1
|
Watanabe M, Miyata Y, Ohno A, Yokota H, Takase K, Hanaguri J, Kushiyama A, Yamagami S, Harino S, Nagaoka T. Dilation of porcine retinal arterioles to nobiletin, a polymethoxyflavonoid: Roles of nitric oxide and voltage-dependent potassium channel. Exp Eye Res 2023:109548. [PMID: 37348671 DOI: 10.1016/j.exer.2023.109548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/13/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
We examined the effects of nobiletin, a polymethoxyflavonoid, on the retinal microvascular diameter to determine if they depend on the endothelium and/or smooth muscle to reveal the signaling mechanisms involved in this vasomotor activity. Porcine retinal arterioles were isolated, cannulated, and pressurized without flow in vitro. Video microscopic techniques recorded diametric responses to nobiletin. The retinal arterioles dilated in a nobiletin concentration-dependent (100 pM-10 μM) manner and decreased by 50% after endothelial removal. The nitric oxide (NO) synthase inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME), reduced nobiletin-induced vasodilation comparable to denudation. Blockade of soluble guanylyl cyclase by 1H-[1,2,4] oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ) produced a similar inhibitory effect as that by L-NAME. Nobiletin-induced vasodilation was also inhibited by the nonselective potassium channel inhibitor, tetraethylammonium (TEA), and the voltage-gated K (Kv) inhibitor, 4-aminopyridine. Co-administration of L-NAME and TEA almost eliminated nobiletin-induced vasodilation. Nobiletin elicits both endothelium-dependent and -independent dilation of retinal arterioles mediated by NO release and Kv channel activation, respectively.
Collapse
Affiliation(s)
- Masahisa Watanabe
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshiki Miyata
- Department of Pharmacotherapy, Teikyo University, Tokyo, Japan
| | - Akira Ohno
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Harumasa Yokota
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Koyo Takase
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Junya Hanaguri
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Akifumi Kushiyama
- Department of Pharmacotherapy, Meiji Pharmaceutical University, Tokyo, Japan
| | - Satoru Yamagami
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Tokyo, Japan
| | | | - Taiji Nagaoka
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Tokyo, Japan.
| |
Collapse
|
2
|
O’Hare M, Esquiva G, McGahon MK, Hombrebueno JMR, Augustine J, Canning P, Edgar KS, Barabas P, Friedel T, Cincolà P, Henry J, Mayne K, Ferrin H, Stitt AW, Lyons TJ, Brazil DP, Grieve DJ, McGeown JG, Curtis TM. Loss of TRPV2-mediated blood flow autoregulation recapitulates diabetic retinopathy in rats. JCI Insight 2022; 7:e155128. [PMID: 36134661 PMCID: PMC9675469 DOI: 10.1172/jci.insight.155128] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Loss of retinal blood flow autoregulation is an early feature of diabetes that precedes the development of clinically recognizable diabetic retinopathy (DR). Retinal blood flow autoregulation is mediated by the myogenic response of the retinal arterial vessels, a process that is initiated by the stretch‑dependent activation of TRPV2 channels on the retinal vascular smooth muscle cells (VSMCs). Here, we show that the impaired myogenic reaction of retinal arterioles from diabetic animals is associated with a complete loss of stretch‑dependent TRPV2 current activity on the retinal VSMCs. This effect could be attributed, in part, to TRPV2 channel downregulation, a phenomenon that was also evident in human retinal VSMCs from diabetic donors. We also demonstrate that TRPV2 heterozygous rats, a nondiabetic model of impaired myogenic reactivity and blood flow autoregulation in the retina, develop a range of microvascular, glial, and neuronal lesions resembling those observed in DR, including neovascular complexes. No overt kidney pathology was observed in these animals. Our data suggest that TRPV2 dysfunction underlies the loss of retinal blood flow autoregulation in diabetes and provide strong support for the hypothesis that autoregulatory deficits are involved in the pathogenesis of DR.
Collapse
Affiliation(s)
- Michael O’Hare
- Wellcome-Wolfson Institute for Experimental Medicine and
| | - Gema Esquiva
- Wellcome-Wolfson Institute for Experimental Medicine and
| | - Mary K. McGahon
- Wellcome-Wolfson Institute for Experimental Medicine and
- Centre for Biomedical Sciences Education, Queen’s University Belfast, Belfast, United Kingdom
| | | | - Josy Augustine
- Wellcome-Wolfson Institute for Experimental Medicine and
| | - Paul Canning
- Wellcome-Wolfson Institute for Experimental Medicine and
| | - Kevin S. Edgar
- Wellcome-Wolfson Institute for Experimental Medicine and
| | - Peter Barabas
- Wellcome-Wolfson Institute for Experimental Medicine and
| | - Thomas Friedel
- Wellcome-Wolfson Institute for Experimental Medicine and
| | | | - Jennifer Henry
- Wellcome-Wolfson Institute for Experimental Medicine and
- Centre for Biomedical Sciences Education, Queen’s University Belfast, Belfast, United Kingdom
| | - Katie Mayne
- Wellcome-Wolfson Institute for Experimental Medicine and
- Centre for Biomedical Sciences Education, Queen’s University Belfast, Belfast, United Kingdom
| | - Hannah Ferrin
- Wellcome-Wolfson Institute for Experimental Medicine and
- Centre for Biomedical Sciences Education, Queen’s University Belfast, Belfast, United Kingdom
| | - Alan W. Stitt
- Wellcome-Wolfson Institute for Experimental Medicine and
| | | | | | | | | | - Tim M. Curtis
- Wellcome-Wolfson Institute for Experimental Medicine and
| |
Collapse
|
3
|
Diversification of Potassium Currents in Excitable Cells via Kvβ Proteins. Cells 2022; 11:cells11142230. [PMID: 35883673 PMCID: PMC9317154 DOI: 10.3390/cells11142230] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 12/10/2022] Open
Abstract
Excitable cells of the nervous and cardiovascular systems depend on an assortment of plasmalemmal potassium channels to control diverse cellular functions. Voltage-gated potassium (Kv) channels are central to the feedback control of membrane excitability in these processes due to their activation by depolarized membrane potentials permitting K+ efflux. Accordingly, Kv currents are differentially controlled not only by numerous cellular signaling paradigms that influence channel abundance and shape voltage sensitivity, but also by heteromeric configurations of channel complexes. In this context, we discuss the current knowledge related to how intracellular Kvβ proteins interacting with pore complexes of Shaker-related Kv1 channels may establish a modifiable link between excitability and metabolic state. Past studies in heterologous systems have indicated roles for Kvβ proteins in regulating channel stability, trafficking, subcellular targeting, and gating. More recent works identifying potential in vivo physiologic roles are considered in light of these earlier studies and key gaps in knowledge to be addressed by future research are described.
Collapse
|
4
|
Ohanyan V, Raph SM, Dwenger MM, Hu X, Pucci T, Mack G, Moore JB, Chilian WM, Bhatnagar A, Nystoriak MA. Myocardial Blood Flow Control by Oxygen Sensing Vascular Kvβ Proteins. Circ Res 2021; 128:738-751. [PMID: 33499656 DOI: 10.1161/circresaha.120.317715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown (V.O., T.P., G.M., W.M.C.)
| | - Sean M Raph
- Division of Environmental Medicine, Department of Medicine, Diabetes and Obesity Center, University of Louisville, KY (S.M.R., M.M.D., X.H., J.B.M., A.B., M.A.N.)
| | - Marc M Dwenger
- Division of Environmental Medicine, Department of Medicine, Diabetes and Obesity Center, University of Louisville, KY (S.M.R., M.M.D., X.H., J.B.M., A.B., M.A.N.)
| | - Xuemei Hu
- Division of Environmental Medicine, Department of Medicine, Diabetes and Obesity Center, University of Louisville, KY (S.M.R., M.M.D., X.H., J.B.M., A.B., M.A.N.)
| | - Thomas Pucci
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown (V.O., T.P., G.M., W.M.C.)
| | - Gregory Mack
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown (V.O., T.P., G.M., W.M.C.)
| | - Joseph B Moore
- Division of Environmental Medicine, Department of Medicine, Diabetes and Obesity Center, University of Louisville, KY (S.M.R., M.M.D., X.H., J.B.M., A.B., M.A.N.)
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown (V.O., T.P., G.M., W.M.C.)
| | - Aruni Bhatnagar
- Division of Environmental Medicine, Department of Medicine, Diabetes and Obesity Center, University of Louisville, KY (S.M.R., M.M.D., X.H., J.B.M., A.B., M.A.N.)
| | - Matthew A Nystoriak
- Division of Environmental Medicine, Department of Medicine, Diabetes and Obesity Center, University of Louisville, KY (S.M.R., M.M.D., X.H., J.B.M., A.B., M.A.N.)
| |
Collapse
|
5
|
Bazin M, Purohit NK, Merlin MA, Shah GM. A panel of criteria for comprehensive assessment of severity of ultraviolet B radiation-induced non-melanoma skin cancers in SKH-1 mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 205:111847. [PMID: 32172138 DOI: 10.1016/j.jphotobiol.2020.111847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/18/2020] [Accepted: 03/03/2020] [Indexed: 11/19/2022]
Abstract
The study of causes and cures for ultraviolet B radiation (UVB)-induced non-melanoma skin cancers (NMSC) has been greatly facilitated by use of the albino SKH-1 hairless mice. These mice develop multiple tumors of different sizes and the severity of cancer is often measured by one or more of the four criteria, namely the prevalence, multiplicity, area and volume of tumors. However, there are inherent limitations of each criterion: the prevalence and number do not account for size differences among tumors, area measurement ignores the tumor height, and volume measurement overcompensates for the height at the cost of planar dimensions. Here, using our dataset from an ongoing NMSC study, we discuss the limitations of these four criteria, and suggest refinements in measuring prevalence. We recommend the use of three more criteria, namely the Knud Thomsen tridimensional surface that apportions optimal weightage to three tumor dimensions, weekly occurrence of new tumors and tumor growth-rate to reveal initiation and growth of tumors in early and late phase of NMSC development, respectively. Together, use of this comprehensive panel of seven criteria can provide an accurate assessment of severity of NMSC and lead to a testable hypothesis whether the experimental manipulation of mice has affected the early initiation or growth phase of NMSC tumors.
Collapse
Affiliation(s)
- Marc Bazin
- CHU de Quebec-Laval University Research Center, Neuroscience and Cancer Axes, Laboratory for Skin Cancer Research, 2705, Boulevard Laurier, Quebec (QC), Canada; Université Laval Cancer Research Center, Quebec (QC), Canada
| | - Nupur K Purohit
- CHU de Quebec-Laval University Research Center, Neuroscience and Cancer Axes, Laboratory for Skin Cancer Research, 2705, Boulevard Laurier, Quebec (QC), Canada; Université Laval Cancer Research Center, Quebec (QC), Canada
| | - Marine A Merlin
- CHU de Quebec-Laval University Research Center, Neuroscience and Cancer Axes, Laboratory for Skin Cancer Research, 2705, Boulevard Laurier, Quebec (QC), Canada; Université Laval Cancer Research Center, Quebec (QC), Canada
| | - Girish M Shah
- CHU de Quebec-Laval University Research Center, Neuroscience and Cancer Axes, Laboratory for Skin Cancer Research, 2705, Boulevard Laurier, Quebec (QC), Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec (QC), Canada; Université Laval Cancer Research Center, Quebec (QC), Canada.
| |
Collapse
|
6
|
Barabas P, Augustine J, Fernández JA, McGeown JG, McGahon MK, Curtis TM. Ion channels and myogenic activity in retinal arterioles. CURRENT TOPICS IN MEMBRANES 2020; 85:187-226. [PMID: 32402639 DOI: 10.1016/bs.ctm.2020.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Retinal pressure autoregulation is an important mechanism that protects the retina by stabilizing retinal blood flow during changes in arterial or intraocular pressure. Similar to other vascular beds, retinal pressure autoregulation is thought to be mediated largely through the myogenic response of small arteries and arterioles which constrict when transmural pressure increases or dilate when it decreases. Over recent years, we and others have investigated the signaling pathways underlying the myogenic response in retinal arterioles, with particular emphasis on the involvement of different ion channels expressed in the smooth muscle layer of these vessels. Here, we review and extend previous work on the expression and spatial distribution of the plasma membrane and sarcoplasmic reticulum ion channels present in retinal vascular smooth muscle cells (VSMCs) and discuss their contribution to pressure-induced myogenic tone in retinal arterioles. This includes new data demonstrating that several key players and modulators of the myogenic response show distinctively heterogeneous expression along the length of the retinal arteriolar network, suggesting differences in myogenic signaling between larger and smaller pre-capillary arterioles. Our immunohistochemical investigations have also highlighted the presence of actin-containing microstructures called myobridges that connect the retinal VSMCs to one another. Although further work is still needed, studies to date investigating myogenic mechanisms in the retina have contributed to a better understanding of how blood flow is regulated in this tissue. They also provide a basis to direct future research into retinal diseases where blood flow changes contribute to the pathology.
Collapse
Affiliation(s)
- Peter Barabas
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Josy Augustine
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - José A Fernández
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - J Graham McGeown
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Mary K McGahon
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Tim M Curtis
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom.
| |
Collapse
|
7
|
Jackson WF. K V channels and the regulation of vascular smooth muscle tone. Microcirculation 2018; 25. [PMID: 28985443 DOI: 10.1111/micc.12421] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/01/2017] [Indexed: 12/31/2022]
Abstract
VSMCs in resistance arteries and arterioles express a diverse array of KV channels with members of the KV 1, KV 2 and KV 7 families being particularly important. Members of the KV channel family: (i) are highly expressed in VSMCs; (ii) are active at the resting membrane potential of VSMCs in vivo (-45 to -30 mV); (iii) contribute to the negative feedback regulation of VSMC membrane potential and myogenic tone; (iv) are activated by cAMP-related vasodilators, hydrogen sulfide and hydrogen peroxide; (v) are inhibited by increases in intracellular Ca2+ and vasoconstrictors that signal through Gq -coupled receptors; (vi) are involved in the proliferative phenotype of VSMCs; and (vii) are modulated by diseases such as hypertension, obesity, the metabolic syndrome and diabetes. Thus, KV channels participate in every aspect of the regulation of VSMC function in both health and disease.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
8
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
9
|
Cox RH, Fromme S. Functional Expression Profile of Voltage-Gated K(+) Channel Subunits in Rat Small Mesenteric Arteries. Cell Biochem Biophys 2016; 74:263-76. [PMID: 27286858 PMCID: PMC4905591 DOI: 10.1007/s12013-015-0715-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Multiple K v channel complexes contribute to total K v current in numerous cell types and usually subserve different physiological functions. Identifying the complete compliment of functional K v channel subunits in cells is a prerequisite to understanding regulatory function. It was the goal of this work to determine the complete K v subunit compliment that contribute to functional K v currents in rat small mesenteric artery (SMA) myocytes as a prelude to studying channel regulation. Using RNA prepared from freshly dispersed myocytes, high levels of K v 1.2, 1.5, and 2.1 and lower levels of K v 7.4 α-subunit expressions were demonstrated by quantitative PCR and confirmed by Western blotting. Selective inhibitors correolide (K v 1; COR), stromatoxin (K v 2.1; ScTx), and linopirdine (K v 7.4; LINO) decreased K v current at +40 mV in SMA by 46 ± 4, 48 ± 4, and 6.5 ± 2 %, respectively, and K v current in SMA was insensitive to α-dendrotoxin. Contractions of SMA segments pretreated with 100 nmol/L phenylephrine were enhanced by 27 ± 3, 30 ± 8, and 7 ± 3 % of the response to 120 mmol/L KCl by COR, ScTX, and LINO, respectively. The presence of K v 6.1, 9.3, β1.1, and β1.2 was demonstrated by RT-PCR using myocyte RNA with expressions of K vβ1.2 and K v 9.3 about tenfold higher than K vβ1.1 and K v 6.1, respectively. Selective inhibitors of K v 1.3, 3.4, 4.1, and 4.3 channels also found at the RNA and/or protein level had no significant effect on K v current or contraction. These results suggest that K v current in rat SMA myocytes are dominated equally by two major components consisting of K v 1.2-1.5-β1.2 and K v 2.1-9.3 channels along with a smaller contribution from K v 7.4 channels but differences in voltage dependence of activation allows all three to provide significant contributions to SMA function at physiological voltages.
Collapse
Affiliation(s)
- Robert H Cox
- Program in Cardiovascular Disease, Lankenau Institute for Medical Research, Main Line Health System, 100 Lancaster Avenue, Wynnewood, PA, 19096, USA.
| | - Samantha Fromme
- Program in Cardiovascular Disease, Lankenau Institute for Medical Research, Main Line Health System, 100 Lancaster Avenue, Wynnewood, PA, 19096, USA
| |
Collapse
|
10
|
Karlin A. Membrane potential and Ca2+ concentration dependence on pressure and vasoactive agents in arterial smooth muscle: A model. ACTA ACUST UNITED AC 2016; 146:79-96. [PMID: 26123196 PMCID: PMC4485026 DOI: 10.1085/jgp.201511380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A mathematical model incorporating junctional and stretch-activated microdomains and 37 protein components describes the myogenic response in arterial smooth muscle cells. Arterial smooth muscle (SM) cells respond autonomously to changes in intravascular pressure, adjusting tension to maintain vessel diameter. The values of membrane potential (Vm) and sarcoplasmic Ca2+ concentration (Cain) within minutes of a change in pressure are the results of two opposing pathways, both of which use Ca2+ as a signal. This works because the two Ca2+-signaling pathways are confined to distinct microdomains in which the Ca2+ concentrations needed to activate key channels are transiently higher than Cain. A mathematical model of an isolated arterial SM cell is presented that incorporates the two types of microdomains. The first type consists of junctions between cisternae of the peripheral sarcoplasmic reticulum (SR), containing ryanodine receptors (RyRs), and the sarcolemma, containing voltage- and Ca2+-activated K+ (BK) channels. These junctional microdomains promote hyperpolarization, reduced Cain, and relaxation. The second type is postulated to form around stretch-activated nonspecific cation channels and neighboring Ca2+-activated Cl− channels, and promotes the opposite (depolarization, increased Cain, and contraction). The model includes three additional compartments: the sarcoplasm, the central SR lumen, and the peripheral SR lumen. It incorporates 37 protein components. In addition to pressure, the model accommodates inputs of α- and β-adrenergic agonists, ATP, 11,12-epoxyeicosatrienoic acid, and nitric oxide (NO). The parameters of the equations were adjusted to obtain a close fit to reported Vm and Cain as functions of pressure, which have been determined in cerebral arteries. The simulations were insensitive to ±10% changes in most of the parameters. The model also simulated the effects of inhibiting RyR, BK, or voltage-activated Ca2+ channels on Vm and Cain. Deletion of BK β1 subunits is known to increase arterial–SM tension. In the model, deletion of β1 raised Cain at all pressures, and these increases were reversed by NO.
Collapse
Affiliation(s)
- Arthur Karlin
- Department of Biochemistry and Molecular Biophysics, Department of Physiology and Cellular Biophysics, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
11
|
Fancher IS, Butcher JT, Brooks SD, Rottgen TS, Skaff PR, Frisbee JC, Dick GM. Diphenyl phosphine oxide-1-sensitive K(+) channels contribute to the vascular tone and reactivity of resistance arteries from brain and skeletal muscle. Microcirculation 2016; 22:315-25. [PMID: 25808400 DOI: 10.1111/micc.12201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 03/17/2015] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Many types of vascular smooth muscle cells exhibit prominent KDR currents. These KDR currents may be mediated, at least in part, by KV1.5 channels, which are sensitive to inhibition by DPO-1. We tested the hypothesis that DPO-1-sensitive KDR channels regulate the tone and reactivity of resistance-sized vessels from rat brain (MCA) and skeletal muscle (GA). METHODS Middle cerebral and gracilis arteries were isolated and subjected to three kinds of experimental analysis: (i) western blot/immunocytochemistry; (ii) patch clamp electrophysiology; and (iii) pressure myography. RESULTS Western blot and immunocytochemistry experiments demonstrated KV1.5 immunoreactivity in arteries and smooth muscle cells isolated from them. Whole-cell patch clamp experiments revealed smooth muscle cells from resistance-sized arteries to possess a KDR current that was blocked by DPO-1. Resistance arteries constricted in response to increasing concentrations of DPO-1. DPO-1 enhanced constrictions to PE and serotonin in gracilis and middle cerebral arteries, respectively. When examining the myogenic response, we found that DPO-1 reduced the diameter at any given pressure. Dilations in response to ACh and SNP were reduced by DPO-1. CONCLUSION We suggest that KV1.5, a DPO-1-sensitive KDR channel, plays a major role in determining microvascular tone and the response to vasoconstrictors and vasodilators.
Collapse
Affiliation(s)
- Ibra S Fancher
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Fernández JA, Bankhead P, Zhou H, McGeown JG, Curtis TM. Automated detection and measurement of isolated retinal arterioles by a combination of edge enhancement and cost analysis. PLoS One 2014; 9:e91791. [PMID: 24626349 PMCID: PMC3953588 DOI: 10.1371/journal.pone.0091791] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/13/2014] [Indexed: 02/04/2023] Open
Abstract
Pressure myography studies have played a crucial role in our understanding of vascular physiology and pathophysiology. Such studies depend upon the reliable measurement of changes in the diameter of isolated vessel segments over time. Although several software packages are available to carry out such measurements on small arteries and veins, no such software exists to study smaller vessels (<50 µm in diameter). We provide here a new, freely available open-source algorithm, MyoTracker, to measure and track changes in the diameter of small isolated retinal arterioles. The program has been developed as an ImageJ plug-in and uses a combination of cost analysis and edge enhancement to detect the vessel walls. In tests performed on a dataset of 102 images, automatic measurements were found to be comparable to those of manual ones. The program was also able to track both fast and slow constrictions and dilations during intraluminal pressure changes and following application of several drugs. Variability in automated measurements during analysis of videos and processing times were also investigated and are reported. MyoTracker is a new software to assist during pressure myography experiments on small isolated retinal arterioles. It provides fast and accurate measurements with low levels of noise and works with both individual images and videos. Although the program was developed to work with small arterioles, it is also capable of tracking the walls of other types of microvessels, including venules and capillaries. It also works well with larger arteries, and therefore may provide an alternative to other packages developed for larger vessels when its features are considered advantageous.
Collapse
Affiliation(s)
- José A. Fernández
- Centre for Experimental Medicine, The Queen’s University of Belfast, Belfast, United Kingdom
- * E-mail:
| | - Peter Bankhead
- Centre for Cancer Research and Cell Biology, The Queen’s University of Belfast, Belfast, United Kingdom
| | - Huiyu Zhou
- School of Electronics, Electrical Engineering and Computer Science, The Queen’s University of Belfast, Belfast, United Kingdom
| | - J. Graham McGeown
- Centre for Experimental Medicine, The Queen’s University of Belfast, Belfast, United Kingdom
| | - Tim M. Curtis
- Centre for Experimental Medicine, The Queen’s University of Belfast, Belfast, United Kingdom
| |
Collapse
|
13
|
Kur J, Bankhead P, Scholfield CN, Curtis TM, McGeown JG. Ca(2+) sparks promote myogenic tone in retinal arterioles. Br J Pharmacol 2013; 168:1675-86. [PMID: 23126272 DOI: 10.1111/bph.12044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 10/30/2012] [Accepted: 10/30/2012] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Ca(2+) imaging reveals subcellular Ca(2+) sparks and global Ca(2+) waves/oscillations in vascular smooth muscle. It is well established that Ca(2+) sparks can relax arteries, but we have previously reported that sparks can summate to generate Ca(2+) waves/oscillations in unpressurized retinal arterioles, leading to constriction. We have extended these studies to test the functional significance of Ca(2+) sparks in the generation of myogenic tone in pressurized arterioles. EXPERIMENTAL APPROACH Isolated retinal arterioles (25-40 μm external diameter) were pressurized to 70 mmHg, leading to active constriction. Ca(2+) signals were imaged from arteriolar smooth muscle in the same vessels using Fluo4 and confocal laser microscopy. KEY RESULTS Tone development was associated with an increased frequency of Ca(2+) sparks and oscillations. Vasomotion was observed in 40% of arterioles and was associated with synchronization of Ca(2+) oscillations, quantifiable as an increased cross-correlation coefficient. Inhibition of Ca(2+) sparks with ryanodine, tetracaine, cyclopiazonic acid or nimodipine, or following removal of extracellular Ca(2+) , resulted in arteriolar relaxation. Cyclopiazonic acid-induced dilatation was associated with decreased Ca(2+) sparks and oscillations but with a sustained rise in the mean global cytoplasmic [Ca(2+) ] ([Ca(2+) ]c ), as measured using Fura2 and microfluorimetry. CONCLUSIONS AND IMPLICATIONS This study provides direct evidence that Ca(2+) sparks can play an excitatory role in pressurized arterioles, promoting myogenic tone. This contrasts with the generally accepted model in which sparks promote relaxation of vascular smooth muscle. Changes in vessel tone in the presence of cyclopiazonic acid correlated more closely with changes in spark and oscillation frequency than global [Ca(2+) ]c , underlining the importance of frequency-modulated signalling in vascular smooth muscle.
Collapse
Affiliation(s)
- J Kur
- Centre for Vision and Vascular Science, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | | | | | | | | |
Collapse
|
14
|
Kur J, Newman EA, Chan-Ling T. Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog Retin Eye Res 2012; 31:377-406. [PMID: 22580107 DOI: 10.1016/j.preteyeres.2012.04.004] [Citation(s) in RCA: 486] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/17/2012] [Accepted: 04/22/2012] [Indexed: 02/06/2023]
Abstract
We review the cellular and physiological mechanisms responsible for the regulation of blood flow in the retina and choroid in health and disease. Due to the intrinsic light sensitivity of the retina and the direct visual accessibility of fundus blood vessels, the eye offers unique opportunities for the non-invasive investigation of mechanisms of blood flow regulation. The ability of the retinal vasculature to regulate its blood flow is contrasted with the far more restricted ability of the choroidal circulation to regulate its blood flow by virtue of the absence of glial cells, the markedly reduced pericyte ensheathment of the choroidal vasculature, and the lack of intermediate filaments in choroidal pericytes. We review the cellular and molecular components of the neurovascular unit in the retina and choroid, techniques for monitoring retinal and choroidal blood flow, responses of the retinal and choroidal circulation to light stimulation, the role of capillaries, astrocytes and pericytes in regulating blood flow, putative signaling mechanisms mediating neurovascular coupling in the retina, and changes that occur in the retinal and choroidal circulation during diabetic retinopathy, age-related macular degeneration, glaucoma, and Alzheimer's disease. We close by discussing issues that remain to be explored.
Collapse
Affiliation(s)
- Joanna Kur
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
15
|
Bellingham MC. A review of the neural mechanisms of action and clinical efficiency of riluzole in treating amyotrophic lateral sclerosis: what have we learned in the last decade? CNS Neurosci Ther 2011; 17:4-31. [PMID: 20236142 DOI: 10.1111/j.1755-5949.2009.00116.x] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating and fatal neurodegenerative disease of adults which preferentially attacks the neuromotor system. Riluzole has been used as the only approved treatment for amyotrophic lateral sclerosis since 1995, but its mechanism(s) of action in slowing the progression of this disease remain obscure. Searching PubMed for "riluzole" found 705 articles published between January 1996 and June 2009. A systematic review of this literature found that riluzole had a wide range of effects on factors influencing neural activity in general, and the neuromotor system in particular. These effects occurred over a large dose range (<1 μM to >1 mM). Reported neural effects of riluzole included (in approximate ascending order of dose range): inhibition of persistent Na(+) current = inhibition of repetitive firing < potentiation of calcium-dependent K(+) current < inhibition of neurotransmitter release < inhibition of fast Na(+) current < inhibition of voltage-gated Ca(2+) current = promotion of neuronal survival or growth factors < inhibition of voltage-gated K(+) current = modulation of two-pore K(+) current = modulation of ligand-gated neurotransmitter receptors = potentiation of glutamate transporters. Only the first four of these effects commonly occurred at clinically relevant concentrations of riluzole (plasma levels of 1-2 μM with three- to four-fold higher concentrations in brain tissue). Treatment of human ALS patients or transgenic rodent models of ALS with riluzole most commonly produced a modest but significant extension of lifespan. Riluzole treatment was well tolerated in humans and animals. In animals, despite in vitro evidence that riluzole may inhibit rhythmic motor behaviors, in vivo administration of riluzole produced relatively minor effects on normal respiration parameters, but inhibited hypoxia-induced gasping. This effect may have implications for the management of hypoventilation and sleep-disordered breathing during end-stage ALS in humans.
Collapse
Affiliation(s)
- Mark C Bellingham
- School of Biomedical Sciences, University of Queensland, Brisbane, Qld. 4072, Australia.
| |
Collapse
|
16
|
Kang LS, Kim S, Dominguez JM, Sindler AL, Dick GM, Muller-Delp JM. Aging and muscle fiber type alter K+ channel contributions to the myogenic response in skeletal muscle arterioles. J Appl Physiol (1985) 2009; 107:389-98. [PMID: 19407249 DOI: 10.1152/japplphysiol.91245.2008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aging diminishes myogenic tone in arterioles from skeletal muscle. Recent evidence indicates that both large-conductance Ca2+-activated (BKCa) and voltage-dependent (KV) K+ channels mediate negative feedback control of the myogenic response. Thus we tested the hypothesis that aging increases the contributions of KV and BKCa channels to myogenic regulation of vascular tone. Because myogenic responsiveness differs between oxidative and glycolytic muscles, we predicted that KV and BKCa channel contributions to myogenic responsiveness vary with fiber type. Myogenic responses of first-order arterioles from the gastrocnemius and soleus muscles of 4- and 24-mo-old Fischer 344 rats were evaluated in the presence and absence of 4-aminopyridine (5 mM) or iberiotoxin (30 nM), inhibitors of KV and BKCa, respectively. 4-Aminopyridine enhanced myogenic tone with aging and normalized age-related differences in both muscle types. By contrast, iberiotoxin eliminated age-related differences in soleus arterioles and had no effect in gastrocnemius vessels. KV1.5 is an integral component of KV channels in vascular smooth muscle; therefore, we determined the relative protein expression of KV1.5, as well as BKCa, in soleus and gastrocnemius arterioles. Immunoblot analysis revealed no differences in KV1.5 protein with aging or between variant fiber types, whereas BKCa protein levels declined with age in arterioles from both muscle groups. Collectively, these results suggest that the contribution of BKCa to myogenic regulation of vascular tone changes with age in soleus muscle arterioles, whereas increased KV channel expression and negative feedback regulation of myogenic tone increases with advancing age in arterioles from both oxidative and glycolytic muscles.
Collapse
Affiliation(s)
- Lori S Kang
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | | | | | | | | | | |
Collapse
|
17
|
Gillmor SD, Weiss PS. Dimpled Vesicles: The Interplay between Energetics and Transient Pores. J Phys Chem B 2008; 112:13629-34. [DOI: 10.1021/jp802808x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Susan D. Gillmor
- Department of Chemistry, George Washington University, 725 21st Street, N.W., Washington, D.C. 20052, and Departments of Chemistry and Physics, The Pennsylvania State University, 104 Davey Laboratory, University Park, Pennsylvania 16802-6300
| | - Paul S. Weiss
- Department of Chemistry, George Washington University, 725 21st Street, N.W., Washington, D.C. 20052, and Departments of Chemistry and Physics, The Pennsylvania State University, 104 Davey Laboratory, University Park, Pennsylvania 16802-6300
| |
Collapse
|
18
|
McGahon MK, Needham MA, Scholfield CN, McGeown JG, Curtis TM. Ca2+-activated Cl- current in retinal arteriolar smooth muscle. Invest Ophthalmol Vis Sci 2008; 50:364-71. [PMID: 18775864 DOI: 10.1167/iovs.08-2524] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To characterize the biophysical, pharmacologic, and functional properties of the Ca(2+)-activated Cl(-) current in retinal arteriolar myocytes. METHODS Whole-cell perforated patch-clamp recordings were made from myocytes within intact isolated arteriolar segments. Arteriolar tone was assessed using pressure myography. RESULTS Depolarizing of voltage steps to -40 mV and greater activated an L-type Ca(2+) current (I(Ca(L))) that was followed by a sustained current. Large tail currents (I(tail)) were observed on stepping back to -80 mV. The sustained current and I(tail) reversed close to 0 mV in symmetrical Cl(-) concentrations. The ion selectivity sequence for I(tail) was I(-)> Cl(-)> glucuronate. Outward I(tail) was sensitive to the Cl(-) channel blockers 9-anthracene-carboxylic acid (9-AC; 1 mM), 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS; 1 mM), and disodium 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS; 1 mM), but only DIDS produced a substantial (78%) block of inward tail currents at -100 mV. I(tail) was decreased in magnitude when the normal bathing medium was substituted with Ca(2+)-free solution or if I(Ca(L)) was inhibited by 1 microM nimodipine. Caffeine (10 mM) produced large transient currents that reversed close to the Cl(-) equilibrium potential and were blocked by 1 mM DIDS or 100 microM tetracaine. DIDS had no effect on basal vascular tone in pressurized arterioles but dramatically reduced the level of vasoconstriction observed in the presence of 10 nM endothelin-1. CONCLUSIONS Retinal arteriolar myocytes have I(Cl(Ca)), which may be activated by Ca(2+) entry through L-type Ca(2+) channels or Ca(2+) release from intracellular stores. This current appears to contribute to agonist-induced retinal vasoconstriction.
Collapse
Affiliation(s)
- Mary K McGahon
- Centre for Vision and Vascular Sciences, School of Medicine and Dentistry, The Queen's University of Belfast, Institute of Clinical Sciences, The Royal Victoria Hospital, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Bett GCL, Rasmusson RL. Modification of K+ channel-drug interactions by ancillary subunits. J Physiol 2007; 586:929-50. [PMID: 18096604 DOI: 10.1113/jphysiol.2007.139279] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Reconciling ion channel alpha-subunit expression with native ionic currents and their pharmacological sensitivity in target organs has proved difficult. In native tissue, many K(+) channel alpha-subunits co-assemble with ancillary subunits, which can profoundly affect physiological parameters including gating kinetics and pharmacological interactions. In this review, we examine the link between voltage-gated potassium ion channel pharmacology and the biophysics of ancillary subunits. We propose that ancillary subunits can modify the interaction between pore blockers and ion channels by three distinct mechanisms: changes in (1) binding site accessibility; (2) orientation of pore-lining residues; (3) the ability of the channel to undergo post-binding conformational changes. Each of these subunit-induced changes has implications for gating, drug affinity and use dependence of their respective channel complexes. A single subunit may modulate its associated alpha-subunit by more than one of these mechanisms. Voltage-gated potassium channels are the site of action of many therapeutic drugs. In addition, potassium channels interact with drugs whose primary target is another channel, e.g. the calcium channel blocker nifedipine, the sodium channel blocker quinidine, etc. Even when K(+) channel block is the intended mode of action, block of related channels in non-target organs, e.g. the heart, can result in major and potentially lethal side-effects. Understanding factors that determine specificity, use dependence and other properties of K(+) channel drug binding are therefore of vital clinical importance. Ancillary subunits play a key role in determining these properties in native tissue, and so understanding channel-subunit interactions is vital to understanding clinical pharmacology.
Collapse
Affiliation(s)
- Glenna C L Bett
- Center for Cellular and Systems Electrophysiology, Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, 124 Sherman Hall, State University of New York at Buffalo, Buffalo, NY 14214-3005, USA
| | | |
Collapse
|
20
|
Koutsouki E, Lam RS, Seebohm G, Ureche ON, Ureche L, Baltaev R, Lang F. Modulation of human Kv1.5 channel kinetics by N-cadherin. Biochem Biophys Res Commun 2007; 363:18-23. [PMID: 17868645 DOI: 10.1016/j.bbrc.2007.07.181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Accepted: 07/27/2007] [Indexed: 11/25/2022]
Abstract
Kv1.5 is expressed in multiple tissues including heart, brain, macrophages, as well as vascular, airway, and intestinal smooth muscle cells. Kv1.5 currents contribute to cardiac repolarization. In cardiac myocytes Kv1.5 colocalizes with N-cadherin. As Kv1.5 expression increases following establishment of cell-cell contacts and N-cadherin influences the activity of other ion channels, we explored whether N-cadherin participates in the regulation of Kv1.5 activity. To this end, we expressed Kv1.5 in Xenopus oocytes with or without additional expression of N-cadherin. Coexpression of N-cadherin was followed by a approximately 2- to 3-fold increase of Kv1.5 induced current. The effect of N-cadherin was not paralleled by significant alterations of Kv1.5 channel abundance within the oocyte cell membrane but resulted primarily from accelerated recovery from inactivation. In conclusion, N-cadherin modifies Kv1.5 channel activity and is thus a novel candidate signaling molecule participating in the regulation of a variety of functions including cardiac action potential and vascular tone.
Collapse
Affiliation(s)
- Evgenia Koutsouki
- Department of Physiology, University of Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Fountain SJ, Cheong A, Li J, Dondas NY, Zeng F, Wood IC, Beech DJ. K(v)1.5 potassium channel gene regulation by Sp1 transcription factor and oxidative stress. Am J Physiol Heart Circ Physiol 2007; 293:H2719-25. [PMID: 17660393 DOI: 10.1152/ajpheart.00637.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
K(V)1.5, a voltage-gated potassium channel, has functional importance in regulating blood vessel tone and cardiac action potentials and is a target for numerous therapeutic drug development programs. Despite the importance of K(V)1.5, there is little knowledge of the mechanisms controlling expression of its underlying gene, Kcna5. We identified a 5' flanking region of the murine Kcna5 gene that drives expression of a luciferase reporter gene in primary smooth muscle cells and a smooth muscle cell line. The promoter contained CACCC nucleotide motifs, which we have shown to bind the Sp1 transcription factor in the aorta under physiological conditions in vivo. Inhibition of Sp1-Kcna5 promoter interactions using mithramycin A, a dominant-negative Sp1 mutant, or disruption of the CACCC boxes by mutagenesis inhibited promoter activity. Conversely, expression of exogenous Sp1 augmented promoter activity. Sp1 has known sensitivity to oxidative stress and, consistent with this property, Kcna5 promoter activity was suppressed by hydrogen peroxide-induced oxidative stress. Our results show that Kcna5 promoter activity in vascular smooth muscle is critically dependent on Sp1 regulation via CACCC box motifs and identify mechanisms that potentially influence the expression of K(V)1.5 channel expression in physiological or pathological conditions.
Collapse
Affiliation(s)
- Samuel J Fountain
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, UK
| | | | | | | | | | | | | |
Collapse
|
22
|
McGahon MK, Zhang X, Scholfield CN, Curtis TM, McGeown JG. Selective downregulation of the BKbeta1 subunit in diabetic arteriolar myocytes. Channels (Austin) 2007; 1:141-3. [PMID: 18690028 DOI: 10.4161/chan.4596] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Diabetic retinopathy is an important cause of visual loss. Functional abnormalities including vasoconstriction precede structural changes. Using the streptozotocin-model of diabetes in rats, we have identified downregulation of the beta1 subunit of the BK channel in arteriole myocytes as a possible molecular mechanism underlying these early changes. BKbeta1 mRNA levels were reduced as early as one month after induction of diabetes, and BK Ca(2+)-sensitivity and caffeine-evoked BK currents were reduced at three months. This effect appears to be selective for the regulatory subunit, as BKalpha subunit expression was not altered at the mRNA level, and voltage-activated BK currents were unaltered. No changes were seen in voltage activated Ca(2+)-current, Ca(2+)-activated Cl(-)current, or A-type voltage activated K(+)-currents. Reduced Ca(2+)-activated BK activity may promote depolarization, Ca(2+)-channel activation and increased contraction under resting conditions or in response to Ca(2+)-mobilizing agonists.
Collapse
Affiliation(s)
- Mary K McGahon
- Center for Vision Sciences, School of Biomedical Sciences, The Queen's University of Belfast, Institute of Clinical Sciences, The Royal Victoria Hospital, Belfast, UK
| | | | | | | | | |
Collapse
|