01). Intra-arterial infusion of L-NMMA resulted in a reduction in exercise hyperemia (17 ± 1 to 15 ± 1 mL/dL/min, p < 0.01). Although the hyperemic response to NTP was augmented by SDF (area under the curve: 41 ± 7 vs 61 ± 11 AU, p < 0.01), there was no effect of SDF on exercise hyperemia (p = 0.33). CONCLUSIONS Despite improving NTP-mediated vasodilation, oral SDF failed to augment exercise hyperemia in young, healthy adults. These observations reflect a minor contribution of NO and the cGMP pathway during exercise hyperemia in healthy young humans.
Collapse
|
41
|
Stugiewicz M, Tkaczyszyn M, Kasztura M, Banasiak W, Ponikowski P, Jankowska EA. The influence of iron deficiency on the functioning of skeletal muscles: experimental evidence and clinical implications. Eur J Heart Fail 2016; 18:762-73. [PMID: 26800032 DOI: 10.1002/ejhf.467] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/16/2015] [Accepted: 10/22/2015] [Indexed: 12/26/2022] Open
Abstract
Skeletal and respiratory myopathy not only constitutes an important pathophysiological feature of heart failure and chronic obstructive pulmonary disease, but also contributes to debilitating symptomatology and predicts worse outcomes in these patients. Accumulated evidence from laboratory experiments, animal models, and interventional studies in sports medicine suggests that undisturbed systemic iron homeostasis significantly contributes to the effective functioning of skeletal muscles. In this review, we discuss the role of iron status for the functioning of skeletal muscle tissue, and highlight iron deficiency as an emerging therapeutic target in chronic diseases accompanied by a marked muscle dysfunction.
Collapse
Affiliation(s)
- Magdalena Stugiewicz
- Students' Scientific Association, Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Michał Tkaczyszyn
- Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland.,Cardiology Department, Centre for Heart Diseases, Military Hospital, Wroclaw, Poland
| | - Monika Kasztura
- Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Waldemar Banasiak
- Cardiology Department, Centre for Heart Diseases, Military Hospital, Wroclaw, Poland
| | - Piotr Ponikowski
- Cardiology Department, Centre for Heart Diseases, Military Hospital, Wroclaw, Poland.,Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Ewa A Jankowska
- Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland.,Cardiology Department, Centre for Heart Diseases, Military Hospital, Wroclaw, Poland
| |
Collapse
|
42
|
Heinonen IHA, Boushel R, Kalliokoski KK. The Circulatory and Metabolic Responses to Hypoxia in Humans - With Special Reference to Adipose Tissue Physiology and Obesity. Front Endocrinol (Lausanne) 2016; 7:116. [PMID: 27621722 PMCID: PMC5002918 DOI: 10.3389/fendo.2016.00116] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/10/2016] [Indexed: 01/07/2023] Open
Abstract
Adipose tissue metabolism and circulation play an important role in human health. It is well-known that adipose tissue mass is increased in response to excess caloric intake leading to obesity and further to local hypoxia and inflammatory signaling. Acute exercise increases blood supply to adipose tissue and mobilization of fat stores for energy. However, acute exercise during systemic hypoxia reduces subcutaneous blood flow in healthy young subjects, but the response in overweight or obese subjects remains to be investigated. Emerging evidence also indicates that exercise training during hypoxic exposure may provide additive benefits with respect to many traditional cardiovascular risk factors as compared to exercise performed in normoxia, but unfavorable effects of hypoxia have also been documented. These topics will be covered in this brief review dealing with hypoxia and adipose tissue physiology.
Collapse
Affiliation(s)
- Ilkka H. A. Heinonen
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, University of Turku, Turku, Finland
- Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- *Correspondence: Ilkka H. A. Heinonen,
| | - Robert Boushel
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
43
|
Heinonen I, Koga S, Kalliokoski KK, Musch TI, Poole DC. Heterogeneity of Muscle Blood Flow and Metabolism: Influence of Exercise, Aging, and Disease States. Exerc Sport Sci Rev 2015; 43:117-24. [PMID: 25688763 DOI: 10.1249/jes.0000000000000044] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The systematic increase in V˙O2 uptake and O2 extraction with increasing work rates conceals a substantial heterogeneity of O2 delivery (Q˙O2)-to- V˙O2 matching across and within muscles and other organs. We hypothesize that whether increased/decreased Q˙O2/V˙O2 heterogeneity can be judged as "good" or "bad," for example, after exercise training or in aged individuals or with disease (heart failure, diabetes) depends on the resultant effects on O2 transport and contractile performance.
Collapse
Affiliation(s)
- Ilkka Heinonen
- 1Turku PET Centre, University of Turku, Turku, Finland; 2Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; 3School of Sport Science, Exercise and Health, University Of Western Australia, Crawley, Western Australia, Australia; 4Applied Physiology Laboratory, Kobe Design University, Kobe, Japan; and 5Departments of Kinesiology, Anatomy and Physiology, Kansas State University, Manhattan, KS
| | | | | | | | | |
Collapse
|
44
|
Harrell JW, Johansson RE, Evans TD, Sebranek JJ, Walker BJ, Eldridge MW, Serlin RC, Schrage WG. Preserved Microvascular Endothelial Function in Young, Obese Adults with Functional Loss of Nitric Oxide Signaling. Front Physiol 2015; 6:387. [PMID: 26733880 PMCID: PMC4686588 DOI: 10.3389/fphys.2015.00387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/30/2015] [Indexed: 01/04/2023] Open
Abstract
Data indicate endothelium-dependent dilation (EDD) may be preserved in the skeletal muscle microcirculation of young, obese adults. Preserved EDD might be mediated by compensatory mechanisms, impeding insight into preclinical vascular dysfunction. We aimed to determine the functional roles of nitric oxide synthase (NOS) and cyclooxygenase (COX) toward EDD in younger obese adults. We first hypothesized EDD would be preserved in young, obese adults. Further, we hypothesized a reduced contribution of NOS in young, obese adults would be replaced by increased COX signaling. Microvascular EDD was assessed with Doppler ultrasound and brachial artery infusion of acetylcholine (ACh) in younger (27 ± 1 year) obese (n = 29) and lean (n = 46) humans. Individual and combined contributions of NOS and COX were examined with intra-arterial infusions of l-NMMA and ketorolac, respectively. Vasodilation was quantified as an increase in forearm vascular conductance (ΔFVC). Arterial endothelial cell biopsies were analyzed for protein expression of endothelial nitric oxide synthase (eNOS). ΔFVC to ACh was similar between groups. After l-NMMA, ΔFVC to ACh was greater in obese adults (p < 0.05). There were no group differences in ΔFVC to ACh with ketorolac. With combined NOS-COX inhibition, ΔFVC was greater in obese adults at the intermediate dose of ACh. Surprisingly, arterial endothelial cell eNOS and phosphorylated eNOS were similar between groups. Younger obese adults exhibit preserved EDD and eNOS expression despite functional dissociation of NOS-mediated vasodilation and similar COX signaling. Compensatory NOS- and COX-independent vasodilatory mechanisms conceal reduced NOS contributions in otherwise healthy obese adults early in life, which may contribute to vascular dysfunction.
Collapse
Affiliation(s)
- John W Harrell
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison Madison, WI, USA
| | - Rebecca E Johansson
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison Madison, WI, USA
| | - Trent D Evans
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison Madison, WI, USA
| | - Joshua J Sebranek
- Department of Anesthesiology, University of Wisconsin Hospital and Clinics, University of Wisconsin-Madison Madison, WI, USA
| | - Benjamin J Walker
- Department of Anesthesiology, University of Wisconsin Hospital and Clinics, University of Wisconsin-Madison Madison, WI, USA
| | - Marlowe W Eldridge
- The John Rankin Laboratory of Pulmonary Medicine, Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-MadisonMadison, WI, USA; Department of Pediatrics, University of Wisconsin Hospital and Clinics, University of Wisconsin-MadisonMadison, WI, USA
| | - Ronald C Serlin
- Department of Educational Psychology, University of Wisconsin-Madison Madison, WI, USA
| | - William G Schrage
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|
45
|
Abstract
Aerobic exercise training leads to cardiovascular changes that markedly increase aerobic power and lead to improved endurance performance. The functionally most important adaptation is the improvement in maximal cardiac output which is the result of an enlargement in cardiac dimension, improved contractility, and an increase in blood volume, allowing for greater filling of the ventricles and a consequent larger stroke volume. In parallel with the greater maximal cardiac output, the perfusion capacity of the muscle is increased, permitting for greater oxygen delivery. To accommodate the higher aerobic demands and perfusion levels, arteries, arterioles, and capillaries adapt in structure and number. The diameters of the larger conduit and resistance arteries are increased minimizing resistance to flow as the cardiac output is distributed in the body and the wall thickness of the conduit and resistance arteries is reduced, a factor contributing to increased arterial compliance. Endurance training may also induce alterations in the vasodilator capacity, although such adaptations are more pronounced in individuals with reduced vascular function. The microvascular net increases in size within the muscle allowing for an improved capacity for oxygen extraction by the muscle through a greater area for diffusion, a shorter diffusion distance, and a longer mean transit time for the erythrocyte to pass through the smallest blood vessels. The present article addresses the effect of endurance training on systemic and peripheral cardiovascular adaptations with a focus on humans, but also covers animal data.
Collapse
Affiliation(s)
- Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nyberg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Hearon CM, Dinenno FA. Regulation of skeletal muscle blood flow during exercise in ageing humans. J Physiol 2015; 594:2261-73. [PMID: 26332887 DOI: 10.1113/jp270593] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/13/2015] [Indexed: 12/12/2022] Open
Abstract
The regulation of skeletal muscle blood flow and oxygen delivery to contracting skeletal muscle is complex and involves the mechanical effects of muscle contraction; local metabolic, red blood cell and endothelium-derived substances; and the sympathetic nervous system (SNS). With advancing age in humans, skeletal muscle blood flow is typically reduced during dynamic exercise and this is due to a lower vascular conductance, which could ultimately contribute to age-associated reductions in aerobic exercise capacity, a primary predictor of mortality in both healthy and diseased ageing populations. Recent findings have highlighted the contribution of endothelium-derived substances to blood flow control in contracting muscle of older adults. With advancing age, impaired nitric oxide availability due to scavenging by reactive oxygen species, in conjunction with elevated vasoconstrictor signalling via endothelin-1, reduces the local vasodilatory response to muscle contraction. Additionally, ageing impairs the ability of contracting skeletal muscle to blunt sympathetic vasoconstriction (i.e. 'functional sympatholysis'), which is critical for the proper regulation of tissue blood flow distribution and oxygen delivery, and could further reduce skeletal muscle perfusion during high intensity and/or large muscle mass exercise in older adults. We propose that initiation of endothelium-dependent hyperpolarization is the underlying signalling event necessary to properly modulate sympathetic vasoconstriction in contracting muscle, and that age-associated impairments in red blood cell adenosine triphosphate release and stimulation of endothelium-dependent vasodilatation may explain impairments in both local vasodilatation and functional sympatholysis with advancing age in humans.
Collapse
Affiliation(s)
- Christopher M Hearon
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Frank A Dinenno
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80523, USA.,Center for Cardiovascular Research, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
47
|
Flynn A, Li Q, Panagia M, Abdelbaky A, MacNabb M, Samir A, Cypess AM, Weyman AE, Tawakol A, Scherrer-Crosbie M. Contrast-Enhanced Ultrasound: A Novel Noninvasive, Nonionizing Method for the Detection of Brown Adipose Tissue in Humans. J Am Soc Echocardiogr 2015; 28:1247-54. [PMID: 26255029 PMCID: PMC4593741 DOI: 10.1016/j.echo.2015.06.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Brown adipose tissue (BAT) consumes glucose when it is activated by cold exposure, allowing its detection in humans by (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) with computed tomography (CT). The investigators recently described a novel noninvasive and nonionizing imaging method to assess BAT in mice using contrast-enhanced ultrasound (CEUS). Here, they report the application of this method in healthy humans. METHODS Thirteen healthy volunteers were recruited. CEUS was performed before and after cold exposure in all subjects using a continuous intravenous infusion of perflutren gas-filled lipid microbubbles and triggered imaging of the supraclavicular space. The first five subjects received microbubbles at a lower infusion rate than the subsequent eight subjects and were analyzed as a separate group. Blood flow was estimated as the product of the plateau (A) and the slope (β) of microbubble replenishment curves. All underwent (18)F-FDG PET/CT after cold exposure. RESULTS An increase in the acoustic signal was noted in the supraclavicular adipose tissue area with increasing triggering intervals in all subjects, demonstrating the presence of blood flow. The area imaged by CEUS colocalized with BAT, as detected by ¹⁸F-FDG PET/CT. In a cohort of eight subjects with an optimized CEUS protocol, CEUS-derived BAT blood flow increased with cold exposure compared with basal BAT blood flow in warm conditions (median Aβ = 3.3 AU/s [interquartile range, 0.5-5.7 AU/s] vs 1.25 AU/s [interquartile range, 0.5-2.6 AU/s]; P = .02). Of these eight subjects, five had greater than twofold increases in blood flow after cold exposure; these responders had higher BAT activity measured by (18)F-FDG PET/CT (median maximal standardized uptake value, 2.25 [interquartile range, 1.53-4.57] vs 0.51 [interquartile range, 0.47-0.73]; P = .02). CONCLUSIONS The present study demonstrates the feasibility of using CEUS as a noninvasive, nonionizing imaging modality in estimating BAT blood flow in young, healthy humans. CEUS may be a useful and scalable tool in the assessment of BAT and BAT-targeted therapies.
Collapse
Affiliation(s)
- Aidan Flynn
- Cardiac Ultrasound Laboratory, Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Qian Li
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marcello Panagia
- Cardiac Ultrasound Laboratory, Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amr Abdelbaky
- Department of Nuclear Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Megan MacNabb
- Department of Nuclear Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anthony Samir
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Aaron M Cypess
- Section of Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts; Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Arthur E Weyman
- Cardiac Ultrasound Laboratory, Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ahmed Tawakol
- Department of Nuclear Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marielle Scherrer-Crosbie
- Cardiac Ultrasound Laboratory, Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
48
|
Associations between muscle perfusion and symptoms in knee osteoarthritis: a cross sectional study. Osteoarthritis Cartilage 2015; 23:1721-7. [PMID: 26074362 DOI: 10.1016/j.joca.2015.05.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/30/2015] [Accepted: 05/26/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the association between muscle perfusion in the peri-articular knee muscles assessed by dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) and symptoms in patients with knee osteoarthritis (KOA). DESIGN In a cross-sectional setting, muscle perfusion was quantified by DCE-MRI in KOA. Regions of interest (ROI) were drawn around the peri-articular muscles, summed and averaged into one single "Total Muscle Volume" volume of interest (VOI). Symptoms were assessed via the Knee injury and Osteoarthritis Outcome Score (KOOS) (0: worst; 100: best). RESULTS DCE-MRI and clinical data were analyzed in 94 patients. The typical participant was a woman with a mean age of 65 years, and a body mass index (BMI) of 32 kg/m(2). Reduced multiple regression models analyzing the association between KOOS and DCE-MRI perfusion variables of Total Muscle Volume showed a statistically significant association between Nvoxel% and KOOS pain (0.41 (SE 0.14); P = 0.0048). Nvoxel% was defined as the proportion of highly perfused voxels; i.e., the voxels that show an early and rapid increase on the signal intensity vs time curves, reach a plateau state (plateau pattern) and then showing a relatively rapid decline (washout pattern) relative to the total number of voxels within the muscle VOI. CONCLUSIONS More widespread perfusion in the peri-articular knee muscles was associated with less pain in patients with KOA. These results give rise to investigations of the effects of exercise on muscle perfusion and its possible mediating role in the causal pathway between exercise and pain improvements in the conservative management of KOA.
Collapse
|
49
|
Heinonen I, Kalliokoski KK, Hannukainen JC, Duncker DJ, Nuutila P, Knuuti J. Organ-specific physiological responses to acute physical exercise and long-term training in humans. Physiology (Bethesda) 2015; 29:421-36. [PMID: 25362636 DOI: 10.1152/physiol.00067.2013] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Virtually all tissues in the human body rely on aerobic metabolism for energy production and are therefore critically dependent on continuous supply of oxygen. Oxygen is provided by blood flow, and, in essence, changes in organ perfusion are also closely associated with alterations in tissue metabolism. In response to acute exercise, blood flow is markedly increased in contracting skeletal muscles and myocardium, but perfusion in other organs (brain and bone) is only slightly enhanced or is even reduced (visceral organs). Despite largely unchanged metabolism and perfusion, repeated exposures to altered hemodynamics and hormonal milieu produced by acute exercise, long-term exercise training appears to be capable of inducing effects also in tissues other than muscles that may yield health benefits. However, the physiological adaptations and driving-force mechanisms in organs such as brain, liver, pancreas, gut, bone, and adipose tissue, remain largely obscure in humans. Along these lines, this review integrates current information on physiological responses to acute exercise and to long-term physical training in major metabolically active human organs. Knowledge is mostly provided based on the state-of-the-art, noninvasive human imaging studies, and directions for future novel research are proposed throughout the review.
Collapse
Affiliation(s)
- Ilkka Heinonen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland; Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku and Turku University Hospital, Turku, Finland; Department of Cardiology, Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kari K Kalliokoski
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Jarna C Hannukainen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Dirk J Duncker
- Department of Cardiology, Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland; Department of Medicine, University of Turku and Turku University Hospital, Turku, Finland; and
| | - Juhani Knuuti
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
50
|
Nyberg M, Hellsten Y. Reduced blood flow to contracting skeletal muscle in ageing humans: is it all an effect of sand through the hourglass? J Physiol 2015; 594:2297-305. [PMID: 26095873 DOI: 10.1113/jp270594] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 06/05/2015] [Indexed: 01/27/2023] Open
Abstract
The ability to sustain a given absolute submaximal workload declines with advancing age, likely to be due to a lower level of blood flow and O2 delivery to the exercising muscles. Given that physical inactivity mimics many of the physiological changes associated with ageing, separating the physiological consequences of ageing and physical inactivity can be challenging; yet, observations from cross-sectional and longitudinal studies on the effects of physical activity have provided some insight. Physical activity has the potential to offset the age-related decline in blood flow to contracting skeletal muscle during exercise where systemic blood flow is not limited by cardiac output, thereby improving O2 delivery and allowing for an enhanced energy production from oxidative metabolism. The mechanisms underlying the increase in blood flow with regular physical activity include improved endothelial function and the ability for functional sympatholysis - an attenuation of the vasoconstrictor effect of sympathetic nervous activity. These vascular adaptations with physical activity are likely to be an effect of improved nitric oxide and ATP signalling. Collectively, precise matching of blood flow and O2 delivery to meet the O2 demand of the active skeletal muscle of aged individuals during conditions where systemic blood flow is not limited by cardiac output seems to a large extent to be related to the level of physical activity.
Collapse
Affiliation(s)
- Michael Nyberg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| |
Collapse
|