1
|
Nascimento ÍF, Guimarães ATB, Ribeiro F, Rodrigues ASDL, Estrela FN, Luz TMD, Malafaia G. Polyethylene glycol acute and sub-lethal toxicity in neotropical Physalaemus cuvieri tadpoles (Anura, Leptodactylidae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117054. [PMID: 33848902 DOI: 10.1016/j.envpol.2021.117054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Although many polymers are known by their toxicity, we know nothing about the impact of polyethylene glycol (PEG) on anurofauna. Its presence in different products and disposal in aquatic environments turn assessments about its impact on amphibians an urgent matter. Accordingly, we tested the hypothesis that short-time exposure (72 h) of tadpoles belonging to the species Physalaemus cuvieri (Anura, Leptodactylidae) to PEG induces oxidative stress and neurotoxicity on them. We observed that polymer uptake in P. cuvieri occurred after exposure to 5 and 10 mg/L of PEG without inducing changes in their nitrite levels neither at the levels of substances reactive to thiobarbituric acid. However, hydrogen peroxide and reactive oxygen species production was higher in animals exposed to PEG, whose catalase and superoxide dismutase levels were not enough to counterbalance the production of these reactive species. Therefore, this finding suggests physiological changes altering REDOX homeostasis into oxidative stress. In addition, the increased activity of acetylcholinesterase and butyrylcholinesterase, and reduction in superficial neuromasts, confirmed PEG's neurotoxic potential. To the best of our knowledge, this is the first report on PEG's biological impact on a particular amphibian species. The study has broadened the understanding about ecotoxicological risks associated with water pollution by these polymers, as well as motivated further investigations on its impacts on amphibians' health and on the dynamics of their natural populations.
Collapse
Affiliation(s)
| | - Abraão Tiago Batista Guimarães
- Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Fabianne Ribeiro
- Department of Biology & CESAM - Center for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | | | - Fernanda Neves Estrela
- Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Thiarlen Marinho da Luz
- Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Graduate Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology and Natural Resources Conservation, Uberlândia, MG, Brazil.
| |
Collapse
|
2
|
Rybtsova N, Berezina T, Kagansky A, Rybtsov S. Can Blood-Circulating Factors Unveil and Delay Your Biological Aging? Biomedicines 2020; 8:E615. [PMID: 33333870 PMCID: PMC7765271 DOI: 10.3390/biomedicines8120615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
According to the World Health Organization, the population of over 60 will double in the next 30 years in the developed countries, which will enforce a further raise of the retirement age and increase the burden on the healthcare system. Therefore, there is an acute issue of maintaining health and prolonging active working longevity, as well as implementation of early monitoring and prevention of premature aging and age-related disorders to avoid early disability. Traditional indicators of biological age are not always informative and often require extensive and expensive analysis. The study of blood factors is a simple and easily accessible way to assess individual health and supplement the traditional indicators of a person's biological age with new objective criteria. With age, the processes of growth and development, tissue regeneration and repair decline; they are gradually replaced by enhanced catabolism, inflammatory cell activity, and insulin resistance. The number of senescent cells supporting the inflammatory loop rises; cellular clearance by autophagy and mitophagy slows down, resulting in mitochondrial and cellular damage and dysfunction. Monitoring of circulated blood factors not only reflects these processes, but also allows suggesting medical intervention to prevent or decelerate the development of age-related diseases. We review the age-related blood factors discussed in recent publications, as well as approaches to slowing aging for healthy and active longevity.
Collapse
Affiliation(s)
- Natalia Rybtsova
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK;
| | - Tatiana Berezina
- Department of Scientific Basis of Extreme Psychology, Moscow State University of Psychology and Education, 127051 Moscow, Russia;
| | - Alexander Kagansky
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Stanislav Rybtsov
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK;
| |
Collapse
|
3
|
Glycocalyx in Endotoxemia and Sepsis. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:791-798. [PMID: 32035882 DOI: 10.1016/j.ajpath.2019.06.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/30/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022]
Abstract
Along with the recognition of a crucial role played by endothelial dysfunction secondarily igniting cardiovascular, pulmonary, and renal complications, investigational focus has extended toward endothelial glycocalyx. This delicate coating of cells, including the vascular endothelium, regulates permeability, leukocyte traffic, nitric oxide production, and coagulation, and harbors diverse growth and survival factors. In this brief overview, we discuss the metabolic signatures of sepsis as they relate to the loss of glycocalyx integrity and highlight the contribution of several proteases, heparanase, and hyaluronidase to the shedding of glycocalyx. Clinical manifestations of glycocalyx degradation in unraveling acute respiratory distress syndrome and the cardiovascular, microcirculatory, and renal complications of sepsis are concisely presented. Finally, we list therapeutic strategies for preventing the degradation of, and for restoration of, the glycocalyx.
Collapse
|
4
|
Sedaghat Z, Kadkhodaee M, Seifi B, Salehi E. Inducible and endothelial nitric oxide synthase distribution and expression with hind limb per-conditioning of the rat kidney. Arch Med Sci 2019; 15:1081-1091. [PMID: 31360203 PMCID: PMC6657261 DOI: 10.5114/aoms.2019.85651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 03/05/2017] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION We recently reported that a series of brief hind limb ischemia and reperfusion (IR) at the beginning of renal ischemia (remote per-conditioning - RPEC) significantly attenuated the ischemia/reperfusion-induced acute kidney injury. In the present study, we investigated whether the nitric oxide synthase (NOS) pathway is involved in the RPEC protection of the rat ischemic kidneys. MATERIAL AND METHODS Male rats were subjected to right nephrectomy and randomized as: (1) sham, no additional intervention; (2) IR, 45 min of renal ischemia followed by 24 h reperfusion; (3) RPEC, four 5 min cycles of lower limb IR administered at the beginning of renal ischemia; (4) RPEC+L-NAME (a non-specific NOS inhibitor, 10 mg/kg, i.p.) (5) RPEC + 1400W (a specific iNOS inhibitor, 1 mg/kg, i.p.). After 24 h, blood, urine and tissue samples were collected. RESULTS The protective effect of RPEC on renal function, oxidative stress indices, pro-inflammatory marker expression and histopathological changes of kidneys subjected to 45 min ischemia were completely inhibited by pretreatment with L-NAME or 1400W. It was accompanied by increased iNOS and eNOS expression in the RPEC group compared with the IR group. CONCLUSIONS These findings suggest that the protective effects of RPEC on renal IR injury are closely dependent on the nitric oxide production after the reperfusion and both eNOS and iNOS are involved in this protection.
Collapse
Affiliation(s)
- Zahra Sedaghat
- Department of Physiology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehri Kadkhodaee
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behjat Seifi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Eisa Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Natfji AA, Osborn HM, Greco F. Feasibility of polymer-drug conjugates for non-cancer applications. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Bejaoui M, Pantazi E, Calvo M, Folch-Puy E, Serafín A, Pasut G, Panisello A, Adam R, Roselló-Catafau J. Polyethylene Glycol Preconditioning: An Effective Strategy to Prevent Liver Ischemia Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9096549. [PMID: 26981166 PMCID: PMC4770158 DOI: 10.1155/2016/9096549] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023]
Abstract
Hepatic ischemia reperfusion injury (IRI) is an inevitable clinical problem for liver surgery. Polyethylene glycols (PEGs) are water soluble nontoxic polymers that have proven their effectiveness in various in vivo and in vitro models of tissue injury. The present study aims to investigate whether the intravenous administration of a high molecular weight PEG of 35 kDa (PEG 35) could be an effective strategy for rat liver preconditioning against IRI. PEG 35 was intravenously administered at 2 and 10 mg/kg to male Sprague Dawley rats. Then, rats were subjected to one hour of partial ischemia (70%) followed by two hours of reperfusion. The results demonstrated that PEG 35 injected intravenously at 10 mg/kg protected efficiently rat liver against the deleterious effects of IRI. This was evidenced by the significant decrease in transaminases levels and the better preservation of mitochondrial membrane polarization. Also, PEG 35 preserved hepatocyte morphology as reflected by an increased F-actin/G-actin ratio and confocal microscopy findings. In addition, PEG 35 protective mechanisms were correlated with the activation of the prosurvival kinase Akt and the cytoprotective factor AMPK and the inhibition of apoptosis. Thus, PEG may become a suitable agent to attempt pharmacological preconditioning against hepatic IRI.
Collapse
Affiliation(s)
- Mohamed Bejaoui
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Rossello 161, Barcelona, 08036 Catalonia, Spain
| | - Eirini Pantazi
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Rossello 161, Barcelona, 08036 Catalonia, Spain
| | - Maria Calvo
- Advanced Optical Microscopy Unit CCiTUB, Science and Technology Center, Faculty of Medicine, University of Barcelona, C/Casanova 143, Barcelona, 08036 Catalonia, Spain
| | - Emma Folch-Puy
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Rossello 161, Barcelona, 08036 Catalonia, Spain
| | - Anna Serafín
- Platform of Laboratory Animal Applied Research, Barcelona Science Park, Barcelona, 08028 Catalonia, Spain
| | - Gianfranco Pasut
- Pharmaceutical and Pharmacological Sciences Department, University of Padova, 35131 Padova, Italy
- Veneto Institute of Oncology (IOV), IRCCS, 35128 Padova, Italy
| | - Arnau Panisello
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Rossello 161, Barcelona, 08036 Catalonia, Spain
| | - René Adam
- Hepato-Biliary Centre, Paul Brousse Hospital, Inserm U776, Paris-Sud University, Villejuif, 75008 Paris, France
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Rossello 161, Barcelona, 08036 Catalonia, Spain
| |
Collapse
|
7
|
Bejaoui M, Pantazi E, Folch-Puy E, Panisello A, Calvo M, Pasut G, Rimola A, Navasa M, Adam R, Roselló-Catafau J. Protective Effect of Intravenous High Molecular Weight Polyethylene Glycol on Fatty Liver Preservation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:794287. [PMID: 26543868 PMCID: PMC4620277 DOI: 10.1155/2015/794287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/08/2015] [Accepted: 08/12/2015] [Indexed: 12/17/2022]
Abstract
Ischemia reperfusion injury (IRI) leads to significant tissue damage in liver surgery. Polyethylene glycols (PEGs) are water soluble nontoxic polymers that have proved their effectiveness against IRI. The objective of our study was to investigate the potential protective effects of intravenous administration of a high molecular weight PEG of 35 kDa (PEG 35) in steatotic livers subjected to cold ischemia reperfusion. In this study, we used isolated perfused rat liver model to assess the effects of PEG 35 intravenous administration after prolonged cold ischemia (24 h, 4°C) and after reperfusion (2 h, 37°C). Liver injury was measured by transaminases levels and mitochondrial damage was determined by confocal microscopy assessing mitochondrial polarization (after cold storage) and by measuring glutamate dehydrogenase activity (after reperfusion). Also, cell signaling pathways involved in the physiopathology of IRI were assessed by western blot technique. Our results show that intravenous administration of PEG 35 at 10 mg/kg ameliorated liver injury and protected the mitochondria. Moreover, PEG 35 administration induced a significant phosphorylation of prosurvival protein kinase B (Akt) and activation of cytoprotective factors e-NOS and AMPK. In conclusion, intravenous PEG 35 efficiently protects steatotic livers exposed to cold IRI.
Collapse
Affiliation(s)
- Mohamed Bejaoui
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB-CSIC), 08036 Barcelona, Catalonia, Spain
| | - Eirini Pantazi
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB-CSIC), 08036 Barcelona, Catalonia, Spain
| | - Emma Folch-Puy
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB-CSIC), 08036 Barcelona, Catalonia, Spain
| | - Arnau Panisello
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB-CSIC), 08036 Barcelona, Catalonia, Spain
| | - María Calvo
- Serveis Cientifico-Tècnics, Universitat de Barcelona, 08036 Barcelona, Catalonia, Spain
| | - Gianfranco Pasut
- Pharmaceutical and Pharmacological Sciences Department, University of Padova, 35122 Padova, Italy
| | - Antoni Rimola
- Liver Unit, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, 08036 Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| | - Miquel Navasa
- Liver Unit, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, 08036 Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| | - René Adam
- Centre Hepato-Biliaire, AP-P-HP Hôpital Paul Brousse, Inserm U776, Université Paris Sud, Villejuif, 75008 Paris, France
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB-CSIC), 08036 Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| |
Collapse
|
8
|
Bejaoui M, Pantazi E, Folch-Puy E, Baptista PM, García-Gil A, Adam R, Roselló-Catafau J. Emerging concepts in liver graft preservation. World J Gastroenterol 2015; 21:396-407. [PMID: 25593455 PMCID: PMC4292271 DOI: 10.3748/wjg.v21.i2.396] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/24/2014] [Accepted: 12/08/2014] [Indexed: 02/06/2023] Open
Abstract
The urgent need to expand the donor pool in order to attend to the growing demand for liver transplantation has obliged physicians to consider the use of suboptimal liver grafts and also to redefine the preservation strategies. This review examines the different methods of liver graft preservation, focusing on the latest advances in both static cold storage and machine perfusion (MP). The new strategies for static cold storage are mainly designed to increase the fatty liver graft preservation via the supplementation of commercial organ preservation solutions with additives. In this paper we stress the importance of carrying out effective graft washout after static cold preservation, and present a detailed discussion of the future perspectives for dynamic graft preservation using MP at different temperatures (hypothermia at 4 °C, normothermia at 37 °C and subnormothermia at 20 °C-25 °C). Finally, we highlight some emerging applications of regenerative medicine in liver graft preservation. In conclusion, this review discusses the "state of the art" and future perspectives in static and dynamic liver graft preservation in order to improve graft viability.
Collapse
|
9
|
Herda AA, Herda TJ, Costa PB, Ryan ED, Stout JR, Cramer JT. Muscle performance, size, and safety responses after eight weeks of resistance training and protein supplementation: a randomized, double-blinded, placebo-controlled clinical trial. J Strength Cond Res 2014; 27:3091-100. [PMID: 23442287 DOI: 10.1519/jsc.0b013e31828c289f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The purpose of this study was to examine the effects of 2 different types of protein supplementation on thigh muscle cross-sectional area (CSA), blood markers, muscular strength, endurance, and body composition after 8 weeks of low- or moderate-volume resistance training in healthy, recreationally trained, college-aged men. One hundred and six men were randomized into 5 groups: low-volume resistance training with bioenhanced whey protein (BWPLV; n = 22), moderate-volume resistance training with BWP (BWPMV; n = 20), moderate-volume resistance training with standard whey protein (SWPMV; n = 22), moderate-volume resistance training with a placebo (PLA; n = 21), or moderate-volume resistance training with no supplementation (CON; n = 21). Except for CON, all groups consumed 1 shake before and after each exercise session and one each on the nontraining day. The BWPLV, BWPMV, and SWPMV groups received approximately 20 g of whey protein per shake, whereas the BWP groups received 5 g of additional polyethylene glycosylated (PEG) leucine. Resistance training sessions were performed 3 times per week for 8 weeks. There were no interactions (p > 0.05) for muscle strength and endurance variables, body composition, muscle CSA, and safety blood markers, but the main effects for training were observed (p ≤ 0.05). However, the Albumin:Globulin ratio for SWPMV was lower (p = 0.037) than BWPLV and BWPMV. Relative protein intake (PROREL) indicated a significant interaction (p < 0.001) with no differences across groups at pre; however, BWPLV, BWPMV, and SWPMV had a greater intake than did PLA or CON at post (p < 0.001). This study indicated that 8 weeks of resistance training improved muscle performance and size similarly among groups regardless of supplementation.
Collapse
Affiliation(s)
- Ashley A Herda
- 1Department of Ophthalmology, KU Eye, University of Kansas Medical Center, Prairie Village, Kansas; 2Department of Health, Sport, and Exercise Sciences, Biomechanics Laboratory, University of Kansas, Lawrence, Kansas; 3Department of Kinesiology, Human Performance Laboratory, California State University-San Bernardino, San Bernardino, California; 4Department of Exercise and Sport Science, Neuromuscular Research Laboratory, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina; 5Department of Sport and Exercise Science, University of Central Florida, Orlando, Florida; and 6Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | | | | | | | | | | |
Collapse
|
10
|
Tsoulfas G, Agorastou P. Ischemia reperfusion injury and the immune system. J Surg Res 2014; 186:114-115. [PMID: 23809153 DOI: 10.1016/j.jss.2013.05.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 05/19/2013] [Accepted: 05/24/2013] [Indexed: 02/05/2023]
Affiliation(s)
- Georgios Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, Thessaloniki, Greece.
| | | |
Collapse
|
11
|
Abstract
Increased endothelial permeability and reduction of alveolar liquid clearance capacity are two leading pathogenic mechanisms of pulmonary edema, which is a major complication of acute lung injury, severe pneumonia, and acute respiratory distress syndrome, the pathologies characterized by unacceptably high rates of morbidity and mortality. Besides the success in protective ventilation strategies, no efficient pharmacological approaches exist to treat this devastating condition. Understanding of fundamental mechanisms involved in regulation of endothelial permeability is essential for development of barrier protective therapeutic strategies. Ongoing studies characterized specific barrier protective mechanisms and identified intracellular targets directly involved in regulation of endothelial permeability. Growing evidence suggests that, although each protective agonist triggers a unique pattern of signaling pathways, selected common mechanisms contributing to endothelial barrier protection may be shared by different barrier protective agents. Therefore, understanding of basic barrier protective mechanisms in pulmonary endothelium is essential for selection of optimal treatment of pulmonary edema of different etiology. This article focuses on mechanisms of lung vascular permeability, reviews major intracellular signaling cascades involved in endothelial monolayer barrier preservation and summarizes a current knowledge regarding recently identified compounds which either reduce pulmonary endothelial barrier disruption and hyperpermeability, or reverse preexisting lung vascular barrier compromise induced by pathologic insults.
Collapse
Affiliation(s)
- Konstantin G Birukov
- Lung Injury Center, Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, Illinois, USA.
| | | | | |
Collapse
|
12
|
|
13
|
Bessa KL, Belletati JF, Santos L, Rossoni LV, Ortiz JP. Drag reduction by polyethylene glycol in the tail arterial bed of normotensive and hypertensive rats. Braz J Med Biol Res 2011; 44:767-77. [PMID: 21670893 DOI: 10.1590/s0100-879x2011007500071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 05/26/2011] [Indexed: 11/21/2022] Open
Abstract
This study was designed to evaluate the effect of drag reducer polymers (DRP) on arteries from normotensive (Wistar) and spontaneously hypertensive rats (SHR). Polyethylene glycol (PEG 4000 at 5000 ppm) was perfused in the tail arterial bed with (E+) and without endothelium (E-) from male, adult Wistar (N = 14) and SHR (N = 13) animals under basal conditions (constant flow at 2.5 mL/min). In these preparations, flow-pressure curves (1.5 to 10 mL/min) were constructed before and 1 h after PEG 4000 perfusion. Afterwards, the tail arterial bed was fixed and the internal diameters of the arteries were then measured by microscopy and drag reduction was assessed based on the values of wall shear stress (WSS) by computational simulation. In Wistar and SHR groups, perfusion of PEG 4000 significantly reduced pulsatile pressure (Wistar/E+: 17.5 ± 2.8; SHR/E+: 16.3 ± 2.7%), WSS (Wistar/E+: 36; SHR/E+: 40%) and the flow-pressure response. The E- reduced the effects of PEG 4000 on arteries from both groups, suggesting that endothelial damage decreased the effect of PEG 4000 as a DRP. Moreover, the effects of PEG 4000 were more pronounced in the tail arterial bed from SHR compared to Wistar rats. In conclusion, these data demonstrated for the first time that PEG 4000 was more effective in reducing the pressure-flow response as well as WSS in the tail arterial bed of hypertensive than of normotensive rats and these effects were amplified by, but not dependent on, endothelial integrity. Thus, these results show an additional mechanism of action of this polymer besides its mechanical effect through the release and/or bioavailability of endothelial factors.
Collapse
Affiliation(s)
- K L Bessa
- Departamento de Ciências Ambientais e Tecnológicas, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brasil
| | | | | | | | | |
Collapse
|
14
|
Giantsos-Adams K, Lopez-Quintero V, Kopeckova P, Kopecek J, Tarbell JM, Dull R. Study of the therapeutic benefit of cationic copolymer administration to vascular endothelium under mechanical stress. Biomaterials 2010; 32:288-94. [PMID: 20932573 DOI: 10.1016/j.biomaterials.2010.08.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 08/27/2010] [Indexed: 11/28/2022]
Abstract
Pulmonary edema and the associated increases in vascular permeability continue to represent a significant clinical problem in the intensive care setting, with no current treatment modality other than supportive care and mechanical ventilation. Therapeutic compound(s) capable of attenuating changes in vascular barrier function would represent a significant advance in critical care medicine. We have previously reported the development of HPMA-based copolymers, targeted to endothelial glycocalyx that are able to enhance barrier function. In this work, we report the refinement of copolymer design and extend our physiological studies to demonstrate that the polymers: 1) reduce both shear stress and pressure-mediated increase in hydraulic conductivity, 2) reduce nitric oxide production in response to elevated hydrostatic pressure and, 3) reduce the capillary filtration coefficient (K(fc)) in an isolated perfused mouse lung model. These copolymers represent an important tool for use in mechanotransduction research and a novel strategy for developing clinically useful copolymers for the treatment of vascular permeability.
Collapse
Affiliation(s)
- Kristina Giantsos-Adams
- Department of Anesthesiology, University of Utah, School of Medicine, Salt Lake City, UT 84312, USA
| | | | | | | | | | | |
Collapse
|
15
|
Sanchis J, Canal F, Lucas R, Vicent MJ. Polymer–drug conjugates for novel molecular targets. Nanomedicine (Lond) 2010; 5:915-35. [DOI: 10.2217/nnm.10.71] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Polymer therapeutics can be already considered as a promising field in the human healthcare context. The discovery of the enhanced permeability and retention effect by Maeda, together with the modular model for the polymer–drug conjugate proposed by Ringsdorf, directed the early steps of polymer therapeutics towards cancer therapy. Orthodox anticancer drugs were preferentially chosen in the development of the first conjugates. The fast evolution of polymer chemistry and bioconjugation techniques, and a deeper understanding of cell biology has opened up exciting new challenges and opportunities. Four main directions have to be considered to develop this ‘platform technology’ further: the control of the synthetic process, the exhaustive characterization of the conjugate architectures, the conquest of combination therapy and the disclosure of new therapeutic targets. We illustrate in this article the exciting approaches offered by polymer–drug conjugates beyond classical cancer therapy, focusing on new, more effective and selective targets in cancer and in their use as treatments for other major human diseases.
Collapse
Affiliation(s)
| | | | - Rut Lucas
- Polymer Therapeutics Laboratory, Medicinal Chemistry Department, Centro de Investigación Príncipe Felipe. Av. Autopista del Saler, 16. E-46012 Valencia, Spain
| | - María J Vicent
- Polymer Therapeutics Laboratory, Medicinal Chemistry Department, Centro de Investigación Príncipe Felipe. Av. Autopista del Saler, 16. E-46012 Valencia, Spain
| |
Collapse
|
16
|
Abstract
OBJECTIVE For several chronic inflammatory disease states, therapy is enhanced by improving the pharmacokinetic properties of anti-inflammatory drugs through conjugation with polyethylene glycol. We hypothesized that part of the beneficial action of PEGylated drugs may be derived from the anti-inflammatory properties of polyethylene glycol (PEG) itself. DESIGN Randomized, double-blinded, controlled ex vivo and in vivo laboratory studies. SETTING University research laboratories. SUBJECTS Human neutrophils and mononuclear cells, macrophage cell line, and adult rats and mice. INTERVENTIONS The effect of PEG (either low-molecular-weight [200-400] or high-molecular-weight [>4000]) was assessed on survival after systemic inflammation induced by lipopolysaccharide or zymosan. The effects of PEG on zymosan, lipopolysaccharide, or streptolysin-induced inflammatory and bioenergetic responses of immune cells were also assessed. MEASUREMENTS AND MAIN RESULTS Low-molecular-weight PEG reduced inflammatory cytokine expression, pyrexia, and mortality by >50% in both lipopolysaccharide and zymosan models of sepsis. Low-molecular-weight PEG reduced cytokine expression both in vivo and in vitro, and attenuated activation of human neutrophils in response to lipopolysaccharide or zymosan. By contrast, high-molecular-weight PEG conferred less significant survival effects after lipopolysaccharide and zymosan, and it did not exhibit such profound anti-inflammatory effects. Low-molecular-weight PEG attenuated lipopolysaccharide-induced activation of pro-apoptotic pathways (lysophosphatidic acid receptor and caspase-domain signaling) in the livers of endotoxemic rats. Streptolysin-induced necrosis of human neutrophils was reduced by low-molecular-weight PEG, indicating a mechanism that involves coating and/or stabilizing the cellular membrane. Low-molecular-weight PEG preserved human neutrophil responses to septic serum and bioenergetic function in macrophages and neutrophils. CONCLUSION PEG is a commonly used, safe, nonimmunogenic molecule possessing hitherto unappreciated anti-inflammatory properties. Low-molecular-weight PEG may potentially play a role in the therapy of systemic inflammation and sepsis.
Collapse
|
17
|
Chiang ET, Camp SM, Dudek SM, Brown ME, Usatyuk PV, Zaborina O, Alverdy JC, Garcia JGN. Protective effects of high-molecular weight polyethylene glycol (PEG) in human lung endothelial cell barrier regulation: role of actin cytoskeletal rearrangement. Microvasc Res 2009; 77:174-86. [PMID: 19121327 PMCID: PMC3736723 DOI: 10.1016/j.mvr.2008.11.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 11/13/2008] [Accepted: 11/14/2008] [Indexed: 12/13/2022]
Abstract
Acute lung injury represents the result of multiple pathways initiated by local or systemic insults and is characterized by profound vascular permeability, pulmonary edema, and life-threatening respiratory failure. Permeability-reducing therapies are of potential clinical utility but are currently unavailable. We hypothesized that polyethylene glycol (PEG) compounds, inert and non-toxic polymers that serve as a surrogate mucin lining in intestinal epithelium, may attenuate agonist-mediated lung endothelial cell (EC) barrier dysfunction. High molecular weight PEG (PEG15-20) produced rapid, dose-dependent increases in transendothelial electrical resistance (TER) in human lung endothelium cultured on gold microelectrodes, reflecting increased paracellular integrity. The maximal effective concentration of 8% PEG induced a sustained 125% increase in TER (40 h), results similar to barrier-enhancing agonists such as sphingosine 1-phosphate (40% increase in TER). Maximal PEG barrier enhancement was achieved at 45-60 min and PEG effectively reversed both thrombin- and LPS-induced EC barrier dysfunction. Consistent with the increase in TER, immunofluorescent studies demonstrated that PEG produced significant cytoskeletal rearrangement with formation of well-defined cortical actin rings and lamellipodia containing the actin-binding proteins, cortactin and MLCK, known participants in cell-matrix and cell-cell junctional adhesion. Finally, PEG challenge induced rapid alterations in levels of MAP kinase and MLC phosphorylation. In summary, PEG joins a number of EC barrier-regulatory agents which rapidly activate barrier-enhancing signal transduction pathways which target the cytoskeleton and provides a potential therapeutic strategy in inflammatory lung injury.
Collapse
Affiliation(s)
- Eddie T Chiang
- Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago Pritzker School of Medicine, 5841 S. Maryland Avenue, MC 6092 Chicago, IL 60637-1470, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Sung HJ, Chandra P, Treiser MD, Liu E, Iovine CP, Moghe PV, Kohn J. Synthetic polymeric substrates as potent pro-oxidant versus anti-oxidant regulators of cytoskeletal remodeling and cell apoptosis. J Cell Physiol 2009; 218:549-57. [PMID: 19016472 DOI: 10.1002/jcp.21629] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The role of reactive oxygen species (ROS)-mediated cell signal transduction pathways emanating from engineered cell substrates remains unclear. To elucidate the role, polymers derived from the amino acid L-tyrosine were used as synthetic matrix substrates. Variations in their chemical properties were created by co-polymerizing hydrophobic L-tyrosine derivatives with uncharged hydrophilic poly(ethylene glycol) (PEG, Mw = 1,000 Da), and negatively charged desaminotyrosyl-tyrosine (DT). These substrates were characterized for their intrinsic ability to generate ROS, as well as their ability to elicit Saos-2 cell responses in terms of intracellular ROS production, actin remodeling, and apoptosis. PEG-containing substrates induced both exogenous and intracellular ROS production, whereas the charged substrates reduced production of both types, indicating a coupling of exogenous ROS generation and intracellular ROS production. Furthermore, PEG-mediated ROS induction caused nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase and an increase in caspase-3 activity, confirming a link with apoptosis. PEG-rich pro-oxidant substrates caused cytoskeletal actin remodeling through beta-actin cleavage by caspase-3 into fractins. The fractins co-localized to the mitochondria and reduced the mitochondrial membrane potential. The remnant cytosolic beta-actin was polymerized and condensed, events consistent with apoptotic cell shrinkage. The cytoskeletal remodeling was integral to the further augmentation of intracellular ROS production. Conversely, the anti-oxidant DT-containing charged substrates suppressed the entire cascade of apoptotic progression. We demonstrate that ROS activity serves an important role in "outside-in" signaling for cells grown on substrates: the ROS activity couples exogenous stress, driven by substrate composition, to changes in intracellular signaling. This signaling causes cell apoptosis, which is mediated by actin remodeling.
Collapse
Affiliation(s)
- Hak-Joon Sung
- Department of Chemistry and Chemical Biology, Piscataway, New Jersey
| | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Bourdi M, Korrapati MC, Chakraborty M, Yee SB, Pohl LR. Protective role of c-Jun N-terminal kinase 2 in acetaminophen-induced liver injury. Biochem Biophys Res Commun 2008; 374:6-10. [PMID: 18586006 DOI: 10.1016/j.bbrc.2008.06.065] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 06/15/2008] [Indexed: 01/20/2023]
Abstract
Recent studies in mice suggest that stress-activated c-Jun N-terminal protein kinase 2 (JNK2) plays a pathologic role in acetaminophen (APAP)-induced liver injury (AILI), a major cause of acute liver failure (ALF). In contrast, we present evidence that JNK2 can have a protective role against AILI. When male C57BL/6J wild type (WT) and JNK2(-/-) mice were treated with 300mg APAP/kg, 90% of JNK2(-/-) mice died of ALF compared to 20% of WT mice within 48h. The high susceptibility of JNK2(-/-) mice to AILI appears to be due in part to deficiencies in hepatocyte proliferation and repair. Therefore, our findings are consistent with JNK2 signaling playing a protective role in AILI and further suggest that the use of JNK inhibitors as a potential treatment for AILI, as has been recommended by other investigators, should be reconsidered.
Collapse
Affiliation(s)
- Mohammed Bourdi
- Molecular and Cellular Toxicology Section, Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-1760, USA.
| | | | | | | | | |
Collapse
|
21
|
Bertuglia S. Intermittent hypoxia modulates nitric oxide-dependent vasodilation and capillary perfusion during ischemia-reperfusion-induced damage. Am J Physiol Heart Circ Physiol 2008; 294:H1914-22. [PMID: 18296561 DOI: 10.1152/ajpheart.01371.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The microvascular function of nitric oxide (NO) during ischemia-reperfusion (I/R) in intermittent hypoxia (IH)-pretreated hamsters was analyzed using 20 mg/kg of the nonselective NO inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME) and 5 mg/kg of the preferential inducible NO inhibitor S-methylisothiourea sulphate (SMT) injected before I/R. Studies were made in the hamster cheek pouch microcirculation (intravital fluorescence microscopy). IH consisted of 6 min of 8% O(2) breathing followed by 6 min of 21% O(2) for every 8 h for 21 days. Normoxia controls (NCs) were exposed to room air for the same period. The effects were characterized in terms of systemic hemodynamics, diameter, flow, wall shear stress in arterioles, capillary perfusion, and the concentrations of thiobarbituric acid-reactive substances (TBARS) and plasma NO, assessed as nitrite/nitrate (NOx) levels. IH did not change arterial blood pressure and increased hematocrit and shear stress. IH increased NOx and TBARS levels and reduced arterial diameter, blood flow, and capillary perfusion versus the NC. Conversely, TBARS and NOx were lower during I/R in IH-pretreated hamsters, resulting in vasodilation and the increase of capillary perfusion and shear stress. After IH, capillary perfusion was reduced by 24% (2.3%) and enhanced by 115% (1.7%) after I/R (P < 0.05). Both modalities of NO blockade decreased NOx generation and increased TBARS versus IH. l-NAME and SMT induced a significant decrease in arteriolar diameter, blood flow, and capillary perfusion (P < 0.05). l-NAME enhanced TBARS more than SMT and aggravated I/R damage. In conclusion, we demonstrated that preconditioning with IH greatly reduces oxidative stress and stimulates NO-induced vasodilation during I/R injury, thus maintaining capillary perfusion.
Collapse
|
22
|
Behn C, Araneda OF, Llanos AJ, Celedón G, González G. Hypoxia-related lipid peroxidation: Evidences, implications and approaches. Respir Physiol Neurobiol 2007; 158:143-50. [PMID: 17662674 DOI: 10.1016/j.resp.2007.06.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Revised: 06/01/2007] [Accepted: 06/05/2007] [Indexed: 12/20/2022]
Abstract
Hypoxia may be intensified by concurrent oxidative stress. Lack of oxygen in relation to aerobic ATP requirements, as hypoxia has been defined, goes along with an increased generation of reactive oxygen species (ROS). Polyunsaturated fatty acids (PUFAs) range among the molecules most susceptible to ROS. Oxidative breakdown of n-3 PUFAs may compromise not only membrane lipid matrix dynamics, and hence structure and function of membrane-associated proteins like enzymes, receptors, and transporters, but also gene expression. Eicosapentaenoic acid depletion, products of lipid peroxidation (LP), as well as, lack of oxygen may combine in exacerbating activity of nuclear factor kappa B (NFkappaB), an ubiquitous pro-inflammatory and anti-apoptotic transcription factor. Field studies at high altitude show malondialdehyde (MDA) content in exhaled breath condensate (EBC) of mountaineers to correlate with Lake Louis score of acute mountain sickness. A pathogenic role of LP in hypoxia can therefore be expected. By control of LP, some species seem to cope more efficiently than others with naturally occurring hypoxia. Limitation of potential pro-inflammatory effects of hypoxia-related LP by an adequate provision of n-3 PUFAs and antioxidants may contribute to increase survival under conditions where oxygen is lacking in relation to aerobic ATP requirements. A need for antioxidant intervention, however, should be weighed against the ROS requirement for triggering adaptive processes in response to an increased demand of oxygen.
Collapse
Affiliation(s)
- Claus Behn
- Laboratorio de Ambientes Extremos, Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile Independencia 1027, Independencia, Santiago, Chile.
| | | | | | | | | |
Collapse
|