1
|
Jiang RS, Zhang L, Yang H, Zhou MY, Deng CY, Wu W. Signalling pathway of U46619-induced vascular smooth muscle contraction in mouse coronary artery. Clin Exp Pharmacol Physiol 2021; 48:996-1006. [PMID: 33792963 DOI: 10.1111/1440-1681.13502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Thromboxane A2 (TXA2 ) participates in many pathophysiological processes of coronary artery disease. However, its mechanism of TXA2 -induced contraction in the coronary artery remains to be clarified. A multi myograph system was used to measure the isometric tension of the mouse coronary arteries and identify the effect and pathway of TXA2 analogues U46619. Confocal laser scanning microscopy was used to measure the intracellular calcium concentration ([Ca2+ ]i ) in mouse coronary artery smooth muscle cells. Results from the experiment had shown that contraction in coronary artery was generated by U46619 in a concentration-dependent manner, which was completely abolished by a specific TXA2 receptor blocker, GR32191. PI-PLC inhibitors U73122 and D609 and Rho-Kinase inhibitor Y-27632 can block the U46619 elicited coronary artery contraction in a dose-dependent manner. Then, the vasoconstriction response to U46619 was obviously inhibited by two pan-PKC inhibitors chelerythrine or Gӧ6983, and a selective PKCδ inhibitor rottlerin, but was not blocked by a selective PKCζ inhibitor PKC-PS or a selective PKCβ inhibitor hispidin. Meanwhile, the PKC activator PDBu-induced vasoconstriction was significantly inhibited by 1 μmol/L nifedipine, then mostly inhibited by 100 μmol/L 2-APB and 10 μmol/L Y27632. We further found that the response to U46619 was inhibited, respectively, by three calcium channel blockers nifedipine, SKF96356 or 2-APB in a concentration-dependent manner. Although Store-operated Ca2+ (SOC) channels generated the increase of [Ca2+ ]i in mouse coronary artery smooth muscle cells, SOC channels did not contribute to the vasoconstriction in mouse coronary arteries. Caffeine-induced sarcoplasmic reticulum (SR) Ca2+ release could obviously induce coronal vasoconstriction. In addition, NPPB, a cell membrane Ca2+ activated C1- channel blocker, could obviously inhibit the U46619-induced vasoconstriction. The U46619-induced mouse coronary artery contraction was involved in the increase in [Ca2+ ]i mediated by Cav1.2, TRPC channels and SR release through the activation of G-protein-coupled TP receptors and the kinases signalling pathway in TP downstream proteins, while SOC channels did not participate in the vasoconstriction.
Collapse
Affiliation(s)
- Run-Sheng Jiang
- Division of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Zhang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, China
| | - Hui Yang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, China
| | - Meng-Yuan Zhou
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, China
| | - Chun-Yu Deng
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wei Wu
- Division of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Arterial relaxation is coupled to inhibition of mitochondrial fission in arterial smooth muscle cells: comparison of vasorelaxant effects of verapamil and phentolamine. Acta Pharm Sin B 2017; 7:319-325. [PMID: 28540168 PMCID: PMC5430753 DOI: 10.1016/j.apsb.2016.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/09/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are morphologically dynamic organelles which undergo fission and fusion processes. Our previous study found that arterial constriction was always accompanied by increased mitochondrial fission in smooth muscle cells, whereas inhibition of mitochondrial fission in smooth muscle cells was associated with arterial relaxation. Here, we used the typical vasorelaxants, verapamil and phentolamine, to further confirm the coupling between arterial constriction and mitochondrial fission in rat aorta. Results showed that phentolamine but not verapamil induced vasorelaxation in phenylephrine (PE)-induced rat thoracic aorta constriction. Verapamil, but not phentolamine, induced vasorelaxation in high K+ (KPSS)-induced rat thoracic aorta constriction. Pre-treatment with phentolamine prevented PE- but not KPSS-induced aorta constriction and pre-treatment with verapamil prevented both PE- and KPSS-induced aorta constriction. Transmission electron microscopy (TEM) results showed that verapamil but not phentolamine inhibited KPSS-induced excessive mitochondrial fission in aortic smooth muscle cells, and verapamil prevented both PE- and KPSS-induced excessive mitochondrial fission in aortic smooth muscle cells. Verapamil inhibited KPSS-induced excessive mitochondrial fission in cultured vascular smooth muscle cells (A10). These results further demonstrate that arterial relaxation is coupled to inhibition of mitochondrial fission in arterial smooth muscle cells.
Collapse
|
3
|
Wacker MJ, Touchberry CD, Silswal N, Brotto L, Elmore CJ, Bonewald LF, Andresen J, Brotto M. Skeletal Muscle, but not Cardiovascular Function, Is Altered in a Mouse Model of Autosomal Recessive Hypophosphatemic Rickets. Front Physiol 2016; 7:173. [PMID: 27242547 PMCID: PMC4866514 DOI: 10.3389/fphys.2016.00173] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/28/2016] [Indexed: 01/29/2023] Open
Abstract
Autosomal recessive hypophosphatemic rickets (ARHR) is a heritable disorder characterized by hypophosphatemia, osteomalacia, and poor bone development. ARHR results from inactivating mutations in the DMP1 gene with the human phenotype being recapitulated in the Dmp1 null mouse model which displays elevated plasma fibroblast growth factor 23. While the bone phenotype has been well-characterized, it is not known what effects ARHR may also have on skeletal, cardiac, or vascular smooth muscle function, which is critical to understand in order to treat patients suffering from this condition. In this study, the extensor digitorum longus (EDL-fast-twitch muscle), soleus (SOL–slow-twitch muscle), heart, and aorta were removed from Dmp1 null mice and ex-vivo functional tests were simultaneously performed in collaboration by three different laboratories. Dmp1 null EDL and SOL muscles produced less force than wildtype muscles after normalization for physiological cross sectional area of the muscles. Both EDL and SOL muscles from Dmp1 null mice also produced less force after the addition of caffeine (which releases calcium from the sarcoplasmic reticulum) which may indicate problems in excitation contraction coupling in these mice. While the body weights of the Dmp1 null were smaller than wildtype, the heart weight to body weight ratio was higher. However, there were no differences in pathological hypertrophic gene expression compared to wildtype and maximal force of contraction was not different indicating that there may not be cardiac pathology under the tested conditions. We did observe a decrease in the rate of force development generated by cardiac muscle in the Dmp1 null which may be related to some of the deficits observed in skeletal muscle. There were no differences observed in aortic contractions induced by PGF2α or 5-HT or in endothelium-mediated acetylcholine-induced relaxations or endothelium-independent sodium nitroprusside-induced relaxations. In summary, these results indicate that there are deficiencies in both fast twitch and slow twitch muscle fiber type contractions in this model of ARHR, while there was less of a phenotype observed in cardiac muscle, and no differences observed in aortic function. These results may help explain skeletal muscle weakness reported by some patients with osteomalacia and need to be further investigated.
Collapse
Affiliation(s)
- Michael J Wacker
- Muscle Biology Research Group, School of Medicine, University of Missouri-Kansas City Kansas City, MO, USA
| | | | - Neerupma Silswal
- Muscle Biology Research Group, School of Medicine, University of Missouri-Kansas City Kansas City, MO, USA
| | - Leticia Brotto
- Bone-Muscle Collaborative Science, College of Nursing and Health Innovation, University of Texas at Arlington Arlington, TX, USA
| | - Chris J Elmore
- Muscle Biology Research Group, School of Medicine, University of Missouri-Kansas City Kansas City, MO, USA
| | - Lynda F Bonewald
- Bone Biology Research Group, School of Dentistry, University of Missouri-Kansas City Kansas City, MO, USA
| | - Jon Andresen
- Muscle Biology Research Group, School of Medicine, University of Missouri-Kansas City Kansas City, MO, USA
| | - Marco Brotto
- Bone-Muscle Collaborative Science, College of Nursing and Health Innovation, University of Texas at Arlington Arlington, TX, USA
| |
Collapse
|
4
|
Restoration of Endothelial Function in Pparα (-/-) Mice by Tempol. PPAR Res 2015; 2015:728494. [PMID: 26649033 PMCID: PMC4663011 DOI: 10.1155/2015/728494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 12/18/2022] Open
Abstract
Peroxisome proliferator activated receptor alpha (PPARα) is one of the PPAR isoforms belonging to the nuclear hormone receptor superfamily that regulates genes involved in lipid and lipoprotein metabolism. PPARα is present in the vascular wall and is thought to be involved in protection against vascular disease. To determine if PPARα contributes to endothelial function, conduit and cerebral resistance arteries were studied in Pparα−/− mice using isometric and isobaric tension myography, respectively. Aortic contractions to PGF2α and constriction of middle cerebral arteries to phenylephrine were not different between wild type (WT) and Pparα−/−; however, relaxation/dilation to acetylcholine (ACh) was impaired. There was no difference in relaxation between WT and Pparα−/− aorta to treatment with a nitric oxide (NO) surrogate indicating impairment in endothelial function. Endothelial NO levels as well as NO synthase expression were reduced in Pparα−/− aortas, while superoxide levels were elevated. Two-week feeding with the reactive oxygen species (ROS) scavenger, tempol, normalized ROS levels and rescued the impaired endothelium-mediated relaxation in Pparα−/− mice. These results suggest that Pparα−/− mice have impaired endothelial function caused by decreased NO bioavailability. Therefore, activation of PPARα receptors may be a therapeutic target for maintaining endothelial function and protection against cardiovascular disease.
Collapse
|
5
|
Yan Y, Chen YC, Lin YH, Guo J, Niu ZR, Li L, Wang SB, Fang LH, Du GH. Brazilin isolated from the heartwood of Caesalpinia sappan L induces endothelium-dependent and -independent relaxation of rat aortic rings. Acta Pharmacol Sin 2015; 36:1318-26. [PMID: 26564314 DOI: 10.1038/aps.2015.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/29/2015] [Indexed: 12/22/2022]
Abstract
AIM Brazilin is one of the major constituents of Caesalpinia sappan L with various biological activities. This study sought to investigate the vasorelaxant effect of brazilin on isolated rat thoracic aorta and explore the underlying mechanisms. METHODS Endothelium-intact and -denuded aortic rings were prepared from rats. The tension of the preparations was recorded isometrically with a force displacement transducer connected to a polygraph. The phosphorylation levels of ERK1/2 and myosin light chain (MLC) were analyzed using Western blotting assay. RESULTS Application of brazilin (10-100 μmol/L) dose-dependently relaxed the NE- or high K(+)-induced sustained contraction of endothelium-intact aortic rings (the EC50 was 83.51±5.6 and 79.79±4.57 μmol/L, respectively). The vasorelaxant effect of brazilin was significantly attenuated by endothelium removal or by pre-incubation with L-NAME, methylene blue or indomethacin. In addition, pre-incubation with brazilin dose-dependently attenuated the vasoconstriction induced by KCl, NE or Ang II. Pre-incubation with brazilin also markedly suppressed the high K(+)-induced extracellular Ca(2+) influx and NE-induced intracellular Ca(2+) release in endothelium-denuded aortic rings. Pre-incubation with brazilin dose-dependently inhibited the NE-stimulated phosphorylation of ERK1/2 and MLC in both endothelium-intact and -denuded aortic rings. CONCLUSION Brazilin induces relaxation in rat aortic rings via both endothelium-dependent and -independent ways as well as inhibiting NE-stimulated phosphorylation of ERK1/2 and MLC. Brazilin also attenuates vasoconstriction via blocking voltage- and receptor-operated Ca(2+) channels.
Collapse
|
6
|
Vasodilatory effect of a novel Rho-kinase inhibitor, DL0805-2, on the rat mesenteric artery and its potential mechanisms. Cardiovasc Drugs Ther 2015; 28:415-24. [PMID: 25086815 DOI: 10.1007/s10557-014-6544-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE In the present study, we investigated the vasodilatory effect of a novel scaffold Rho-kinase inhibitor, DL0805-2, on isolated rat arterial rings including mesenteric, ventral tail, and renal arteries. We also examined the potential mechanisms of its vasodilatory action using mesenteric artery rings. METHODS A DMT multiwire myograph system was used to test the tension of isolated small arteries. Several drugs were employed to verify the underlying mechanisms. RESULTS DL0805-2 (10(-7)-10(-4) M) inhibited KCl (60 mM)-induced vasoconstriction in three types of small artery rings (pEC50: 5.84 ± 0.03, 5.39 ± 0.03, and 5.67 ± 0.02 for mesenteric, renal, and ventral tail artery rings, respectively). Pre-incubation with DL0805-2 (1, 3, or 10 μM) attenuated KCl (10-60 mM) and angiotensin II (AngII; 10(-6) M)-induced vasoconstriction in mesenteric artery rings. The relaxant effect on the rat mesenteric artery was partially endothelium-dependent (pEC50: 6.02 ± 0.05 for endothelium-intact and 5.72 ± 0.06 for endothelium-denuded). The influx and release of Ca(2+) were inhibited by DL0805-2. In addition, the increased phosphorylation levels of myosin light chain (MLC) and myosin-binding subunit of myosin phosphatase (MYPT1) induced by AngII were blocked by DL0805-2. However, DL0805-2 had little effect on K(+) channels. CONCLUSIONS The present results demonstrate that DL0805-2 has a vasorelaxant effect on isolated rat small arteries and may exert its action through the endothelium, Ca(2+) channels, and the Rho/ROCK pathway.
Collapse
|
7
|
Silswal N, Touchberry CD, Daniel DR, McCarthy DL, Zhang S, Andresen J, Stubbs JR, Wacker MJ. FGF23 directly impairs endothelium-dependent vasorelaxation by increasing superoxide levels and reducing nitric oxide bioavailability. Am J Physiol Endocrinol Metab 2014; 307:E426-36. [PMID: 25053401 PMCID: PMC4154070 DOI: 10.1152/ajpendo.00264.2014] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/15/2014] [Indexed: 12/17/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is secreted primarily by osteocytes and regulates phosphate and vitamin D metabolism. Elevated levels of FGF23 are clinically associated with endothelial dysfunction and arterial stiffness in chronic kidney disease (CKD) patients; however, the direct effects of FGF23 on endothelial function are unknown. We hypothesized that FGF23 directly impairs endothelial vasorelaxation by hindering nitric oxide (NO) bioavailability. We detected expression of all four subtypes of FGF receptors (Fgfr1-4) in male mouse aortas. Exogenous FGF23 (90-9,000 pg/ml) did not induce contraction of aortic rings and did not relax rings precontracted with PGF2α. However, preincubation with FGF23 (9,000 pg/ml) caused a ∼36% inhibition of endothelium-dependent relaxation elicited by acetylcholine (ACh) in precontracted aortic rings, which was prevented by the FGFR antagonist PD166866 (50 nM). Furthermore, in FGF23-pretreated (9,000 pg/ml) aortic rings, we found reductions in NO levels. We also investigated an animal model of CKD (Col4a3(-/-) mice) that displays highly elevated serum FGF23 levels and found they had impaired endothelium-dependent vascular relaxation and reduced nitrate production compared with age-matched wild types. To elucidate a mechanism for the FGF23-induced impairment, we measured superoxide levels in endothelial cells and aortic rings and found that they were increased following FGF23 treatment. Crucially, treatment with the superoxide scavenger tiron reduced superoxide levels and also restored aortic relaxation to ACh. Therefore, our data suggest that FGF23 increases superoxide, inhibits NO bioavailability, and causes endothelial dysfunction in mouse aorta. Together, these data provide evidence that high levels of FGF23 contribute to cardiovascular dysfunction.
Collapse
Affiliation(s)
- Neerupma Silswal
- Muscle Biology Group, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri; and
| | - Chad D Touchberry
- Muscle Biology Group, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri; and
| | - Dorothy R Daniel
- Muscle Biology Group, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri; and
| | - Darla L McCarthy
- Muscle Biology Group, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri; and
| | - Shiqin Zhang
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Jon Andresen
- Muscle Biology Group, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri; and
| | - Jason R Stubbs
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Michael J Wacker
- Muscle Biology Group, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri; and
| |
Collapse
|
8
|
McCartney AJ, Zhang Y, Weisman LS. Phosphatidylinositol 3,5-bisphosphate: low abundance, high significance. Bioessays 2013; 36:52-64. [PMID: 24323921 DOI: 10.1002/bies.201300012] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recent studies of the low abundant signaling lipid, phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2 ), reveal an intriguingly diverse list of downstream pathways, the intertwined relationship between PI(3,5)P2 and PI5P, as well as links to neurodegenerative diseases. Derived from the structural lipid phosphatidylinositol, PI(3,5)P2 is dynamically generated on multiple cellular compartments where interactions with an increasing list of effectors regulate many cellular pathways. A complex of proteins that includes Fab1/PIKfyve, Vac14, and Fig4/Sac3 mediates the biosynthesis of PI(3,5)P2 , and mutations that disrupt complex function and/or formation cause profound consequences in cells. Surprisingly, mutations in this pathway are linked with neurological diseases, including Charcot-Marie-Tooth syndrome and amyotrophic lateral sclerosis. Future studies of PI(3,5)P2 and PI5P are likely to expand the roles of these lipids in regulation of cellular functions, as well as provide new approaches for treatment of some neurological diseases.
Collapse
Affiliation(s)
- Amber J McCartney
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
9
|
Aggarwal C, Łabuz J, Gabryś H. Phosphoinositides play differential roles in regulating phototropin1- and phototropin2-mediated chloroplast movements in Arabidopsis. PLoS One 2013; 8:e55393. [PMID: 23405144 PMCID: PMC3566141 DOI: 10.1371/journal.pone.0055393] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/24/2012] [Indexed: 01/06/2023] Open
Abstract
Phototropins are UVA/blue-light receptors involved in controlling the light-dependent physiological responses which serve to optimize the photosynthetic activity of plants and promote growth. The phototropin-induced phosphoinositide (PI) metabolism has been shown to be essential for stomatal opening and phototropism. However, the role of PIs in phototropin-induced chloroplast movements remains poorly understood. The aim of this work is to determine which PI species are involved in the control of chloroplast movements in Arabidopsis and the nature of their involvement. We present the effects of the inactivation of phospholipase C (PLC), PI3-kinase (PI3K) and PI4-kinase (PI4K) on chloroplast relocations in Arabidopsis. The inhibition of the phosphatidylinositol 4,5-bisphospahte [PI(4,5)P2]-PLC pathway, using neomycin and U73122, suppressed the phot2-mediated chloroplast accumulation and avoidance responses, without affecting movement responses controlled by phot1. On the other hand, PI3K and PI4K activities are more restricted to phot1- and phot2-induced weak-light responses. The inactivation of PI3K and PI4K by wortmannin and LY294002 severely affected the weak blue-light-activated accumulation response but had little effect on the strong blue-light-activated avoidance response. The inhibitory effect observed with PI metabolism inhibitors is, at least partly, due to a disturbance in Ca2+(c) signaling. Using the transgenic aequorin system, we show that the application of these inhibitors suppresses the blue-light-induced transient Ca2+(c) rise. These results demonstrate the importance of PIs in chloroplast movements, with the PI(4,5)P2-PLC pathway involved in phot2 signaling while PI3K and PI4K are required for the phot1- and phot2-induced accumulation response. Our results suggest that these PIs modulate cytosolic Ca2+ signaling during movements.
Collapse
Affiliation(s)
- Chhavi Aggarwal
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Justyna Łabuz
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Halina Gabryś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail:
| |
Collapse
|
10
|
Martyn C, Li J. Fig4 deficiency: a newly emerged lysosomal storage disorder? Prog Neurobiol 2012; 101-102:35-45. [PMID: 23165282 DOI: 10.1016/j.pneurobio.2012.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/07/2012] [Accepted: 11/09/2012] [Indexed: 12/31/2022]
Abstract
FIG4 (Sac3 in mammals) is a 5'-phosphoinositide phosphatase that coordinates the turnover of phosphatidylinositol-3,5-bisphosphate (PI(3,5)P(2)), a very low abundance phosphoinositide. Deficiency of FIG4 severely affects the human and mouse nervous systems by causing two distinct forms of abnormal lysosomal storage. The first form occurs in spinal sensory neurons, where vacuolated endolysosomes accumulate in perinuclear regions. A second form occurs in cortical/spinal motor neurons and glia, in which enlarged endolysosomes become filled with electron dense materials in a manner indistinguishable from other lysosomal storage disorders. Humans with a deficiency of FIG4 (known as Charcot-Marie-Tooth disease type 4J or CMT4J) present with clinical and pathophysiological phenotypes indicative of spinal motor neuron degeneration and segmental demyelination. These findings reveal a signaling pathway involving FIG4 that appears to be important for lysosomal function. In this review, we discuss the biology of FIG4 and describe how the deficiency of FIG4 results in lysosomal phenotypes. We also discuss the implications of FIG4/PI(3,5)P(2) signaling in understanding other lysosomal storage diseases, neuropathies, and acquired demyelinating diseases.
Collapse
Affiliation(s)
- Colin Martyn
- VA Tennessee Valley Healthcare System, Nashville, TN, USA
| | | |
Collapse
|
11
|
PPARα-Independent Arterial Smooth Muscle Relaxant Effects of PPARα Agonists. PPAR Res 2012; 2012:302495. [PMID: 23008696 PMCID: PMC3447381 DOI: 10.1155/2012/302495] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 07/26/2012] [Indexed: 02/07/2023] Open
Abstract
We sought to determine direct vascular effects of peroxisome proliferator-activated receptor alpha (PPARα) agonists using isolated mouse aortas and middle cerebral arteries (MCAs). The PPARα agonists GW7647, WY14643, and gemfibrozil acutely relaxed aortas held under isometric tension and dilated pressurized MCAs with the following order of potency: GW7647≫WY14643>gemfibrozil. Responses were endothelium-independent, and the use of PPARα deficient mice demonstrated that responses were also PPARα-independent. Pretreating arteries with high extracellular K+ attenuated PPARα agonist-mediated relaxations in the aorta, but not in the MCA. In the aorta, the ATP sensitive potassium (KATP) channel blocker glibenclamide also impaired relaxations whereas the other K+ channel inhibitors, 4-aminopyridine and Iberiotoxin, had no effect. In aortas, GW7647 and WY14643 elevated cGMP levels by stimulating soluble guanylyl cyclase (sGC), and inhibition of sGC with ODQ blunted relaxations to PPARα agonists. In the MCA, dilations were inhibited by the protein kinase C (PKC) activator, phorbol 12,13-dibutyrate, and also by ODQ. Our results demonstrated acute, nonreceptor-mediated relaxant effects of PPARα agonists on smooth muscle of mouse arteries. Responses to PPARα agonists in the aorta involved KATP channels and sGC, whereas in the MCA the PKC and sGC pathways also appeared to contribute to the response.
Collapse
|
12
|
Dikalov SI, Li W, Doughan AK, Blanco RR, Zafari AM. Mitochondrial reactive oxygen species and calcium uptake regulate activation of phagocytic NADPH oxidase. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1134-42. [PMID: 22442197 DOI: 10.1152/ajpregu.00842.2010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Production of superoxide (O(2)(·-)) by NADPH oxidases contributes to the development of hypertension and atherosclerosis. Factors responsible for activation of NADPH oxidases are not well understood; interestingly, cardiovascular disease is associated with both altered NADPH oxidase activity and age-associated mitochondrial dysfunction. We hypothesized that mitochondrial dysfunction may contribute to activation of NADPH oxidase. The effect of mitochondrial inhibitors on phagocytic NADPH oxidase in human lymphoblasts and whole blood was measured at the basal state and upon PKC-dependent stimulation with PMA using extracellular 1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl-trimethylammonium or mitochondria-targeted 1-hydroxy-4-[2-triphenylphosphonio)-acetamido]-2,2,6,6-tetramethylpiperidine spin probes and electron spin resonance (ESR). Intracellular cytosolic calcium [Ca(2+)](i) was measured spectrofluorometrically using fura-2 AM. Incubation of lymphoblasts with the mitochondrial inhibitors rotenone, antimycin A, CCCP, or ruthenium red (an inhibitor of mitochondrial Ca(2+) uniporter) did not significantly change basal activity of NADPH oxidase. In contrast, preincubation with the mitochondrial inhibitors prior to PMA stimulation of lymphoblasts resulted in two- to three-fold increase of NADPH oxidase activity compared with stimulation with PMA alone. Most notably, the intracellular Ca(2+)-chelating agent BAPTA-AM abolished the effect of mitochondrial inhibitors on NADPH oxidase activity. Cytosolic Ca(2+) measurements with fura-2 AM showed that the mitochondrial inhibitors increased [Ca(2+)](i), while BAPTA-AM abolished the increase in [Ca(2+)](i). Furthermore, depletion of cellular Ca(2+) with thapsigargin attenuated CCCP- and antimycin A-mediated activation of NADPH oxidase in the presence of PMA by 42% and 31%, correspondingly. Our data suggest that mitochondria regulate PKC-dependent activation of phagocytic NADPH oxidase. In summary, increased mitochondrial O(2)(·-) and impaired buffering of cytosolic Ca(2+) by dysfunctional mitochondria result in enhanced NADPH oxidase activity, which may contribute to the development of cardiovascular diseases.
Collapse
Affiliation(s)
- Sergey I Dikalov
- Division of Clinical Pharmacology, Vanderbilt Medical Center, Nashville, Tennessee 37232-6602, USA.
| | | | | | | | | |
Collapse
|
13
|
Abstract
PIKfyve, a phosphoinositide 5-kinase synthesizing PtdIns(3,5)P₂ and PtdIns5P in a cellular context, belongs to an evolutionarily ancient gene family of PtdIns(3,5)P₂-synthesizing enzymes that, except for plants, are products of a single-copy gene across species. In the dozen years after its discovery, enormous progress has been made in characterizing the numerous PIKfyve cellular functions and the regulatory mechanisms that govern these functions. It became clear that PIKfyve does not act alone but, rather, it engages the scaffolding regulator ArPIKfyve and the phosphatase Sac3 to make a multiprotein "PAS" complex, so called for the first letters of the protein names. This complex relays antagonistic signals, one for synthesis, another for turnover of PtdIns(3,5)P₂, whose dysregulated coordination is linked to several human diseases. The physiological significance for each protein in the PAS complex is underscored by the early lethality of the mouse models with disruption in any of the three genes. This chapter summarizes our current knowledge of the diverse and complex functionality of PIKfyve and PtdIns(3,5)P₂/PtdIns5P products with particular highlights on recent discoveries of inherited or somatic mutations in PIKfyve and Sac3 linked to human disorders.
Collapse
Affiliation(s)
- Assia Shisheva
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| |
Collapse
|