1
|
Forghani P, Liu W, Wang Z, Ling Z, Takaesu F, Yang E, Tharp GK, Nielsen S, Doraisingam S, Countryman S, Davis ME, Wu R, Jia S, Xu C. Spaceflight alters protein levels and gene expression associated with stress response and metabolic characteristics in human cardiac spheroids. Biomaterials 2025; 317:123080. [PMID: 39809079 PMCID: PMC11788069 DOI: 10.1016/j.biomaterials.2024.123080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]
Abstract
Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) possess tremendous advantage for cardiac regeneration. However, cell survival is challenging upon cell transplantation. Since microgravity can profoundly affect cellular properties, we investigated the effect of spaceflight on hiPSC-CMs. Cardiac spheroids derived from hiPSCs were transported to the International Space Station (ISS) via the SpaceX Crew-8 mission and cultured under space microgravity for 8 days. Beating cardiac spheroids were observed on the ISS and upon successful experimentation by the astronauts in space, the live cultures were returned to Earth. These cells had normal displacement (an indicator of contraction) and Ca2+ transient parameters in 3D live cell imaging. Proteomic analysis revealed that spaceflight upregulated many proteins involved in metabolism (n = 90), cellular component of mitochondrion (n = 62) and regulation of proliferation (n = 10). Specific metabolic pathways enriched by spaceflight included glutathione metabolism, biosynthesis of amino acids, and pyruvate metabolism. In addition, the top upregulated proteins in spaceflight samples included those involved in cellular stress response, cell survival, and metabolism. Transcriptomic profiles indicated that spaceflight upregulated genes associated with cardiomyocyte development, and cellular components of cardiac structure and mitochondrion. Furthermore, spaceflight upregulated genes in metabolic pathways associated with cell survival such as glycerophospholipid metabolism and glycerolipid metabolism. These findings indicate that short-term exposure of 3D hiPSC-CMs to the space environment led to significant changes in protein levels and gene expression involved in cell survival and metabolism.
Collapse
Affiliation(s)
- Parvin Forghani
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Wenhao Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zeyu Wang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zhi Ling
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Felipe Takaesu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Evan Yang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Gregory K Tharp
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | | | | | - Michael E Davis
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shu Jia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Chunhui Xu
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Mangmool S, Kyaw ETH, Nuamnaichati N, Pandey S, Parichatikanond W. Stimulation of adenosine A 1 receptor prevents oxidative injury in H9c2 cardiomyoblasts: Role of Gβγ-mediated Akt and ERK1/2 signaling. Toxicol Appl Pharmacol 2022; 451:116175. [PMID: 35901927 DOI: 10.1016/j.taap.2022.116175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 02/05/2023]
Abstract
Oxidative stress causes cellular injury and damage in the heart primarily through apoptosis resulting in cardiac abnormalities such as heart failure and cardiomyopathy. During oxidative stress, stimulation of adenosine receptor (AR) has been shown to protect against oxidative damage due to their cytoprotective properties. However, the subtype specificity and signal transductions of adenosine A1 receptor (A1R) on cardiac protection during oxidative stress have remained elusive. In this study, we found that stimulation of A1Rs with N6-cyclopentyladenosine (CPA), a specific A1R agonist, attenuated the H2O2-induced intracellular and mitochondrial reactive oxygen species (ROS) production and apoptosis. In addition, A1R stimulation upregulated the synthesis of antioxidant enzymes (catalase and GPx-1), antiapoptotic proteins (Bcl-2 and Bcl-xL), and mitochondria-related markers (UCP2 and UCP3). Blockades of Gβγ subunit of heterotrimeric Gαi protein antagonized A1R-mediated antioxidant and antiapoptotic effects, confirming the potential role of Gβγ subunit-mediated A1R signaling. Additionally, cardioprotective effects of CPA mediated through PI3K/Akt- and ERK1/2-dependent signaling pathways. Thus, we propose that A1R represents a promising therapeutic target for prevention of oxidative injury in the heart.
Collapse
Affiliation(s)
- Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Ei Thet Htar Kyaw
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Narawat Nuamnaichati
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Sudhir Pandey
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Warisara Parichatikanond
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; Center of Biopharmaceutical Science for Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
3
|
Chen B, Yu L, Wu J, Qiao K, Cui L, Qu H, Su Y, Cai S, Liu Z, Wang Q. Effects of Collagen Hydrolysate From Large Hybrid Sturgeon on Mitigating Ultraviolet B-Induced Photodamage. Front Bioeng Biotechnol 2022; 10:908033. [PMID: 35832410 PMCID: PMC9271680 DOI: 10.3389/fbioe.2022.908033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Ultraviolet B (UVB) radiation leads to the excessive accumulation of reactive oxygen species (ROS), which subsequently promote inflammation, degradation of the extracellular matrix, and photoaging in skin. Thus antioxidant activity is particularly important when screening for active substances to prevent or repair photodamage. Marine fish-derived bioactive peptides have become a trend in cosmetics and functional food industries owing to their potential dermatological benefits. In this study, 1-diphenyl- 2-pycryl-hydrazyl (DPPH) scavenging activity was selected to optimize the hydrolysis conditions of sturgeon skin collagen peptides with antioxidant activity. The optimal hydrolysis conditions for sturgeon skin collagen hydrolysate (SSCH) were determined by response surface methodology, which comprised an enzyme dosage of flavorzyme at 6,068.4 U/g, temperature of 35.5°C, pH of 7, and hydrolysis time of 6 h. SSCH showed good radical-scavenging capacities with a DPPH scavenging efficiency of 95%. Then, the effect of low-molecular-weight SSCH fraction (SSCH-L) on UVB irradiation-induced photodamage was evaluated in mouse fibroblast L929 cells and zebrafish. SSCH-L reduced intracellular ROS levels and the malondialdehyde content, thereby alleviating the oxidative damage caused by UVB radiation. Moreover SSCH-L inhibited the mRNA expression of genes encoding the pro-inflammatory cytokines IL-1β, IL-6, TNF-α, and Cox-2. SSCH-L treatment further increased the collagen Ⅰα1 content and had a significant inhibitory effect on matrix metalloproteinase expression. The phosphorylation level of JNK and the expression of c-Jun protein were significantly reduced by SSCH-L. Additionally, SSCH-L increased the tail fin area at 0.125 and 0.25 mg/ml in a zebrafish UVB radiation model, which highlighted the potential of SSCH-L to repair UVB-irradiated zebrafish skin damage. Peptide sequences of SSCH-L were identified by liquid chromatography-tandem mass spectrometry. Based on the 3D-QSAR modeling prediction, six total peptides were selected to test the UVB-protective activity. Among these peptides, DPFRHY showed good UVB-repair activity, ROS-scavenging activity, DNA damage-protective activity and apoptosis inhibition activity. These results suggested that DPFRHY has potential applications as a natural anti-photodamage material in cosmetic and functional food industries.
Collapse
Affiliation(s)
- Bei Chen
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
| | - Lei Yu
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Jingna Wu
- Xiamen Medical College, Xiamen, China
| | - Kun Qiao
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
| | - Lulu Cui
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, China
| | - Haidong Qu
- College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yongchang Su
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
| | - Shuilin Cai
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
- *Correspondence: Zhiyu Liu, ; Qin Wang,
| | - Qin Wang
- School of Life Sciences, Xiamen University, Xiamen, China
- *Correspondence: Zhiyu Liu, ; Qin Wang,
| |
Collapse
|
4
|
Wang J, Trinh TN, Vu ATV, Kim JC, Hoang ATN, Ohk CJ, Zhang YH, Nguyen CM, Woo SH. Chrysosplenol-C Increases Contraction by Augmentation of Sarcoplasmic Reticulum Ca 2+ Loading and Release via Protein Kinase C in Rat Ventricular Myocytes. Mol Pharmacol 2022; 101:13-23. [PMID: 34764211 DOI: 10.1124/molpharm.121.000365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022] Open
Abstract
Naturally found chrysosplenol-C (4',5,6-trihydroxy-3,3',7-trimethoxyflavone) increases the contractility of cardiac myocytes independent of β-adrenergic signaling. We investigated the cellular mechanism for chrysosplenol-C-induced positive inotropy. Global and local Ca2+ signals, L-type Ca2+ current (ICa), and contraction were measured from adult rat ventricular myocytes using two-dimensional confocal Ca2+ imaging, the whole-cell patch-clamp technique, and video-edge detection, respectively. Application of chrysosplenol-C reversibly increased Ca2+ transient magnitude with a maximal increase of ∼55% within 2- to 3-minute exposures (EC50 ≅ 21 μM). This chemical did not alter ICa and slightly increased diastolic Ca2+ level. The frequency and size of resting Ca2+ sparks were increased by chrysosplenol-C. Chrysosplenol-C significantly increased sarcoplasmic reticulum (SR) Ca2+ content but not fractional release. Pretreatment of protein kinase C (PKC) inhibitor but not Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor abolished the stimulatory effects of chrysosplenol-C on Ca2+ transients and Ca2+ sparks. Chrysosplenol-C-induced positive inotropy was removed by the inhibition of PKC but not CaMKII or phospholipase C. Western blotting assessment revealed that PKC-δ protein level in the membrane fractions significantly increase within 2 minutes after chrysosplenol-C exposure with a delayed (5-minute) increase in PKC-α levels in insoluble membrane. These results suggest that chrysosplenol-C enhances contractility via PKC (most likely PKC-δ)-dependent enhancement of SR Ca2+ releases in ventricular myocytes. SIGNIFICANCE STATEMENT: Study shows that chrysosplenol-C, a natural flavone showing a positive inotropic effect, increases SR Ca2+ releases on depolarizations and Ca2+ sparks with an increase of SR Ca2+ loading but not L-type Ca2+ current in ventricular myocytes. Chrysosplenol-C-induced enhancement in contraction is eliminated by PKC inhibition, and it is associated with redistributions of PKC to the membrane. These indicate that chrysosplenol-C enhances contraction via PKC-dependent augmentations of SR Ca2+ release and Ca2+ loading during action potentials.
Collapse
Affiliation(s)
- J Wang
- Pathophysiology Laboratory, College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, South Korea (J.W., T.N.T., A.T.V.V., S.H.W.); NEXEL Co., Ltd. 8F, 55 Magokdong-ro, Gangseo-gu, Seoul, South Korea (J.C.K.); Institute of Natural Products Chemistry, VAST, Hanoi, Vietnam (A.T.N.H., C.M.N.); and Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Jongro-gu, Seoul, South Korea (C.J.O., Y.H.Z.)
| | - T N Trinh
- Pathophysiology Laboratory, College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, South Korea (J.W., T.N.T., A.T.V.V., S.H.W.); NEXEL Co., Ltd. 8F, 55 Magokdong-ro, Gangseo-gu, Seoul, South Korea (J.C.K.); Institute of Natural Products Chemistry, VAST, Hanoi, Vietnam (A.T.N.H., C.M.N.); and Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Jongro-gu, Seoul, South Korea (C.J.O., Y.H.Z.)
| | - A T V Vu
- Pathophysiology Laboratory, College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, South Korea (J.W., T.N.T., A.T.V.V., S.H.W.); NEXEL Co., Ltd. 8F, 55 Magokdong-ro, Gangseo-gu, Seoul, South Korea (J.C.K.); Institute of Natural Products Chemistry, VAST, Hanoi, Vietnam (A.T.N.H., C.M.N.); and Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Jongro-gu, Seoul, South Korea (C.J.O., Y.H.Z.)
| | - J C Kim
- Pathophysiology Laboratory, College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, South Korea (J.W., T.N.T., A.T.V.V., S.H.W.); NEXEL Co., Ltd. 8F, 55 Magokdong-ro, Gangseo-gu, Seoul, South Korea (J.C.K.); Institute of Natural Products Chemistry, VAST, Hanoi, Vietnam (A.T.N.H., C.M.N.); and Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Jongro-gu, Seoul, South Korea (C.J.O., Y.H.Z.)
| | - A T N Hoang
- Pathophysiology Laboratory, College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, South Korea (J.W., T.N.T., A.T.V.V., S.H.W.); NEXEL Co., Ltd. 8F, 55 Magokdong-ro, Gangseo-gu, Seoul, South Korea (J.C.K.); Institute of Natural Products Chemistry, VAST, Hanoi, Vietnam (A.T.N.H., C.M.N.); and Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Jongro-gu, Seoul, South Korea (C.J.O., Y.H.Z.)
| | - C J Ohk
- Pathophysiology Laboratory, College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, South Korea (J.W., T.N.T., A.T.V.V., S.H.W.); NEXEL Co., Ltd. 8F, 55 Magokdong-ro, Gangseo-gu, Seoul, South Korea (J.C.K.); Institute of Natural Products Chemistry, VAST, Hanoi, Vietnam (A.T.N.H., C.M.N.); and Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Jongro-gu, Seoul, South Korea (C.J.O., Y.H.Z.)
| | - Y H Zhang
- Pathophysiology Laboratory, College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, South Korea (J.W., T.N.T., A.T.V.V., S.H.W.); NEXEL Co., Ltd. 8F, 55 Magokdong-ro, Gangseo-gu, Seoul, South Korea (J.C.K.); Institute of Natural Products Chemistry, VAST, Hanoi, Vietnam (A.T.N.H., C.M.N.); and Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Jongro-gu, Seoul, South Korea (C.J.O., Y.H.Z.)
| | - C M Nguyen
- Pathophysiology Laboratory, College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, South Korea (J.W., T.N.T., A.T.V.V., S.H.W.); NEXEL Co., Ltd. 8F, 55 Magokdong-ro, Gangseo-gu, Seoul, South Korea (J.C.K.); Institute of Natural Products Chemistry, VAST, Hanoi, Vietnam (A.T.N.H., C.M.N.); and Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Jongro-gu, Seoul, South Korea (C.J.O., Y.H.Z.)
| | - S H Woo
- Pathophysiology Laboratory, College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, South Korea (J.W., T.N.T., A.T.V.V., S.H.W.); NEXEL Co., Ltd. 8F, 55 Magokdong-ro, Gangseo-gu, Seoul, South Korea (J.C.K.); Institute of Natural Products Chemistry, VAST, Hanoi, Vietnam (A.T.N.H., C.M.N.); and Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Jongro-gu, Seoul, South Korea (C.J.O., Y.H.Z.)
| |
Collapse
|
5
|
Liu H, Guo X, Yi T, Zhu Y, Ren X, Guo R, Dai Y, Liang S. Frog Skin Derived Peptides With Potential Protective Effects on Ultraviolet B-Induced Cutaneous Photodamage. Front Immunol 2021; 12:613365. [PMID: 34149681 PMCID: PMC8206783 DOI: 10.3389/fimmu.2021.613365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Hyla annectans is a tree frog living in the southwestern plateau area of China where there is strong ultraviolet radiation and long duration of sunshine. So their naked skin may possess chemical defense components that protect it from acute photo-damage. However, no such peptide or components has been identified till to date. In the current work, two novel peptides (FW-1, FWPLI-NH2 and FW-2, FWPMI-NH2) were identified from the skin of the tree frog. Five copies of FW-1 and four copies of FW-2 are encoded by an identical gene and released from the same protein precursor, which possess 167 amino acid residues. FW-1 and -2 can exert significant anti-inflammatory functions by directly inhibiting Ultraviolet B irradiation (UVB)-induced secretion of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). They may achieve this function by modulating the UV-induced stress signaling pathways such as Mitogen-activated protein kinases (MAPK) and Nuclear Factor Kappa B (NF-κB). Besides, FW-1 and -2 showed potential antioxidant effects on epidermis by attenuating the UVB-induced reactive oxygen species (ROS) production through an unknown mechanism. Considering small peptides' easy production, storage, and potential photo-protective activity, FW-1/2 might be exciting leading compounds or templates for the development of novel pharmacological agents for the suppression of UVB-induced skin inflammation. Moreover, this study might expand our knowledge on skin defensive mechanism of tree frog upon UVB irradiation.
Collapse
Affiliation(s)
- Han Liu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaopu Guo
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tangwei Yi
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yihan Zhu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinyi Ren
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Renxian Guo
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yi Dai
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shaohui Liang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Lin Z, Jiang Y, Yang P, Sun L, Lu D. A frog antioxidant peptide protects against myocardial ischemia reperfusion injury in rats. ALL LIFE 2019. [DOI: 10.1080/21553769.2019.1699171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Zhi Lin
- Department of Cardiology, the 2nd Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Yongliang Jiang
- Department of Cardiology, the 2nd Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Ping Yang
- Technology Transfer Center, Kunming Medical University, Kunming, People’s Republic of China
| | - Lin Sun
- Department of Cardiology, the 2nd Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Di Lu
- Technology Transfer Center, Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
7
|
Wang X, Anadón A, Wu Q, Qiao F, Ares I, Martínez-Larrañaga MR, Yuan Z, Martínez MA. Mechanism of Neonicotinoid Toxicity: Impact on Oxidative Stress and Metabolism. Annu Rev Pharmacol Toxicol 2017; 58:471-507. [PMID: 28968193 DOI: 10.1146/annurev-pharmtox-010617-052429] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thousands of tons of neonicotinoids are widely used around the world as broad-spectrum systemic insecticides and veterinary drugs. Researchers originally thought that neonicotinoids exhibited low mammalian toxicity. However, following their widespread use, it became increasingly evident that neonicotinoids could have various toxic effects on vertebrates and invertebrates. The primary focus of this review is to summarize the research progress associated with oxidative stress as a plausible mechanism for neonicotinoid-induced toxicity as well as neonicotinoid metabolism. This review summarizes the research conducted over the past decade into the production of reactive oxygen species, reactive nitrogen species, and oxidative stress as aresult of neonicotinoid treatments, along with their correlation with the toxicity and metabolism of neonicotinoids. The metabolism of neonicotinoids and protection of various compounds against neonicotinoid-induced toxicity based on their antioxidative effects is also discussed. This review sheds new light on the critical roles of oxidative stress in neonicotinoid-induced toxicity to nontarget species.
Collapse
Affiliation(s)
- Xu Wang
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; .,National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China;
| | - Arturo Anadón
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China.,Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Králové, Hradec Králové 50003, Czech Republic
| | - Fang Qiao
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Irma Ares
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - María-Rosa Martínez-Larrañaga
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; .,MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei 430070, China
| | - María-Aránzazu Martínez
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| |
Collapse
|
8
|
See Hoe LE, May LT, Headrick JP, Peart JN. Sarcolemmal dependence of cardiac protection and stress-resistance: roles in aged or diseased hearts. Br J Pharmacol 2016; 173:2966-91. [PMID: 27439627 DOI: 10.1111/bph.13552] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/25/2022] Open
Abstract
Disruption of the sarcolemmal membrane is a defining feature of oncotic death in cardiac ischaemia-reperfusion (I-R), and its molecular makeup not only fundamentally governs this process but also affects multiple determinants of both myocardial I-R injury and responsiveness to cardioprotective stimuli. Beyond the influences of membrane lipids on the cytoprotective (and death) receptors intimately embedded within this bilayer, myocardial ionic homeostasis, substrate metabolism, intercellular communication and electrical conduction are all sensitive to sarcolemmal makeup, and critical to outcomes from I-R. As will be outlined in this review, these crucial sarcolemmal dependencies may underlie not only the negative effects of age and common co-morbidities on myocardial ischaemic tolerance but also the on-going challenge of implementing efficacious cardioprotection in patients suffering accidental or surgically induced I-R. We review evidence for the involvement of sarcolemmal makeup changes in the impairment of stress-resistance and cardioprotection observed with ageing and highly prevalent co-morbid conditions including diabetes and hypercholesterolaemia. A greater understanding of membrane changes with age/disease, and the inter-dependences of ischaemic tolerance and cardioprotection on sarcolemmal makeup, can facilitate the development of strategies to preserve membrane integrity and cell viability, and advance the challenging goal of implementing efficacious 'cardioprotection' in clinically relevant patient cohorts. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- Louise E See Hoe
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Chermside, Queensland, Australia
| | - Lauren T May
- Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, VIC, Australia
| | - John P Headrick
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
| |
Collapse
|
9
|
Haque MZ, McIntosh VJ, Abou Samra AB, Mohammad RM, Lasley RD. Cholesterol Depletion Alters Cardiomyocyte Subcellular Signaling and Increases Contractility. PLoS One 2016; 11:e0154151. [PMID: 27441649 PMCID: PMC4956108 DOI: 10.1371/journal.pone.0154151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 04/09/2016] [Indexed: 01/14/2023] Open
Abstract
Membrane cholesterol levels play an important factor in regulating cell function. Sarcolemmal cholesterol is concentrated in lipid rafts and caveolae, which are flask-shaped invaginations of the plasma membrane. The scaffolding protein caveolin permits the enrichment of cholesterol in caveolae, and caveolin interactions with numerous proteins regulate their function. The purpose of this study was to determine whether acute reductions in cardiomyocyte cholesterol levels alter subcellular protein kinase activation, intracellular Ca2+ and contractility. Methods: Ventricular myocytes, isolated from adult Sprague Dawley rats, were treated with the cholesterol reducing agent methyl-β-cyclodextrin (MβCD, 5 mM, 1 hr, room temperature). Total cellular cholesterol levels, caveolin-3 localization, subcellular, ERK and p38 mitogen activated protein kinase (MAPK) signaling, contractility, and [Ca2+]i were assessed. Results: Treatment with MβCD reduced cholesterol levels by ~45 and shifted caveolin-3 from cytoskeleton and triton-insoluble fractions to the triton-soluble fraction, and increased ERK isoform phosphorylation in cytoskeletal, cytosolic, triton-soluble and triton-insoluble membrane fractions without altering their subcellular distributions. In contrast the primary effect of MβCD was on p38 subcellular distribution of p38α with little effect on p38 phosphorylation. Cholesterol depletion increased cardiomyocyte twitch amplitude and the rates of shortening and relaxation in conjunction with increased diastolic and systolic [Ca2+]i. Conclusions: These results indicate that acute reductions in membrane cholesterol levels differentially modulate basal cardiomyocyte subcellular MAPK signaling, as well as increasing [Ca2+]i and contractility.
Collapse
Affiliation(s)
- Mohammed Z. Haque
- Interim Translational Research Institute, Department of Internal Medicine, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, MI 48202, United States of America
- * E-mail:
| | - Victoria J. McIntosh
- Department of Physiology, Wayne State University School of Medicine, 1104 Elliman Bldg., 421 East Canfield, Detroit, MI 48201, United States of America
| | - Abdul B. Abou Samra
- Interim Translational Research Institute, Department of Internal Medicine, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ramzi M. Mohammad
- Interim Translational Research Institute, Department of Internal Medicine, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Robert D. Lasley
- Department of Physiology, Wayne State University School of Medicine, 1104 Elliman Bldg., 421 East Canfield, Detroit, MI 48201, United States of America
| |
Collapse
|
10
|
Datta NS, Chukkapalli S, Vengalil N, Zhan E, Przyklenk K, Lasley R. Parathyroid hormone-related peptide protects cardiomyocytes from oxidative stress-induced cell death: First evidence of a novel endocrine-cardiovascular interaction. Biochem Biophys Res Commun 2015; 468:202-7. [PMID: 26518653 DOI: 10.1016/j.bbrc.2015.10.130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 10/24/2015] [Indexed: 11/27/2022]
Abstract
Although there is a growing interest in the molecular cross-talk between the endocrine and cardiovascular systems, the cardiac effects of calcium-regulating hormones (i.e., parathyroid hormone-related peptide (PTHrP)) have not been explored. In this study, we examined the effect of PTHrP on the viability of isolated adult mouse cardiomyocytes subjected to oxidative stress. Myocytes from 19 to 22 week old male 129J/C57BL6 mice were exposed to oxidative insult in the form of H2O2 which led to more than 70% loss of cell viability. Herein we demonstrate, for the first time, that pretreatment with 100 nM PTHrP prior to 100 μM H2O2 incubation prevents H2O2 -induced cell death by more than 50%. Immunoblot analysis revealed H2O2 induction of MKP-1 protein expression while PTHrP decreased MKP-1 expression. Moreover, myocytes derived from MKP1 KO mice were resistant to oxidative injury. No added benefit of PTHrP treatment was noted in MKP-1 null cardiomyocytes. Using specific pharmacological inhibitors we demonstrated that P-p38, P-ERK and P-AKT mediated PTHrP's cardioprotective action. These data provide novel evidence that: i) down-regulation of MKP1 affords profound protection against oxidative stress; and ii) PTHrP is cardioprotective, possibly via down-regulation of MKP-1 and activation of MAPK and PI3K/AKT signaling.
Collapse
Affiliation(s)
- Nabanita S Datta
- Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Sahiti Chukkapalli
- Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Nathan Vengalil
- Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Enbo Zhan
- Department of Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Karin Przyklenk
- Department of Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Robert Lasley
- Department of Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
11
|
Abstract
A recent paper in the Canadian Journal of Physiology and Pharmacology has shown that quercetin has a vascular protective effect associated with eNOS up-regulation, blood GSH redox ratio, and reduction of oxidative stress. Recent reports have recommended the consumption of quercetin, as it may contribute to a reduction in the risk of cardiovascular disease. However, the mechanisms by which quercetin exerts its action have not been fully elucidated. The majority of these mechanisms have been identified with models using animals treated with quercetin, and relatively few have been corroborated in human studies, which indicates the need for further investigation.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Medicine, Laboratorio Universitario di Ricerca, Medica (LURM)-Policlinico G.B. Rossi, University of Verona, Piazzale, Verona, Italy.
| |
Collapse
|
12
|
Robin E, Sabourin J, Benoit R, Pedretti S, Raddatz E. Adenosine A1 receptor activation is arrhythmogenic in the developing heart through NADPH oxidase/ERK- and PLC/PKC-dependent mechanisms. J Mol Cell Cardiol 2011; 51:945-54. [PMID: 21907719 DOI: 10.1016/j.yjmcc.2011.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/06/2011] [Accepted: 08/24/2011] [Indexed: 11/25/2022]
Abstract
Whether adenosine, a crucial regulator of the developing cardiovascular system, can provoke arrhythmias in the embryonic/fetal heart remains controversial. Here, we aimed to establish a mechanistic basis of how an adenosinergic stimulation alters function of the developing heart. Spontaneously beating hearts or dissected atria and ventricle obtained from 4-day-old chick embryos were exposed to adenosine or specific agonists of the receptors A(1)AR (CCPA), A(2A)AR (CGS-21680) and A(3)AR (IB-MECA). Expression of the receptors was determined by quantitative PCR. The functional consequences of blockade of NADPH oxidase, extracellular signal-regulated kinase (ERK), phospholipase C (PLC), protein kinase C (PKC) and L-type calcium channel (LCC) in combination with adenosine or CCPA, were investigated in vitro by electrocardiography. Furthermore, the time-course of ERK phosphorylation was determined by western blotting. Expression of A(1)AR, A(2A)AR and A(2B)AR was higher in atria than in ventricle while A(3)AR was equally expressed. Adenosine (100μM) triggered transient atrial ectopy and second degree atrio-ventricular blocks (AVB) whereas CCPA induced mainly Mobitz type I AVB. Atrial rhythm and atrio-ventricular propagation fully recovered after 60min. These arrhythmias were prevented by the specific A(1)AR antagonist DPCPX. Adenosine and CCPA transiently increased ERK phosphorylation and induced arrhythmias in isolated atria but not in ventricle. By contrast, A(2A)AR and A(3)AR agonists had no effect. Interestingly, the proarrhythmic effect of A(1)AR stimulation was markedly reduced by inhibition of NADPH oxidase, ERK, PLC, PKC or LCC. Moreover, NADPH oxidase inhibition or antioxidant MPG prevented both A(1)AR-mediated arrhythmias and ERK phosphorylation. These results suggest that pacemaking and conduction disturbances are induced via A(1)AR through concomitant stimulation of NADPH oxidase and PLC, followed by downstream activation of ERK and PKC with LCC as possible target.
Collapse
Affiliation(s)
- Elodie Robin
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, CH-1005, Switzerland.
| | | | | | | | | |
Collapse
|
13
|
Puthanveetil P, Wang Y, Zhang D, Wang F, Kim MS, Innis S, Pulinilkunnil T, Abrahani A, Rodrigues B. Cardiac triglyceride accumulation following acute lipid excess occurs through activation of a FoxO1-iNOS-CD36 pathway. Free Radic Biol Med 2011; 51:352-63. [PMID: 21545834 DOI: 10.1016/j.freeradbiomed.2011.04.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/29/2011] [Accepted: 04/06/2011] [Indexed: 01/30/2023]
Abstract
Obesity due to nutrient excess leads to chronic pathologies including type 2 diabetes and cardiovascular disease. Related to nutrient excess, FoxO1 has a role in regulating fatty acid uptake and oxidation and triglyceride (TG) storage by mechanisms that are largely unresolved. We examined the mechanism behind palmitate (PA)-induced TG accumulation in cardiomyocytes. To mimic lipid excess, rat ventricular myocytes were incubated with albumin-bound PA (1 mM) or rats were administered Intralipid (20%). PA-treated cardiomyocytes showed a substantial increase in TG accumulation, accompanied by amplification of nuclear migration of phospho-p38 and FoxO1, iNOS induction, and translocation of CD36 to the plasma membrane. PA also increased Cdc42 protein and its tyrosine nitration, thereby rearranging the cytoskeleton and facilitating CD36 translocation. These effects were duplicated by TNF-α and reversed by the iNOS inhibitor 1400 W. PA increased the nuclear interaction between FoxO1 and NF-κB, reduced the nuclear presence of PGC-1α, and downregulated expression of oxidative phosphorylation proteins. In vivo a robust increase in cardiac TGs after Intralipid administration was also associated with augmentation of nuclear FoxO1 and iNOS expression. Impeding this FoxO1-iNOS-CD36 pathway could decrease cardiac lipid accumulation and oxidative/nitrosative stress and help ameliorate the cardiovascular complications associated with obesity and diabetes.
Collapse
Affiliation(s)
- Prasanth Puthanveetil
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Autocrine signaling via A(1) adenosine receptors causes downregulation of M(2) receptors in adult rat atrial myocytes in vitro. Pflugers Arch 2011; 461:165-76. [PMID: 21061016 DOI: 10.1007/s00424-010-0897-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/13/2010] [Accepted: 10/20/2010] [Indexed: 10/18/2022]
Abstract
G protein-activated K(+) channels composed of Kir3 (GIRK) subunits contribute to regulation of heart rate and excitability. Opening of these channels in myocytes is increased by binding of G(βγ) upon activation of muscarinic M(2) receptors (M(2)-R) or A(1) adenosine receptors (A(1)-R). It has been shown that saturating activation of A(1)-R resulted in a smaller GIRK current than activation of M(2)-R. Adenovirus-driven overexpression of the A(1)-R caused an increase in current induced by adenosine (I(K(Ado))), whereas the M(2)-R-activated current (I(K(ACh))) was reduced. Here, we sought to get deeper insight into the mechanism causing this negative crosstalk. GIRK current in cultured rat atrial myocytes was recorded in whole cell mode. Adenovirus-driven RNA interference targeting the M(2)-R resulted in a reduction in I(K(ACh)) without affecting I(K(Ado)), arguing against a competition of the two receptors for common signaling complexes. The negative effect of A(1)-R overexpression on I(K(ACh)) was reduced by the A(1)-R antagonist DPCPX and augmented by the agonist chloro-N6-cyclopentyladenosin (CCPA). In native myocytes incubation with either CCPA or the muscarinic agonist carbachol resulted in reduction in I(K(ACh)) and I(K(Ado)), suggesting common pathways of A(1)-R and M(2)-R downregulation. In the absence of agonist, inhibition of adenosine deaminase by EHNA or exposure to AMP, less to ADP, but not ATP resulted in reduction of I(K(ACh)) and I(K(Ado)). Our data indicate that atrial myocytes generate adenosine from extracellular AMP, which activates A(1)-R in an autocrine fashion. Chronic activation of A(1)-R causes parallel downregulation of both A(1)-R and M(2)-R.
Collapse
|
15
|
Kienitz MC, Littwitz C, Bender K, Pott L. Remodeling of inward rectifying K+ currents in rat atrial myocytes by overexpression of A1-adenosine receptors. Basic Res Cardiol 2011; 106:953-66. [DOI: 10.1007/s00395-011-0193-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/23/2011] [Accepted: 05/06/2011] [Indexed: 10/18/2022]
|
16
|
Buschiazzo J, Alonso TS, Biscoglio M, Antollini SS, Bonini IC. Nongenomic steroid- and ceramide-induced maturation in amphibian oocytes involves functional caveolae-like microdomains associated with a cytoskeletal environment. Biol Reprod 2011; 85:808-22. [PMID: 21653896 DOI: 10.1095/biolreprod.110.090365] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Stimulation of full-grown amphibian oocytes with progesterone initiates a nontranscriptional signaling pathway that converges in the activation of Cdc2/cyclin B and reentry into meiosis. We observed that cholesterol depletion mediated by methyl-beta-cyclodextrin (MbetaCD) inhibited meiotic maturation, suggesting involvement of membrane rafts. In the present study, we further characterized caveolae-like membranes from Rhinella arenarum oocytes biochemically and functionally. The identification by mass spectrometry of a nonmuscle myosin heavy-chain associated with caveolar membranes showed evidence of direct involvement of the underlying cytoskeletal environment in the structure of oocyte rafts. Biophysical analysis using the fluorescent probe Laurdan revealed that MbetaCD-mediated cholesterol depletion affected membrane lipid order. In line with this finding, cholesterol removal also affected the localization of the raft marker lipid GM1. Results demonstrated that ceramide is an effective inducer of maturation that alters the distribution of the raft markers caveolin-1, SRC, and GM1, while progesterone seems not to affect membrane microdomain integrity. Cholesterol depletion had a greater effect on ceramide-induced maturation, thus suggesting that ceramide is an inducer more vulnerable to changes in the plasma membrane. MbetaCD treatment delayed tyrosine phosphorylation and MAPK activation in progesterone-induced maturation. Functional studies regarding tyrosine phosphorylation raise the possibility that the hormone receptor is located in the nonraft membrane in the absence of ligand and that it translocates to the caveola when it binds to progesterone. The presence of raft markers and the finding of signaling molecules from MAPK cascade functionally associated to oocyte light membranes suggest that this caveolae-rich fraction efficiently recreates, in part, maturation signaling.
Collapse
Affiliation(s)
- Jorgelina Buschiazzo
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | | | | | | | | |
Collapse
|
17
|
Verzijl D, IJzerman AP. Functional selectivity of adenosine receptor ligands. Purinergic Signal 2011; 7:171-92. [PMID: 21544511 PMCID: PMC3146648 DOI: 10.1007/s11302-011-9232-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 04/05/2011] [Indexed: 12/11/2022] Open
Abstract
Adenosine receptors are plasma membrane proteins that transduce an extracellular signal into the interior of the cell. Basically every mammalian cell expresses at least one of the four adenosine receptor subtypes. Recent insight in signal transduction cascades teaches us that the current classification of receptor ligands into agonists, antagonists, and inverse agonists relies very much on the experimental setup that was used. Upon activation of the receptors by the ubiquitous endogenous ligand adenosine they engage classical G protein-mediated pathways, resulting in production of second messengers and activation of kinases. Besides this well-described G protein-mediated signaling pathway, adenosine receptors activate scaffold proteins such as β-arrestins. Using innovative and sensitive experimental tools, it has been possible to detect ligands that preferentially stimulate the β-arrestin pathway over the G protein-mediated signal transduction route, or vice versa. This phenomenon is referred to as functional selectivity or biased signaling and implies that an antagonist for one pathway may be a full agonist for the other signaling route. Functional selectivity makes it necessary to redefine the functional properties of currently used adenosine receptor ligands and opens possibilities for new and more selective ligands. This review focuses on the current knowledge of functionally selective adenosine receptor ligands and on G protein-independent signaling of adenosine receptors through scaffold proteins.
Collapse
Affiliation(s)
- Dennis Verzijl
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Ad P. IJzerman
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
18
|
Ko ML, Shi L, Grushin K, Nigussie F, Ko GYP. Circadian profiles in the embryonic chick heart: L-type voltage-gated calcium channels and signaling pathways. Chronobiol Int 2011; 27:1673-96. [PMID: 20969517 DOI: 10.3109/07420528.2010.514631] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Circadian clocks exist in the heart tissue and modulate multiple physiological events, from cardiac metabolism to contractile function and expression of circadian oscillator and metabolic-related genes. Ample evidence has demonstrated that there are endogenous circadian oscillators in adult mammalian cardiomyocytes. However, mammalian embryos cannot be entrained independently to light-dark (LD) cycles in vivo without any maternal influence, but circadian genes are well expressed and able to oscillate in embryonic stages. The authors took advantage of using chick embryos that are independent of maternal influences to investigate whether embryonic hearts could be entrained under LD cycles in ovo. The authors found circadian regulation of L-type voltage-gated calcium channels (L-VGCCs), the ion channels responsible for the production of cardiac muscle contraction in embryonic chick hearts. The mRNA levels and protein expression of VGCCα1C and VGCCα1D are under circadian control, and the average L-VGCC current density is significantly larger when cardiomyocytes are recorded during the night than day. The phosphorylation states of several kinases involved in insulin signaling and cardiac metabolism, including extracellular signal-regulated kinase (Erk), stress-activated protein kinase (p38), protein kinase B (Akt), and glycogen synthase kinase-3β (GSK-3β), are also under circadian control. Both Erk and p38 have been implicated in regulating cardiac contractility and in the development of various pathological states, such as cardiac hypertrophy and heart failure. Even though both Erk and phosphoinositide 3-kinase (PI3K)-Akt signaling pathways participate in complex cellular processes regarding physiological or pathological states of cardiomyocytes, the circadian oscillators in the heart regulate these pathways independently, and both pathways contribute to the circadian regulation of L-VGCCs.
Collapse
Affiliation(s)
- Michael L Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
19
|
McIntosh VJ, Lasley RD. Adenosine receptor-mediated cardioprotection: are all 4 subtypes required or redundant? J Cardiovasc Pharmacol Ther 2011; 17:21-33. [PMID: 21335481 DOI: 10.1177/1074248410396877] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Adenosine is a purine nucleoside, which is produced primarily through the metabolism of adenosine triphosphate (ATP), therefore its levels increase during stressful situations when ATP utilization increases. Adenosine exerts potent cardioprotective effects on the ischemic/reperfused heart, reducing reversible and irreversible myocardial injury. Adenosine receptors (ARs) are G-protein-coupled receptors, and 4 subtypes exist--A(1), A(2A), A(2B), and A(3), all of which have been shown to be cardioprotective. Adenosine receptors are expressed on multiple cardiac cells, including fibroblasts, endothelial cells, smooth muscle cells, and myocytes. Activation of both A(1) and A(3) receptors prior to ischemia has been shown in multiple experimental models to reduce ischemia/reperfusion-induced cardiac injury. Additionally, activation of the A(2A) receptor at the onset of reperfusion has been shown to reduce injury. Most recently, there is evidence that the A(2B) receptor has cardioprotective effects upon its activation. However, controversy remains regarding the precise timing of activation of these receptors required to induce cardioprotection, as well as their involvement in ischemic preconditioning and postconditioning. Adenosine receptors have been suggested to reduce cell death through actions at the mitochondrial ATP-dependent potassium (K(ATP)) channel, as well as protein kinase C and mitogen-activated protein kinase (MAPK) signaling. Additionally, the ability of ARs to interact has been documented, and several recent reports suggest that these interactions play a role in AR-mediated cardioprotection. This review summarizes the current knowledge of the cardioprotective effects of each AR subtype, as well as the proposed mechanisms of AR cardioprotection. Additionally, the role of AR interactions in cardioprotection is discussed.
Collapse
Affiliation(s)
- Victoria J McIntosh
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | | |
Collapse
|
20
|
Lasley RD. Adenosine receptors and membrane microdomains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1284-9. [PMID: 20888790 DOI: 10.1016/j.bbamem.2010.09.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/20/2010] [Accepted: 09/25/2010] [Indexed: 11/16/2022]
Abstract
Adenosine receptors are a member of the large family of seven transmembrane spanning G protein coupled receptors. The four adenosine receptor subtypes-A(1), A(2a), A(2b), A(3)-exert their effects via the activation of one or more heterotrimeric G proteins resulting in the modulation of intracellular signaling. Numerous studies over the past decade have documented the complexity of G protein coupled receptor signaling at the level of protein-protein interactions as well as through signaling cross talk. With respect to adenosine receptors, the activation of one receptor subtype can have profound direct effects in one cell type but little or no effect in other cells. There is significant evidence that the compartmentation of subcellular signaling plays a physiological role in the fidelity of G protein coupled receptor signaling. This compartmentation is evident at the level of the plasma membrane in the form of membrane microdomains such as caveolae and lipid rafts. This review will summarize and critically assess our current understanding of the role of membrane microdomains in regulating adenosine receptor signaling.
Collapse
Affiliation(s)
- Robert D Lasley
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
21
|
Wu J, Wang Y, Liu H, Yang H, Ma D, Li J, Li D, Lai R, Yu H. Two immunoregulatory peptides with antioxidant activity from tick salivary glands. J Biol Chem 2010; 285:16606-13. [PMID: 20178988 DOI: 10.1074/jbc.m109.094615] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ticks are blood-feeding arthropods that may secrete immunosuppressant molecules, which inhibit host inflammatory and immune responses and provide survival advantages to pathogens at tick bleeding sites in hosts. In the current work, two families of immunoregulatory peptides, hyalomin-A and -B, were first identified from salivary glands of hard tick Hyalomma asiaticum asiaticum. Three copies of hyalomin-A are encoded by an identical gene and released from the same protein precursor. Both hyalomin-A and -B can exert significant anti-inflammatory functions, either by directly inhibiting host secretion of inflammatory factors such as tumor necrosis factor-alpha, monocyte chemotectic protein-1, and interferon-gamma or by indirectly increasing the secretion of immunosuppressant cytokine of interleukin-10. Hyalomin-A and -B were both found to potently scavenge free radical in vitro in a rapid manner and inhibited adjuvant-induced inflammation in mouse models in vivo. The JNK/SAPK subgroup of the MAPK signaling pathway was involved in such immunoregulatory functions of hyalomin-A and -B. These results showed that immunoregulatory peptides of tick salivary glands suppress host inflammatory response by modulating cytokine secretion and detoxifying reactive oxygen species.
Collapse
Affiliation(s)
- Jing Wu
- Biotoxin Units of Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yang Z, Sun W, Hu K. Adenosine A1 receptors selectively target protein kinase C isoforms to the caveolin-rich plasma membrane in cardiac myocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1868-75. [DOI: 10.1016/j.bbamcr.2009.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 10/14/2009] [Accepted: 10/21/2009] [Indexed: 11/28/2022]
|
23
|
Chen F, Kan H, Hobbs G, Finkel MS. p38 MAP kinase inhibitor reverses stress-induced myocardial dysfunction in vivo. J Appl Physiol (1985) 2009; 106:1132-41. [PMID: 19213930 DOI: 10.1152/japplphysiol.90542.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent clinical reports strongly support the intriguing possibility that emotional stress alone is sufficient to cause reversible myocardial dysfunction in patients. We previously reported that a combination of prenatal stress followed by restraint stress (PS+R) results in echocardiographic evidence of myocardial dysfunction in anesthetized rats compared with control rats subjected to the same restraint stress (Control+R). We now report results of our catheter-based hemodynamic studies in both anesthetized and freely ambulatory awake rats, comparing PS+R vs. Control+R. Systolic function [positive rate of change in left ventricular pressure over time (+dP/dt)] was significantly depressed (P < 0.01) in PS+R vs. Control+R both under anesthesia (6,287 +/- 252 vs. 7,837 +/- 453 mmHg/s) and awake (10,438 +/- 741 vs. 12,111 +/- 652 mmHg/s). Diastolic function (-dP/dt) was also significantly depressed (P < 0.05) in PS+R vs. Control+R both under anesthesia (-5,686 +/- 340 vs. -7,058 +/- 458 mmHg/s) and awake (-8,287 +/- 444 vs. 10,440 +/- 364 mmHg/s). PS+R also demonstrated a significantly attenuated (P < 0.05) hemodynamic response to increasing doses of the beta-adrenergic agonist isoproterenol. Intraperitoneal injection of the p38 MAP kinase inhibitor SB-203580 reversed the baseline reduction in +dP/dt and -dP/dt as well as the blunted isoproterenol response. Intraperitoneal injection of SB-203580 also reversed p38 MAP kinase and troponin I phosphorylation in cardiac myocytes isolated from PS+R. Thus the combination of prenatal stress followed by restraint stress results in reversible depression in both systolic and diastolic function as well as defective beta-adrenergic receptor signaling. Future studies in this animal model may provide insights into the basic mechanisms contributing to reversible myocardial dysfunction in patients with ischemic and nonischemic cardiomyopathies.
Collapse
Affiliation(s)
- Fangping Chen
- Department of Medicine, West Virginia University, Morgantown, WV 26506-9157, USA
| | | | | | | |
Collapse
|