1
|
Usai DS, Aasum E, Thomsen MB. The isolated, perfused working heart preparation of the mouse-Advantages and pitfalls. Acta Physiol (Oxf) 2025; 241:e70023. [PMID: 40078031 PMCID: PMC11904386 DOI: 10.1111/apha.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/06/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
Isolated, perfused hearts are viable for hours outside the body, and important research findings have been made using mouse hearts ex vivo. In the Langendorff perfusion mode, the coronary tree is perfused via retrograde flow of a perfusate down the ascending aorta. Although the Langendorff setup is generally simpler and quicker to establish, the working heart mode allows the heart to function in a more physiologically relevant manner, where the perfusate is directed into the left ventricle via the left atrium. The contracting, fluid-filled ventricle will eject the perfusate into the aorta in a more physiologically relevant manner, lifting the physiological relevance of the contractile and energetic data. The workload on the heart (preload, afterload and heart rate) can be precisely adjusted in the working, isolated heart, and the ventricular performance, for example, end-diastolic and end-systolic pressures, stroke volume, cardiac output, and oxygen consumption can be determined. Moreover, using pressure-volume catheters, ventricular performance can be assessed in great detail. With the present review, we highlight the benefits and drawbacks of the technique and indicate where particular attention must be put when building the working heart setup, designing experiments, executing the studies, and analyzing the obtained data.
Collapse
Affiliation(s)
- Diana S Usai
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ellen Aasum
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Morten B Thomsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Birkedal R, Branovets J, Vendelin M. Compartmentalization in cardiomyocytes modulates creatine kinase and adenylate kinase activities. FEBS Lett 2024; 598:2623-2640. [PMID: 39112921 DOI: 10.1002/1873-3468.14994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/03/2024] [Accepted: 07/21/2024] [Indexed: 11/12/2024]
Abstract
Intracellular molecules are transported by motor proteins or move by diffusion resulting from random molecular motion. Cardiomyocytes are packed with structures that are crucial for function, but also confine the diffusional spaces, providing cells with a means to control diffusion. They form compartments in which local concentrations are different from the overall, average concentrations. For example, calcium and cyclic AMP are highly compartmentalized, allowing these versatile second messengers to send different signals depending on their location. In energetic compartmentalization, the ratios of AMP and ADP to ATP are different from the average ratios. This is important for the performance of ATPases fuelling cardiac excitation-contraction coupling and mechanical work. A recent study suggested that compartmentalization modulates the activity of creatine kinase and adenylate kinase in situ. This could have implications for energetic signaling through, for example, AMP-activated kinase. It highlights the importance of taking compartmentalization into account in our interpretation of cellular physiology and developing methods to assess local concentrations of AMP and ADP to enhance our understanding of compartmentalization in different cell types.
Collapse
Affiliation(s)
- Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Estonia
| | - Jelena Branovets
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Estonia
| |
Collapse
|
3
|
Birkedal R, Laasmaa M, Branovets J, Vendelin M. Ontogeny of cardiomyocytes: ultrastructure optimization to meet the demand for tight communication in excitation-contraction coupling and energy transfer. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210321. [PMID: 36189816 PMCID: PMC9527910 DOI: 10.1098/rstb.2021.0321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The ontogeny of the heart describes its development from the fetal to the adult stage. In newborn mammals, blood pressure and thus cardiac performance are relatively low. The cardiomyocytes are thin, and with a central core of mitochondria surrounded by a ring of myofilaments, while the sarcoplasmic reticulum (SR) is sparse. During development, as blood pressure and performance increase, the cardiomyocytes become more packed with structures involved in excitation–contraction (e-c) coupling (SR and myofilaments) and the generation of ATP (mitochondria) to fuel the contraction. In parallel, the e-c coupling relies increasingly on calcium fluxes through the SR, while metabolism relies increasingly on fatty acid oxidation. The development of transverse tubules and SR brings channels and transporters interacting via calcium closer to each other and is crucial for e-c coupling. However, for energy transfer, it may seem counterintuitive that the increased structural density restricts the overall ATP/ADP diffusion. In this review, we discuss how this is because of the organization of all these structures forming modules. Although the overall diffusion across modules is more restricted, the energy transfer within modules is fast. A few studies suggest that in failing hearts this modular design is disrupted, and this may compromise intracellular energy transfer. This article is part of the theme issue ‘The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease’.
Collapse
Affiliation(s)
- Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Akadeemia 15, room SCI-218, 12618 Tallinn, Estonia
| | - Martin Laasmaa
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Akadeemia 15, room SCI-218, 12618 Tallinn, Estonia
| | - Jelena Branovets
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Akadeemia 15, room SCI-218, 12618 Tallinn, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Akadeemia 15, room SCI-218, 12618 Tallinn, Estonia
| |
Collapse
|
4
|
Cassano V, Miceli S, Armentaro G, Mannino GC, Fiorentino VT, Perticone M, Succurro E, Hribal ML, Andreozzi F, Perticone F, Sesti G, Sciacqua A. Oxidative Stress and Left Ventricular Performance in Patients with Different Glycometabolic Phenotypes. Nutrients 2022; 14:nu14061299. [PMID: 35334956 PMCID: PMC8950717 DOI: 10.3390/nu14061299] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to evaluate the possible correlation between oxidative stress and subclinical myocardial damage, assessed with speckle tracking echocardiography (STE), in normal glucose tolerance (NGT) patients with one-hour plasma glucose values ≥ 155 mg/dL (NGT ≥ 155), comparing them to NGT < 155 subjects, impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM) newly diagnosed patients. We enrolled 100 Caucasian patients. All subjects underwent OGTT. The serum values of oxidative stress markers (8-isoprostane and Nox-2) were assessed with an ELISA test. Echocardiographic recordings were performed using an E-95 Pro ultrasound system. We observed significant differences, among the four groups, for fasting plasma glucose (p < 0.0001), one-hour postload (p < 0.0001), and two-hour postload plasma glucose (p < 0.0001). As compared with NGT < 155, NGT ≥ 155 exhibited significantly worse insulin sensitivity and higher values of hs-CRP. No significant differences were observed between NGT ≥ 155 and IGT patients. There was a significant increase in 8-isoprostane (p < 0.0001) and Nox-2 (p < 0.0001), from the first to fourth group, indicating an increase in oxidative stress with the worsening of the metabolic status. Serum levels of 8-isoprostane and Nox-2 were significantly increased in NGT ≥ 155 compared to the NGT < 155 group, but similar to IGT. The global longitudinal strain (GLS) appeared progressively lower proceeding from the NGT < 155 to T2DM group (p < 0.0001). For similar values of left ventricular ejection fraction (LVEF), NGT ≥ 155 exhibited reduced GLS compared to NGT < 155 (p = 0.001), but similar to IGT patients. Our study demonstrated that NGT ≥ 155 subjects exhibit early functional impairment of myocardial contractile fibres, these alterations are correlated with increased oxidative stress.
Collapse
Affiliation(s)
- Velia Cassano
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
| | - Sofia Miceli
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
| | - Giuseppe Armentaro
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
| | - Gaia Chiara Mannino
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
| | - Vanessa Teresa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
| | - Maria Perticone
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
| | - Elena Succurro
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
- Research Center for the Prevention and Treatment of Metabolic Diseases, University of Catanzaro, 88100 Catanzaro, Italy
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
- Research Center for the Prevention and Treatment of Metabolic Diseases, University of Catanzaro, 88100 Catanzaro, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
- Research Center for the Prevention and Treatment of Metabolic Diseases, University of Catanzaro, 88100 Catanzaro, Italy
| | - Francesco Perticone
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University Rome-Sapienza, 00185 Roma, Italy;
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.C.); (S.M.); (G.A.); (G.C.M.); (V.T.F.); (M.P.); (E.S.); (M.L.H.); (F.A.); (F.P.)
- Research Center for the Prevention and Treatment of Metabolic Diseases, University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: ; Tel.: +39-0961-3694103; Fax: +39-0961-3647192
| |
Collapse
|
5
|
Hansen SS, Pedersen TM, Marin J, Boardman NT, Shah AM, Aasum E, Hafstad AD. Overexpression of NOX2 Exacerbates AngII-Mediated Cardiac Dysfunction and Metabolic Remodelling. Antioxidants (Basel) 2022; 11:antiox11010143. [PMID: 35052647 PMCID: PMC8772838 DOI: 10.3390/antiox11010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/01/2022] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to examine the effects of low doses of angiotensin II (AngII) on cardiac function, myocardial substrate utilization, energetics, and mitochondrial function in C57Bl/6J mice and in a transgenic mouse model with cardiomyocyte specific upregulation of NOX2 (csNOX2 TG). Mice were treated with saline (sham), 50 or 400 ng/kg/min of AngII (AngII50 and AngII400) for two weeks. In vivo blood pressure and cardiac function were measured using plethysmography and echocardiography, respectively. Ex vivo cardiac function, mechanical efficiency, and myocardial substrate utilization were assessed in isolated perfused working hearts, and mitochondrial function was measured in left ventricular homogenates. AngII50 caused reduced mechanical efficiency despite having no effect on cardiac hypertrophy, function, or substrate utilization. AngII400 slightly increased systemic blood pressure and induced cardiac hypertrophy with no effect on cardiac function, efficiency, or substrate utilization. In csNOX2 TG mice, AngII400 induced cardiac hypertrophy and in vivo cardiac dysfunction. This was associated with a switch towards increased myocardial glucose oxidation and impaired mitochondrial oxygen consumption rates. Low doses of AngII may transiently impair cardiac efficiency, preceding the development of hypertrophy induced at higher doses. NOX2 overexpression exacerbates the AngII -induced pathology, with cardiac dysfunction and myocardial metabolic remodelling.
Collapse
Affiliation(s)
- Synne S. Hansen
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Science, UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (T.M.P.); (J.M.); (N.T.B.); (E.A.); (A.D.H.)
- Correspondence:
| | - Tina M. Pedersen
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Science, UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (T.M.P.); (J.M.); (N.T.B.); (E.A.); (A.D.H.)
| | - Julie Marin
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Science, UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (T.M.P.); (J.M.); (N.T.B.); (E.A.); (A.D.H.)
| | - Neoma T. Boardman
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Science, UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (T.M.P.); (J.M.); (N.T.B.); (E.A.); (A.D.H.)
| | - Ajay M. Shah
- School of Cardiovascular Medicine & Sciences, King’s College London, British Heart Foundation Centre of Excellence, London SE5 9NU, UK;
| | - Ellen Aasum
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Science, UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (T.M.P.); (J.M.); (N.T.B.); (E.A.); (A.D.H.)
| | - Anne D. Hafstad
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Science, UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (T.M.P.); (J.M.); (N.T.B.); (E.A.); (A.D.H.)
| |
Collapse
|
6
|
Veitch CR, Power AS, Erickson JR. CaMKII Inhibition is a Novel Therapeutic Strategy to Prevent Diabetic Cardiomyopathy. Front Pharmacol 2021; 12:695401. [PMID: 34381362 PMCID: PMC8350113 DOI: 10.3389/fphar.2021.695401] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022] Open
Abstract
Increasing prevalence of diabetes mellitus worldwide has pushed the complex disease state to the foreground of biomedical research, especially concerning its multifaceted impacts on the cardiovascular system. Current therapies for diabetic cardiomyopathy have had a positive impact, but with diabetic patients still suffering from a significantly greater burden of cardiac pathology compared to the general population, the need for novel therapeutic approaches is great. A new therapeutic target, calcium/calmodulin-dependent kinase II (CaMKII), has emerged as a potential treatment option for preventing cardiac dysfunction in the setting of diabetes. Within the last 10 years, new evidence has emerged describing the pathophysiological consequences of CaMKII activation in the diabetic heart, the mechanisms that underlie persistent CaMKII activation, and the protective effects of CaMKII inhibition to prevent diabetic cardiomyopathy. This review will examine recent evidence tying cardiac dysfunction in diabetes to CaMKII activation. It will then discuss the current understanding of the mechanisms by which CaMKII activity is enhanced during diabetes. Finally, it will examine the benefits of CaMKII inhibition to treat diabetic cardiomyopathy, including contractile dysfunction, heart failure with preserved ejection fraction, and arrhythmogenesis. We intend this review to serve as a critical examination of CaMKII inhibition as a therapeutic strategy, including potential drawbacks of this approach.
Collapse
Affiliation(s)
- Christopher R Veitch
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Amelia S Power
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Jeffrey R Erickson
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Abstract
Insulin receptors are highly expressed in the heart and vasculature. Insulin signaling regulates cardiac growth, survival, substrate uptake, utilization, and mitochondrial metabolism. Insulin signaling modulates the cardiac responses to physiological and pathological stressors. Altered insulin signaling in the heart may contribute to the pathophysiology of ventricular remodeling and heart failure progression. Myocardial insulin signaling adapts rapidly to changes in the systemic metabolic milieu. What may initially represent an adaptation to protect the heart from carbotoxicity may contribute to amplifying the risk of heart failure in obesity and diabetes. This review article presents the multiple roles of insulin signaling in cardiac physiology and pathology and discusses the potential therapeutic consequences of modulating myocardial insulin signaling.
Collapse
Affiliation(s)
- E Dale Abel
- Division of Endocrinology, Metabolism and Diabetes and Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
8
|
Larsen TS, Jansen KM. Impact of Obesity-Related Inflammation on Cardiac Metabolism and Function. J Lipid Atheroscler 2020; 10:8-23. [PMID: 33537250 PMCID: PMC7838512 DOI: 10.12997/jla.2021.10.1.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/10/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022] Open
Abstract
This review focuses on the role of adipose tissue in obese individuals in the development of metabolic diseases, and their consequences for metabolic and functional derangements in the heart. The general idea is that the expansion of adipocytes during the development of obesity gives rise to unhealthy adipose tissue, characterized by low-grade inflammation and the release of proinflammatory adipokines and fatty acids (FAs). This condition, in turn, causes systemic inflammation and elevated FA concentrations in the circulation, which links obesity to several pathologies, including impaired insulin signaling in cardiac muscle and a subsequent shift in myocardial substrate oxidation in favor of FAs and reduced cardiac efficiency. This review also argues that efforts to prevent obesity-related cardiometabolic disease should focus on anti-obesogenic strategies to restore normal adipose tissue metabolism.
Collapse
Affiliation(s)
- Terje S Larsen
- Department of Medical Biology, The Health Sciences Faculty, UiT The Arctic University of Norway, Tromsø, Norway
| | - Kirsten M Jansen
- Department of Medical Biology, The Health Sciences Faculty, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
9
|
Boardman NT, Pedersen TM, Rossvoll L, Hafstad AD, Aasum E. Diet-induced obese mouse hearts tolerate an acute high-fatty acid exposure that also increases ischemic tolerance. Am J Physiol Heart Circ Physiol 2020; 319:H682-H693. [PMID: 32795177 DOI: 10.1152/ajpheart.00284.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An ischemic insult is accompanied by an acute increase in circulating fatty acid (FA) levels, which can induce adverse changes related to cardiac metabolism/energetics. Although chronic hyperlipidemia contributes to the pathogenesis of obesity-/diabetes-related cardiomyopathy, it is unclear how these hearts are affected by an acute high FA-load. We hypothesize that adaptation to chronic FA exposure enhances the obese hearts' ability to handle an acute high FA-load. Diet-induced obese (DIO) and age-matched control (CON) mouse hearts were perfused in the presence of low- or high FA-load (0.4 and 1.8 mM, respectively). Left ventricular (LV) function, FA oxidation rate, myocardial oxygen consumption, and mechanical efficiency were assessed, followed by analysis of myocardial oxidative stress, mitochondrial respiration, protein acetylation, and gene expression. Finally, ischemic tolerance was determined by examining LV functional recovery and infarct size. Under low-FA conditions, DIO hearts showed mild LV dysfunction, oxygen wasting, mechanical inefficiency, and reduced mitochondrial OxPhos. High FA-load increased FA oxidation rates in both groups, but this did not alter any of the above parameters in DIO hearts. In contrast, CON hearts showed FA-induced mechanical inefficiency, oxidative stress, and reduced OxPhos, as well as enhanced acetylation and activation of PPARα-dependent gene expression. While high FA-load did not alter functional recovery and infarct size in CON hearts, it increased ischemic tolerance in DIO hearts. Thus, this study demonstrates that acute FA-load affects normal and obese hearts differently and that chronically elevated circulating FA levels render the DIO heart less vulnerable to the disadvantageous effects of an acute FA-load.NEW & NOTEWORTHY An acute myocardial fat-load leads to oxidative stress, oxygen wasting, mechanical inefficiency, hyperacetylation, and impaired mitochondrial function, which can contribute to reduced ischemic tolerance. Following obesity/insulin resistance, hearts were less affected by a high fat-load, which subsequently also improved ischemic tolerance. This study highlights that an acute fat-load affects normal and obese hearts differently and that obesity renders hearts less vulnerable to the disadvantageous effects of an acute fat-load.
Collapse
Affiliation(s)
- Neoma T Boardman
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsoe, Norway
| | - Tina M Pedersen
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsoe, Norway
| | - Line Rossvoll
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsoe, Norway
| | - Anne D Hafstad
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsoe, Norway
| | - Ellen Aasum
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsoe, Norway
| |
Collapse
|
10
|
Cortassa S, Caceres V, Tocchetti CG, Bernier M, de Cabo R, Paolocci N, Sollott SJ, Aon MA. Metabolic remodelling of glucose, fatty acid and redox pathways in the heart of type 2 diabetic mice. J Physiol 2020; 598:1393-1415. [PMID: 30462352 PMCID: PMC7739175 DOI: 10.1113/jp276824] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/15/2018] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS Hearts from type 2 diabetic animals display perturbations in excitation-contraction coupling, impairing myocyte contractility and delaying relaxation, along with altered substrate consumption patterns. Under high glucose and β-adrenergic stimulation conditions, palmitate can, at least in part, offset left ventricle (LV) dysfunction in hearts from diabetic mice, improving contractility and relaxation while restoring coronary perfusion pressure. Fluxome calculations of central catabolism in diabetic hearts show that, in the presence of palmitate, there is a metabolic remodelling involving tricarboxylic acid cycle, polyol and pentose phosphate pathways, leading to improved redox balance in cytoplasmic and mitochondrial compartments. Under high glucose and increased energy demand, the metabolic/fluxomic redirection leading to restored redox balance imparted by palmitate helps explain maintained LV function and may contribute to designing novel therapeutic approaches to prevent cardiac dysfunction in diabetic patients. ABSTRACT Type-2 diabetes (T2DM) leads to reduced myocardial performance, and eventually heart failure. Excessive accumulation of lipids and glucose is central to T2DM cardiomyopathy. Previous data showed that palmitate (Palm) or glutathione preserved heart mitochondrial energy/redox balance under excess glucose, rescuing β-adrenergic-stimulated cardiac excitation-contraction coupling. However, the mechanisms underlying the accompanying improved contractile performance have been largely ignored. Herein we explore in intact heart under substrate excess the metabolic remodelling associated with cardiac function in diabetic db/db mice subjected to stress given by β-adrenergic stimulation with isoproterenol and high glucose compared to their non-diabetic controls (+/+, WT) under euglycaemic conditions. When perfused with Palm, T2DM hearts exhibited improved contractility/relaxation compared to WT, accompanied by extensive metabolic remodelling as demonstrated by metabolomics-fluxomics combined with bioinformatics and computational modelling. The T2DM heart metabolome showed significant differences in the abundance of metabolites in pathways related to glucose, lipids and redox metabolism. Using a validated computational model of heart's central catabolism, comprising glucose and fatty acid (FA) oxidation in cytoplasmic and mitochondrial compartments, we estimated that fluxes through glucose degradation pathways are ∼2-fold lower in heart from T2DM vs. WT under all conditions studied. Palm addition elicits improvement of the redox status via enhanced β-oxidation and decreased glucose uptake, leading to flux-redirection away from redox-consuming pathways (e.g. polyol) while maintaining the flux through redox-generating pathways together with glucose-FA 'shared fuelling' of oxidative phosphorylation. Thus, available FAs such as Palm may help improve function via enhanced redox balance in T2DM hearts during peaks of hyperglycaemia and increased workload.
Collapse
Affiliation(s)
- Sonia Cortassa
- Laboratory of Cardiovascular Science, National Institute on Aging/NIH, Baltimore, MD, 21224, USA
| | - Viviane Caceres
- Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, MD, 21205, USA
- Posgraduate Program in Rehabilitation Sciences, Dept. Health Sciences, Federal University of Santa Catarina, Ararangua, SC, Brazil
| | - Carlo G Tocchetti
- Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, MD, 21205, USA
- Dipartimento di Scienze Mediche Traslazionali, Universita' degli Studi di Napoli Federico II Via Pansini 5, Edificio 2, 80131, Napoli, Italy
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging/NIH, Baltimore, MD, 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging/NIH, Baltimore, MD, 21224, USA
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Biomedical Sciences, University of Padova, via Marzolo 3, 35131, Padova, Italy
| | - Steven J Sollott
- Laboratory of Cardiovascular Science, National Institute on Aging/NIH, Baltimore, MD, 21224, USA
| | - Miguel A Aon
- Laboratory of Cardiovascular Science, National Institute on Aging/NIH, Baltimore, MD, 21224, USA
- Translational Gerontology Branch, National Institute on Aging/NIH, Baltimore, MD, 21224, USA
| |
Collapse
|
11
|
NADPH Oxidase 2 Mediates Myocardial Oxygen Wasting in Obesity. Antioxidants (Basel) 2020; 9:antiox9020171. [PMID: 32093119 PMCID: PMC7070669 DOI: 10.3390/antiox9020171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity and diabetes are independent risk factors for cardiovascular diseases, and they are associated with the development of a specific cardiomyopathy with elevated myocardial oxygen consumption (MVO2) and impaired cardiac efficiency. Although the pathophysiology of this cardiomyopathy is multifactorial and complex, reactive oxygen species (ROS) may play an important role. One of the major ROS-generating enzymes in the cardiomyocytes is nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), and many potential systemic activators of NOX2 are elevated in obesity and diabetes. We hypothesized that NOX2 activity would influence cardiac energetics and/or the progression of ventricular dysfunction following obesity. Myocardial ROS content and mechanoenergetics were measured in the hearts from diet-induced-obese wild type (DIOWT) and global NOK2 knock-out mice (DIOKO) and in diet-induced obese C57BL/6J mice given normal water (DIO) or water supplemented with the NOX2-inhibitor apocynin (DIOAPO). Mitochondrial function and ROS production were also assessed in DIO and DIOAPO mice. This study demonstrated that ablation and pharmacological inhibition of NOX2 both improved mechanical efficiency and reduced MVO2 for non-mechanical cardiac work. Mitochondrial ROS production was also reduced following NOX2 inhibition, while cardiac mitochondrial function was not markedly altered by apocynin-treatment. Therefore, these results indicate a link between obesity-induced myocardial oxygen wasting, NOX2 activation, and mitochondrial ROS.
Collapse
|
12
|
Cardiac ketone body metabolism. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165739. [PMID: 32084511 DOI: 10.1016/j.bbadis.2020.165739] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/14/2022]
Abstract
The ketone bodies, d-β-hydroxybutyrate and acetoacetate, are soluble 4-carbon compounds derived principally from fatty acids, that can be metabolised by many oxidative tissues, including heart, in carbohydrate-depleted conditions as glucose-sparing energy substrates. They also have important signalling functions, acting through G-protein coupled receptors and histone deacetylases to regulate metabolism and gene expression including that associated with anti-oxidant activity. Their concentration, and hence availability, increases in diabetes mellitus and heart failure. Whilst known to be substrates for ATP production, especially in starvation, their role(s) in the heart, and in heart disease, is uncertain. Recent evidence, reviewed here, indicates that increased ketone body metabolism is a feature of heart failure, and is accompanied by other changes in substrate selection. Whether the change in myocardial ketone body metabolism is adaptive or maladaptive is unknown, but it offers the possibility of using exogenous ketones to treat the failing heart.
Collapse
|
13
|
Mereweather LJ, Montes Aparicio CN, Heather LC. Positioning Metabolism as a Central Player in the Diabetic Heart. J Lipid Atheroscler 2020; 9:92-109. [PMID: 32821724 PMCID: PMC7379068 DOI: 10.12997/jla.2020.9.1.92] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/28/2019] [Accepted: 12/29/2019] [Indexed: 12/13/2022] Open
Abstract
In type 2 diabetes (T2D), the leading cause of death is cardiovascular complications. One mechanism contributing to cardiac pathogenesis is alterations in metabolism, with the diabetic heart exhibiting increased fatty acid oxidation and reduced glucose utilisation. The processes classically thought to underlie this metabolic shift include the Randle cycle and changes to gene expression. More recently, alternative mechanisms have been proposed, most notably, changes in post-translational modification of mitochondrial proteins in the heart. This increased understanding of how metabolism is altered in the diabetic heart has highlighted new therapeutic targets, with an aim to improve cardiac function in T2D. This review focuses on metabolism in the healthy heart and how this is modified in T2D, providing evidence for the mechanisms underlying this shift. There will be emphasis on the current treatments for the heart in diabetes, alongside efforts for metabocentric pharmacological therapies.
Collapse
Affiliation(s)
- Laura J Mereweather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Boardman NT, Rossvoll L, Lund J, Hafstad AD, Aasum E. 3-Weeks of Exercise Training Increases Ischemic-Tolerance in Hearts From High-Fat Diet Fed Mice. Front Physiol 2019; 10:1274. [PMID: 31632301 PMCID: PMC6783811 DOI: 10.3389/fphys.2019.01274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022] Open
Abstract
Physical activity is an efficient strategy to delay development of obesity and insulin resistance, and thus the progression of obesity/diabetes-related cardiomyopathy. In support of this, experimental studies using animal models of obesity show that chronic exercise prevents the development of obesity-induced cardiac dysfunction (cardiomyopathy). Whether exercise also improves the tolerance to ischemia-reperfusion in these models is less clear, and may depend on the type of exercise procedure as well as time of initiation. We have previously shown a reduction in ischemic-injury in diet-induced obese mice, when the exercise was started prior to the development of cardiac dysfunction in this model. In the present study, we aimed to explore the effect of exercise on ischemic-tolerance when exercise was initiated after the development obesity-mediated. Male C57BL/6J mice were fed a high-fat diet (HFD) for 20–22 weeks, where they were subjected to high-intensity interval training (HIT) during the last 3 weeks of the feeding period. Sedentary HFD fed and chow fed mice served as controls. Left-ventricular (LV) post-ischemic functional recovery and infarct size were measured in isolated perfused hearts. We also assessed the effect of 3-week HIT on mitochondrial function and myocardial oxygen consumption (MVO2). Sedentary HFD fed mice developed marked obesity and insulin resistance, and demonstrated reduced post-ischemic cardiac functional recovery and increased infarct size. Three weeks of HIT did not induce cardiac hypertrophy and only had a mild effect on obesity and insulin resistance. Despite this, HIT improved post-ischemic LV functional recovery and reduced infarct size. This increase in ischemic-tolerance was accompanied by an improved mitochondrial function as well as reduced MVO2. The present study highlights the beneficial effects of exercise training with regard to improving the ischemic-tolerance in hearts with cardiomyopathy following obesity and insulin resistance. This study also emphasizes the exercise-induced improvement of cardiac energetics and mitochondrial function in obesity/diabetes.
Collapse
Affiliation(s)
- Neoma T Boardman
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Line Rossvoll
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Jim Lund
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Anne D Hafstad
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ellen Aasum
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
15
|
Mansor LS, Sousa Fialho MDL, Yea G, Coumans WA, West JA, Kerr M, Carr CA, Luiken JJFP, Glatz JFC, Evans RD, Griffin JL, Tyler DJ, Clarke K, Heather LC. Inhibition of sarcolemmal FAT/CD36 by sulfo-N-succinimidyl oleate rapidly corrects metabolism and restores function in the diabetic heart following hypoxia/reoxygenation. Cardiovasc Res 2018; 113:737-748. [PMID: 28419197 PMCID: PMC5437367 DOI: 10.1093/cvr/cvx045] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/23/2017] [Indexed: 11/14/2022] Open
Abstract
Aims The type 2 diabetic heart oxidizes more fat and less glucose, which can impair metabolic flexibility and function. Increased sarcolemmal fatty acid translocase (FAT/CD36) imports more fatty acid into the diabetic myocardium, feeding increased fatty acid oxidation and elevated lipid deposition. Unlike other metabolic modulators that target mitochondrial fatty acid oxidation, we proposed that pharmacologically inhibiting fatty acid uptake, as the primary step in the pathway, would provide an alternative mechanism to rebalance metabolism and prevent lipid accumulation following hypoxic stress. Methods and results Hearts from type 2 diabetic and control male Wistar rats were perfused in normoxia, hypoxia and reoxygenation, with the FAT/CD36 inhibitor sulfo-N-succinimidyl oleate (SSO) infused 4 min before hypoxia. SSO infusion into diabetic hearts decreased the fatty acid oxidation rate by 29% and myocardial triglyceride concentration by 48% compared with untreated diabetic hearts, restoring fatty acid metabolism to control levels following hypoxia-reoxygenation. SSO infusion increased the glycolytic rate by 46% in diabetic hearts during hypoxia, increased pyruvate dehydrogenase activity by 53% and decreased lactate efflux rate by 56% compared with untreated diabetic hearts during reoxygenation. In addition, SSO treatment of diabetic hearts increased intermediates within the second span of the Krebs cycle, namely fumarate, oxaloacetate, and the FAD total pool. The cardiac dysfunction in diabetic hearts following decreased oxygen availability was prevented by SSO-infusion prior to the hypoxic stress. Infusing SSO into diabetic hearts increased rate pressure product by 60% during hypoxia and by 32% following reoxygenation, restoring function to control levels. Conclusions Diabetic hearts have limited metabolic flexibility and cardiac dysfunction when stressed, which can be rapidly rectified by reducing fatty acid uptake with the FAT/CD36 inhibitor, SSO. This novel therapeutic approach not only reduces fat oxidation but also lipotoxicity, by targeting the primary step in the fatty acid metabolism pathway.
Collapse
Affiliation(s)
- Latt S Mansor
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Maria da Luz Sousa Fialho
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Georgina Yea
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Will A Coumans
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - James A West
- Department of Biochemistry, University of Cambridge, and MRC Human Nutrition Research, Cambridge, UK
| | - Matthew Kerr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Carolyn A Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Joost J F P Luiken
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Jan F C Glatz
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Rhys D Evans
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Julian L Griffin
- Department of Biochemistry, University of Cambridge, and MRC Human Nutrition Research, Cambridge, UK
| | - Damian J Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| |
Collapse
|
16
|
Boardman NT, Hafstad AD, Lund J, Rossvoll L, Aasum E. Exercise of obese mice induces cardioprotection and oxygen sparing in hearts exposed to high-fat load. Am J Physiol Heart Circ Physiol 2017; 313:H1054-H1062. [DOI: 10.1152/ajpheart.00382.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 02/03/2023]
Abstract
Exercise training is a potent therapeutic approach in obesity and diabetes that exerts protective effects against the development of diabetic cardiomyopathy and ischemic injury. Acute increases in circulating fatty acids (FAs) during an ischemic insult can challenge the heart, since high FA load is considered to have adverse cardiac effects. In the present study, we tested the hypothesis that exercise-induced cardiac effects in diet-induced obese mice are abrogated by an acute high FA load. Diet-induced obese mice were fed a high-fat diet (HFD) for 20 wk. They were exercised using moderate- and/or high-intensity exercise training (MIT and HIT, respectively) for 10 or 3 wk, and isolated perfused hearts from these mice were exposed to a high FA load. Sedentary HFD mice served as controls. Ventricular function and myocardial O2 consumption were assessed after 10 wk of HIT and MIT, and postischemic functional recovery and infarct size were examined after 3 wk of HIT. In addition to improving aerobic capacity and reducing obesity and insulin resistance, long-term exercise ameliorated the development of diet-induced cardiac dysfunction. This was associated with improved mechanical efficiency because of reduced myocardial oxygen consumption. Although to a lesser extent, 3-wk HIT also increased aerobic capacity and decreased obesity and insulin resistance. HIT also improved postischemic functional recovery and reduced infarct size. Event upon the exposure to a high FA load, short-term exercise induced an oxygen-sparing effect. This study therefore shows that exercise-induced cardioprotective effects are present under hyperlipidemic conditions and highlights the important role of myocardial energetics during ischemic stress. NEW & NOTEWORTHY The exercise-induced cardioprotective effects in obese hearts are present under hyperlipidemic conditions, comparable to circulating levels of FA occurring with an ischemic insult. Myocardial oxygen sparing is associated with this effect, despite the general notion that high fat can decrease cardiac efficiency. This highlights the role of myocardial energetics during ischemic stress.
Collapse
Affiliation(s)
- Neoma T. Boardman
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Anne D. Hafstad
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Jim Lund
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Line Rossvoll
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ellen Aasum
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
17
|
The ‘Goldilocks zone’ of fatty acid metabolism; to ensure that the relationship with cardiac function is just right. Clin Sci (Lond) 2017; 131:2079-2094. [DOI: 10.1042/cs20160671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/25/2022]
Abstract
Fatty acids (FA) are the main fuel used by the healthy heart to power contraction, supplying 60–70% of the ATP required. FA generate more ATP per carbon molecule than glucose, but require more oxygen to produce the ATP, making them a more energy dense but less oxygen efficient fuel compared with glucose. The pathways involved in myocardial FA metabolism are regulated at various subcellular levels, and can be divided into sarcolemmal FA uptake, cytosolic activation and storage, mitochondrial uptake and β-oxidation. An understanding of the critical involvement of each of these steps has been amassed from genetic mouse models, where forcing the heart to metabolize too much or too little fat was accompanied by cardiac contractile dysfunction and hypertrophy. In cardiac pathologies, such as heart disease and diabetes, aberrations in FA metabolism occur concomitantly with changes in cardiac function. In heart failure, FA oxidation is decreased, correlating with systolic dysfunction and hypertrophy. In contrast, in type 2 diabetes, FA oxidation and triglyceride storage are increased, and correlate with diastolic dysfunction and insulin resistance. Therefore, too much FA metabolism is as detrimental as too little FA metabolism in these settings. Therapeutic compounds that rebalance FA metabolism may provide a mechanism to improve cardiac function in disease. Just like Goldilocks and her porridge, the heart needs to maintain FA metabolism in a zone that is ‘just right’ to support contractile function.
Collapse
|
18
|
Mansor LS, Mehta K, Aksentijevic D, Carr CA, Lund T, Cole MA, Le Page L, Sousa Fialho MDL, Shattock MJ, Aasum E, Clarke K, Tyler DJ, Heather LC. Increased oxidative metabolism following hypoxia in the type 2 diabetic heart, despite normal hypoxia signalling and metabolic adaptation. J Physiol 2016; 594:307-20. [PMID: 26574233 PMCID: PMC4713751 DOI: 10.1113/jp271242] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/10/2015] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS Adaptation to hypoxia makes the heart more oxygen efficient, by metabolising more glucose. In contrast, type 2 diabetes makes the heart metabolise more fatty acids. Diabetes increases the chances of the heart being exposed to hypoxia, but whether the diabetic heart can adapt and respond is unknown. In this study we show that diabetic hearts retain the ability to adapt their metabolism in response to hypoxia, with functional hypoxia signalling pathways. However, the hypoxia-induced changes in metabolism are additive to abnormal baseline metabolism, resulting in hypoxic diabetic hearts metabolising more fat and less glucose than controls. This stops the diabetic heart being able to recover its function when stressed. These results demonstrate that the diabetic heart retains metabolic flexibility to adapt to hypoxia, but is hindered by the baseline effects of the disease. This increases our understanding of how the diabetic heart is affected by hypoxia-associated complications of the disease. ABSTRACT Hypoxia activates the hypoxia-inducible factor (HIF), promoting glycolysis and suppressing mitochondrial respiration. In the type 2 diabetic heart, glycolysis is suppressed whereas fatty acid metabolism is promoted. The diabetic heart experiences chronic hypoxia as a consequence of increased obstructive sleep apnoea and cardiovascular disease. Given the opposing metabolic effects of hypoxia and diabetes, we questioned whether diabetes affects cardiac metabolic adaptation to hypoxia. Control and type 2 diabetic rats were housed for 3 weeks in normoxia or 11% oxygen. Metabolism and function were measured in the isolated perfused heart using radiolabelled substrates. Following chronic hypoxia, both control and diabetic hearts upregulated glycolysis, lactate efflux and glycogen content and decreased fatty acid oxidation rates, with similar activation of HIF signalling pathways. However, hypoxia-induced changes were superimposed on diabetic hearts that were metabolically abnormal in normoxia, resulting in glycolytic rates 30% lower, and fatty acid oxidation 36% higher, in hypoxic diabetic hearts than hypoxic controls. Peroxisome proliferator-activated receptor α target proteins were suppressed by hypoxia, but activated by diabetes. Mitochondrial respiration in diabetic hearts was divergently activated following hypoxia compared with controls. These differences in metabolism were associated with decreased contractile recovery of the hypoxic diabetic heart following an acute hypoxic insult. In conclusion, type 2 diabetic hearts retain metabolic flexibility to adapt to hypoxia, with normal HIF signalling pathways. However, they are more dependent on oxidative metabolism following hypoxia due to abnormal normoxic metabolism, which was associated with a functional deficit in response to stress.
Collapse
Affiliation(s)
- Latt S Mansor
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Keshavi Mehta
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Dunja Aksentijevic
- British Heart Foundation Centre of Research Excellence, King's College London, The Rayne Institute, London, UK
| | - Carolyn A Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Trine Lund
- Department of Medical Biology, University of Tromso, Norway
| | - Mark A Cole
- University of Nottingham Medical School, Queens Medical Centre, Nottingham, UK
| | - Lydia Le Page
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Michael J Shattock
- British Heart Foundation Centre of Research Excellence, King's College London, The Rayne Institute, London, UK
| | - Ellen Aasum
- Department of Medical Biology, University of Tromso, Norway
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Damian J Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Cortassa S, Caceres V, Bell LN, O'Rourke B, Paolocci N, Aon MA. From metabolomics to fluxomics: a computational procedure to translate metabolite profiles into metabolic fluxes. Biophys J 2015; 108:163-72. [PMID: 25564863 DOI: 10.1016/j.bpj.2014.11.1857] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 11/18/2022] Open
Abstract
We describe a believed-novel procedure for translating metabolite profiles (metabolome) into the set of metabolic fluxes (fluxome) from which they originated. Methodologically, computational modeling is integrated with an analytical platform comprising linear optimization, continuation and dynamic analyses, and metabolic control. The procedure was tested with metabolite profiles obtained from ex vivo mice Langendorff-heart preparations perfused with glucose. The metabolic profiles were analyzed using a detailed kinetic model of the glucose catabolic pathways including glycolysis, pentose phosphate (PP), glycogenolysis, and polyols to translate the glucose metabolome of the heart into the fluxome. After optimization, the ability of the model to simulate the initial metabolite profile was confirmed, and metabolic fluxes as well as the structure of control and regulation of the glucose catabolic network could be calculated. We show that the step catalyzed by phosphofructokinase together with ATP demand and glycogenolysis exert the highest control on the glycolytic flux. The negative flux control exerted by phosphofructokinase on the PP and polyol pathways revealed that the extent of glycolytic flux directly affects flux redirection through these pathways, i.e., the higher the glycolytic flux the lower the PP and polyols. This believed-novel methodological approach represents a step forward that may help in designing therapeutic strategies targeted to diagnose, prevent, and treat metabolic diseases.
Collapse
Affiliation(s)
- Sonia Cortassa
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Viviane Caceres
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Brian O'Rourke
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Miguel A Aon
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
20
|
Hafstad AD, Boardman N, Aasum E. How exercise may amend metabolic disturbances in diabetic cardiomyopathy. Antioxid Redox Signal 2015; 22:1587-605. [PMID: 25738326 PMCID: PMC4449627 DOI: 10.1089/ars.2015.6304] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Over-nutrition and sedentary lifestyle has led to a worldwide increase in obesity, insulin resistance, and type 2 diabetes (T2D) associated with an increased risk of development of cardiovascular disorders. Diabetic cardiomyopathy, independent of hypertension or coronary disease, is induced by a range of systemic changes and may through multiple processes result in functional and structural cardiac derangements. The pathogenesis of this cardiomyopathy is complex and multifactorial, and it will eventually lead to reduced cardiac working capacity and increased susceptibility to ischemic injury. RECENT ADVANCES Metabolic disturbances such as altered lipid handling and substrate utilization, decreased mechanical efficiency, mitochondrial dysfunction, disturbances in nonoxidative glucose pathways, and increased oxidative stress are hallmarks of diabetic cardiomyopathy. Interestingly, several of these disturbances are found to precede the development of cardiac dysfunction. CRITICAL ISSUES Exercise training is effective in the prevention and treatment of obesity and T2D. In addition to its beneficial influence on diabetes/obesity-related systemic changes, it may also amend many of the metabolic disturbances characterizing the diabetic myocardium. These changes are due to both indirect effects, exercise-mediated systemic changes, and direct effects originating from the high contractile activity of the heart during physical training. FUTURE DIRECTIONS Revealing the molecular mechanisms behind the beneficial effects of exercise training is of considerable scientific value to generate evidence-based therapy and in the development of new treatment strategies.
Collapse
Affiliation(s)
- Anne D Hafstad
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Neoma Boardman
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ellen Aasum
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
21
|
Aon MA, Tocchetti CG, Bhatt N, Paolocci N, Cortassa S. Protective mechanisms of mitochondria and heart function in diabetes. Antioxid Redox Signal 2015; 22:1563-86. [PMID: 25674814 PMCID: PMC4449630 DOI: 10.1089/ars.2014.6123] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE The heart depends on continuous mitochondrial ATP supply and maintained redox balance to properly develop force, particularly under increased workload. During diabetes, however, myocardial energetic-redox balance is perturbed, contributing to the systolic and diastolic dysfunction known as diabetic cardiomyopathy (DC). CRITICAL ISSUES How these energetic and redox alterations intertwine to influence the DC progression is still poorly understood. Excessive bioavailability of both glucose and fatty acids (FAs) play a central role, leading, among other effects, to mitochondrial dysfunction. However, where and how this nutrient excess affects mitochondrial and cytoplasmic energetic/redox crossroads remains to be defined in greater detail. RECENT ADVANCES We review how high glucose alters cellular redox balance and affects mitochondrial DNA. Next, we address how lipid excess, either stored in lipid droplets or utilized by mitochondria, affects performance in diabetic hearts by influencing cardiac energetic and redox assets. Finally, we examine how the reciprocal energetic/redox influence between mitochondrial and cytoplasmic compartments shapes myocardial mechanical activity during the course of DC, focusing especially on the glutathione and thioredoxin systems. FUTURE DIRECTIONS Protecting mitochondria from losing their ability to generate energy, and to control their own reactive oxygen species emission is essential to prevent the onset and/or to slow down DC progression. We highlight mechanisms enforced by the diabetic heart to counteract glucose/FAs surplus-induced damage, such as lipid storage, enhanced mitochondria-lipid droplet interaction, and upregulation of key antioxidant enzymes. Learning more on the nature and location of mechanisms sheltering mitochondrial functions would certainly help in further optimizing therapies for human DC.
Collapse
Affiliation(s)
- Miguel A Aon
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carlo G Tocchetti
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Niraj Bhatt
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sonia Cortassa
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
22
|
Bakkehaug JP, Kildal AB, Engstad ET, Boardman N, Næsheim T, Rønning L, Aasum E, Larsen TS, Myrmel T, How OJ. Myosin Activator Omecamtiv Mecarbil Increases Myocardial Oxygen Consumption and Impairs Cardiac Efficiency Mediated by Resting Myosin ATPase Activity. Circ Heart Fail 2015; 8:766-75. [PMID: 26025342 DOI: 10.1161/circheartfailure.114.002152] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/27/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Omecamtiv mecarbil (OM) is a novel inotropic agent that prolongs systolic ejection time and increases ejection fraction through myosin ATPase activation. We hypothesized that a potentially favorable energetic effect of unloading the left ventricle, and thus reduction of wall stress, could be counteracted by the prolonged contraction time and ATP-consumption. METHODS AND RESULTS Postischemic left ventricular dysfunction was created by repetitive left coronary occlusions in 7 pigs (7 healthy pigs also included). In both groups, systolic ejection time and ejection fraction increased after OM (0.75 mg/kg loading for 10 minutes, followed by 0.5 mg/kg/min continuous infusion). Cardiac efficiency was assessed by relating myocardial oxygen consumption to the cardiac work indices, stroke work, and pressure-volume area. To circumvent potential neurohumoral reflexes, cardiac efficiency was additionally assessed in ex vivo mouse hearts and isolated myocardial mitochondria. OM impaired cardiac efficiency; there was a 31% and 23% increase in unloaded myocardial oxygen consumption in healthy and postischemic pigs, respectively. Also, the oxygen cost of the contractile function was increased by 63% and 46% in healthy and postischemic pigs, respectively. The increased unloaded myocardial oxygen consumption was confirmed in OM-treated mouse hearts and explained by an increased basal metabolic rate. Adding the myosin ATPase inhibitor, 2,3-butanedione monoxide abolished all surplus myocardial oxygen consumption in the OM-treated hearts. CONCLUSIONS Omecamtiv mecarbil, in a clinically relevant model, led to a significant myocardial oxygen wastage related to both the contractile and noncontractile function. This was mediated by that OM induces a continuous activation in resting myosin ATPase.
Collapse
Affiliation(s)
- Jens Petter Bakkehaug
- From the Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway (J.P.B., A.B.K., E.T.E., N.B., L.R., E.A., T.S.L., O.-J.H.); Cardiovascular Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway (T.N., T.M.); Department of Cardiothoracic and Vascular Surgery, Heart and Lung Clinic, University Hospital of North Norway, Tromsø, Norway (A.B.K., T.M.)
| | - Anders Benjamin Kildal
- From the Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway (J.P.B., A.B.K., E.T.E., N.B., L.R., E.A., T.S.L., O.-J.H.); Cardiovascular Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway (T.N., T.M.); Department of Cardiothoracic and Vascular Surgery, Heart and Lung Clinic, University Hospital of North Norway, Tromsø, Norway (A.B.K., T.M.)
| | - Erik Torgersen Engstad
- From the Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway (J.P.B., A.B.K., E.T.E., N.B., L.R., E.A., T.S.L., O.-J.H.); Cardiovascular Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway (T.N., T.M.); Department of Cardiothoracic and Vascular Surgery, Heart and Lung Clinic, University Hospital of North Norway, Tromsø, Norway (A.B.K., T.M.)
| | - Neoma Boardman
- From the Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway (J.P.B., A.B.K., E.T.E., N.B., L.R., E.A., T.S.L., O.-J.H.); Cardiovascular Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway (T.N., T.M.); Department of Cardiothoracic and Vascular Surgery, Heart and Lung Clinic, University Hospital of North Norway, Tromsø, Norway (A.B.K., T.M.)
| | - Torvind Næsheim
- From the Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway (J.P.B., A.B.K., E.T.E., N.B., L.R., E.A., T.S.L., O.-J.H.); Cardiovascular Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway (T.N., T.M.); Department of Cardiothoracic and Vascular Surgery, Heart and Lung Clinic, University Hospital of North Norway, Tromsø, Norway (A.B.K., T.M.)
| | - Leif Rønning
- From the Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway (J.P.B., A.B.K., E.T.E., N.B., L.R., E.A., T.S.L., O.-J.H.); Cardiovascular Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway (T.N., T.M.); Department of Cardiothoracic and Vascular Surgery, Heart and Lung Clinic, University Hospital of North Norway, Tromsø, Norway (A.B.K., T.M.)
| | - Ellen Aasum
- From the Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway (J.P.B., A.B.K., E.T.E., N.B., L.R., E.A., T.S.L., O.-J.H.); Cardiovascular Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway (T.N., T.M.); Department of Cardiothoracic and Vascular Surgery, Heart and Lung Clinic, University Hospital of North Norway, Tromsø, Norway (A.B.K., T.M.)
| | - Terje Steinar Larsen
- From the Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway (J.P.B., A.B.K., E.T.E., N.B., L.R., E.A., T.S.L., O.-J.H.); Cardiovascular Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway (T.N., T.M.); Department of Cardiothoracic and Vascular Surgery, Heart and Lung Clinic, University Hospital of North Norway, Tromsø, Norway (A.B.K., T.M.)
| | - Truls Myrmel
- From the Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway (J.P.B., A.B.K., E.T.E., N.B., L.R., E.A., T.S.L., O.-J.H.); Cardiovascular Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway (T.N., T.M.); Department of Cardiothoracic and Vascular Surgery, Heart and Lung Clinic, University Hospital of North Norway, Tromsø, Norway (A.B.K., T.M.)
| | - Ole-Jakob How
- From the Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway (J.P.B., A.B.K., E.T.E., N.B., L.R., E.A., T.S.L., O.-J.H.); Cardiovascular Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway (T.N., T.M.); Department of Cardiothoracic and Vascular Surgery, Heart and Lung Clinic, University Hospital of North Norway, Tromsø, Norway (A.B.K., T.M.).
| |
Collapse
|
23
|
Lund J, Hafstad AD, Boardman NT, Rossvoll L, Rolim NP, Ahmed MS, Florholmen G, Attramadal H, Wisløff U, Larsen TS, Aasum E. Exercise training promotes cardioprotection through oxygen-sparing action in high fat-fed mice. Am J Physiol Heart Circ Physiol 2015; 308:H823-9. [PMID: 25637547 DOI: 10.1152/ajpheart.00734.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/28/2015] [Indexed: 11/22/2022]
Abstract
Although exercise training has been demonstrated to have beneficial cardiovascular effects in diabetes, the effect of exercise training on hearts from obese/diabetic models is unclear. In the present study, mice were fed a high-fat diet, which led to obesity, reduced aerobic capacity, development of mild diastolic dysfunction, and impaired glucose tolerance. Following 8 wk on high-fat diet, mice were assigned to 5 weekly high-intensity interval training (HIT) sessions (10 × 4 min at 85-90% of maximum oxygen uptake) or remained sedentary for the next 10 constitutive weeks. HIT increased maximum oxygen uptake by 13%, reduced body weight by 16%, and improved systemic glucose homeostasis. Exercise training was found to normalize diastolic function, attenuate diet-induced changes in myocardial substrate utilization, and dampen cardiac reactive oxygen species content and fibrosis. These changes were accompanied by normalization of obesity-related impairment of mechanical efficiency due to a decrease in work-independent myocardial oxygen consumption. Finally, we found HIT to reduce infarct size by 47% in ex vivo hearts subjected to ischemia-reperfusion. This study therefore demonstrated for the first time that exercise training mediates cardioprotection following ischemia in diet-induced obese mice and that this was associated with oxygen-sparing effects. These findings highlight the importance of optimal myocardial energetics during ischemic stress.
Collapse
Affiliation(s)
- J Lund
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway;
| | - A D Hafstad
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - N T Boardman
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - L Rossvoll
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - N P Rolim
- K. G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology and Saint Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; and
| | - M S Ahmed
- Institute for Surgical Research, Department of Cardiology, Center for Heart Failure Research, Oslo University Hospital-Rikshospitalet, University of Oslo, Oslo, Norway
| | - G Florholmen
- Institute for Surgical Research, Department of Cardiology, Center for Heart Failure Research, Oslo University Hospital-Rikshospitalet, University of Oslo, Oslo, Norway
| | - H Attramadal
- Institute for Surgical Research, Department of Cardiology, Center for Heart Failure Research, Oslo University Hospital-Rikshospitalet, University of Oslo, Oslo, Norway
| | - U Wisløff
- K. G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology and Saint Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; and
| | - T S Larsen
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - E Aasum
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
24
|
Bhatt NM, Aon MA, Tocchetti CG, Shen X, Dey S, Ramirez-Correa G, O'Rourke B, Gao WD, Cortassa S. Restoring redox balance enhances contractility in heart trabeculae from type 2 diabetic rats exposed to high glucose. Am J Physiol Heart Circ Physiol 2014; 308:H291-302. [PMID: 25485897 DOI: 10.1152/ajpheart.00378.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hearts from type 2 diabetic (T2DM) subjects are chronically subjected to hyperglycemia and hyperlipidemia, both thought to contribute to oxidizing conditions and contractile dysfunction. How redox alterations and contractility interrelate, ultimately diminishing T2DM heart function, remains poorly understood. Herein we tested whether the fatty acid palmitate (Palm), in addition to its energetic contribution, rescues function by improving redox [glutathione (GSH), NAD(P)H, less oxidative stress] in T2DM rat heart trabeculae subjected to high glucose. Using cardiac trabeculae from Zucker Diabetic Fatty (ZDF) rats, we assessed the impact of low glucose (EG) and high glucose (HG), in absence or presence of Palm or insulin, on force development, energetics, and redox responses. We found that in EG ZDF and lean trabeculae displayed similar contractile work, yield of contractile work (Ycw), representing the ratio of force time integral over rate of O2 consumption. Conversely, HG had a negative impact on Ycw, whereas Palm, but not insulin, completely prevented contractile loss. This effect was associated with higher GSH, less oxidative stress, and augmented matrix GSH/thioredoxin (Trx) in ZDF mitochondria. Restoration of myocardial redox with GSH ethyl ester also rescued ZDF contractile function in HG, independently from Palm. These results support the idea that maintained redox balance, via increased GSH and Trx antioxidant activities to resist oxidative stress, is an essential protective response of the diabetic heart to keep contractile function.
Collapse
Affiliation(s)
- Niraj M Bhatt
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Miguel A Aon
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Carlo G Tocchetti
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Xiaoxu Shen
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Swati Dey
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Genaro Ramirez-Correa
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Wei Dong Gao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sonia Cortassa
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
25
|
Shen X, Bhatt N, Xu J, Meng T, Aon MA, O'Rourke B, Berkowitz DE, Cortassa S, Gao WD. Effect of isoflurane on myocardial energetic and oxidative stress in cardiac muscle from Zucker diabetic fatty rat. J Pharmacol Exp Ther 2014; 349:21-8. [PMID: 24431470 PMCID: PMC3965886 DOI: 10.1124/jpet.113.211144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/14/2014] [Indexed: 11/22/2022] Open
Abstract
The effect of inhalational anesthetics on myocardial contraction and energetics in type 2 diabetes mellitus is unknown. We investigated the effect of isoflurane (ISO) on force and intracellular Ca(2+) transient (iCa), myocardial oxygen consumption (MVo(2)), and energetics/redox behavior in trabecular muscles from Zucker diabetic fatty (ZDF) rats. At baseline, force and corresponding iCa were lower in ZDF trabeculae than in controls. ISO decreased force in both groups in a dose-dependent manner. ISO did not affect iCa amplitude in controls, but ISO > 1.5% significantly reduced iCa amplitude in ZDF trabeculae. ISO-induced force depression fully recovered as a result of increased iCa when external Ca(2+) was raised in controls. However, both force and iCa remained low in ZDF muscle at elevated external Ca(2+). In controls, force, iCa, and MVo(2) increased when stimulation frequency was increased from 0.5 to 1.5 Hz. ZDF muscles, however, exhibited blunted responses in force and iCa and decreased MVo(2). Oxidative stress levels were unchanged in control muscles but increased significantly in ZDF muscles after exposure to ISO. Finally, the depressive effect of ISO was prevented by 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (Tempol) in ZDF muscles. These findings suggest that ISO dose-dependently attenuates force in control and ZDF muscles with differential effect on iCa. The mechanism of force depression by ISO in controls is mainly decreased myofilament Ca(2+) sensitivity, whereas in ZDF muscles the ISO-induced decrease in contraction is due to worsening oxidative stress, which inhibits iCa and force development.
Collapse
Affiliation(s)
- Xiaoxu Shen
- Cardiology Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China (X.S.); Division of Cardiology, Department of Medicine (N.B., M.A.A., B.O., S.C.), and Department of Anesthesiology and Critical Care Medicine (T.M., D.E.B., W.D.G.), The Johns Hopkins University School of Medicine, Baltimore, Maryland; and Department of Anesthesiology, 1st Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (J.X.)
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Boardman NT, Aronsen JM, Louch WE, Sjaastad I, Willoch F, Christensen G, Sejersted O, Aasum E. Impaired left ventricular mechanical and energetic function in mice after cardiomyocyte-specific excision of Serca2. Am J Physiol Heart Circ Physiol 2014; 306:H1018-24. [PMID: 24486508 DOI: 10.1152/ajpheart.00741.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sarco(endo)plasmic reticulum Ca2+ -ATPase (SERCA)2 transports Ca2+ from the cytosol into the sarcoplasmic reticulum of cardiomyocytes and is essential for maintaining myocardial Ca2+ handling and thus the mechanical function of the heart. SERCA2 is a major ATP consumer in excitation-contraction coupling but is regarded to contribute to energetically efficient Ca2+ handling in the cardiomyocyte. Previous studies using cardiomyocyte-specific SERCA2 knockout (KO) mice have demonstrated that decreased SERCA2 activity reduces the Ca2+ transient amplitude and induces compensatory Ca2+ transport mechanisms that may lead to more inefficient Ca2+ transport. In this study, we examined the relationship between left ventricular (LV) function and myocardial O2 consumption (MVo2) in ex vivo hearts from SERCA2 KO mice to directly measure how SERCA2 elimination influences mechanical and energetic features of the heart. Ex vivo hearts from SERCA2 KO hearts developed mechanical dysfunction at 4 wk and demonstrated virtually no working capacity at 7 wk. In accordance with the reported reduction in Ca2+ transient amplitude in cardiomyocytes from SERCA2 KO mice, work-independent MVo2 was decreased due to a reduced energy cost of excitation-contraction coupling. As these hearts also showed a marked impairment in the efficiency of chemomechanical energy transduction (contractile efficiency, i.e, work-dependent MVo2), hearts from SERCA2 KO mice were found to be mechanically inefficient. This ex vivo evaluation of mechanical and energetic function in hearts from SERCA2 KO mice brings together findings from previous experimental and mathematical modeling-based studies and demonstrates that reduced SERCA2 activity not only leads to mechanical dysfunction but also to energetic dysfunction.
Collapse
Affiliation(s)
- N T Boardman
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Artic University of Norway, Tromsø, Norway
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Hafstad AD, Lund J, Hadler-Olsen E, Höper AC, Larsen TS, Aasum E. High- and moderate-intensity training normalizes ventricular function and mechanoenergetics in mice with diet-induced obesity. Diabetes 2013; 62:2287-94. [PMID: 23493573 PMCID: PMC3712042 DOI: 10.2337/db12-1580] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Although exercise reduces several cardiovascular risk factors associated with obesity/diabetes, the metabolic effects of exercise on the heart are not well-known. This study was designed to investigate whether high-intensity interval training (HIT) is superior to moderate-intensity training (MIT) in counteracting obesity-induced impairment of left ventricular (LV) mechanoenergetics and function. C57BL/6J mice with diet-induced obesity (DIO mice) displaying a cardiac phenotype with altered substrate utilization and impaired mechanoenergetics were subjected to a sedentary lifestyle or 8-10 weeks of isocaloric HIT or MIT. Although both modes of exercise equally improved aerobic capacity and reduced obesity, only HIT improved glucose tolerance. Hearts from sedentary DIO mice developed concentric LV remodeling with diastolic and systolic dysfunction, which was prevented by both HIT and MIT. Both modes of exercise also normalized LV mechanical efficiency and mechanoenergetics. These changes were associated with altered myocardial substrate utilization and improved mitochondrial capacity and efficiency, as well as reduced oxidative stress, fibrosis, and intracellular matrix metalloproteinase 2 content. As both modes of exercise equally ameliorated the development of diabetic cardiomyopathy by preventing LV remodeling and mechanoenergetic impairment, this study advocates the therapeutic potential of physical activity in obesity-related cardiac disorders.
Collapse
Affiliation(s)
- Anne D Hafstad
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway.
| | | | | | | | | | | |
Collapse
|
28
|
Novel aspects of ROS signalling in heart failure. Basic Res Cardiol 2013; 108:359. [PMID: 23740217 DOI: 10.1007/s00395-013-0359-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/03/2013] [Accepted: 05/05/2013] [Indexed: 12/20/2022]
Abstract
Heart failure and many of the conditions that predispose to heart failure are associated with oxidative stress. This is considered to be important in the pathophysiology of the condition but clinical trials of antioxidant approaches to prevent cardiovascular morbidity and mortality have been unsuccessful. Part of the reason for this may be the failure to appreciate the complexity of the effects of reactive oxygen species. At one extreme, excessive oxidative stress damages membranes, proteins and DNA but lower levels of reactive oxygen species may exert much more subtle and specific regulatory effects (termed redox signalling), even on physiological signalling pathways. In this article, we review our current understanding of the roles of such redox signalling pathways in the pathophysiology of heart failure, including effects on cardiomyocyte hypertrophy signalling, excitation-contraction coupling, arrhythmia, cell viability and energetics. Reactive oxygen species generated by NADPH oxidase proteins appear to be especially important in redox signalling. The delineation of specific redox-sensitive pathways and mechanisms that contribute to different components of the failing heart phenotype may facilitate the development of newer targeted therapies as opposed to the failed general antioxidant approaches of the past.
Collapse
|
29
|
Boudina S, Han YH, Pei S, Tidwell TJ, Henrie B, Tuinei J, Olsen C, Sena S, Abel ED. UCP3 regulates cardiac efficiency and mitochondrial coupling in high fat-fed mice but not in leptin-deficient mice. Diabetes 2012; 61:3260-9. [PMID: 22912419 PMCID: PMC3501860 DOI: 10.2337/db12-0063] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
These studies investigate the role of uncoupling protein 3 (UCP3) in cardiac energy metabolism, cardiac O(2) consumption (MVO(2)), cardiac efficiency (CE), and mitochondrial uncoupling in high fat (HF)-fed or leptin-deficient mice. UCP3KO and wild-type (WT) mice were fed normal chow or HF diets for 10 weeks. Substrate utilization rates, MVO(2), CE, and mitochondrial uncoupling were measured in perfused working hearts and saponin-permeabilized cardiac fibers, respectively. Similar analyses were performed in hearts of ob/ob mice lacking UCP3 (U3OB mice). HF increased cardiac UCP3 protein. However, fatty acid (FA) oxidation rates were similarly increased by HF diet in WT and UCP3KO mice. By contrast, MVO(2) increased in WT, but not in UCP3KO with HF, leading to increased CE in UCP3KO mice. Consistent with increased CE, mitochondrial coupling was increased in the hearts of HF-fed UCP3KO mice. Unexpectedly, UCP3 deletion in ob/ob mice reduced FA oxidation but had no effect on MVO(2) or CE. In addition, FA-induced mitochondrial uncoupling was similarly enhanced in U3OB compared with ob/ob hearts and was associated with elevated mitochondrial thioesterase-1 protein content. These studies show that although UCP3 may mediate mitochondrial uncoupling and reduced CE after HF feeding, it does not mediate uncoupling in leptin-deficient states.
Collapse
Affiliation(s)
- Sihem Boudina
- Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tocchetti CG, Caceres V, Stanley BA, Xie C, Shi S, Watson WH, O’Rourke B, Spadari-Bratfisch RC, Cortassa S, Akar FG, Paolocci N, Aon MA. GSH or palmitate preserves mitochondrial energetic/redox balance, preventing mechanical dysfunction in metabolically challenged myocytes/hearts from type 2 diabetic mice. Diabetes 2012; 61:3094-105. [PMID: 22807033 PMCID: PMC3501888 DOI: 10.2337/db12-0072] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In type 2 diabetes, hyperglycemia and increased sympathetic drive may alter mitochondria energetic/redox properties, decreasing the organelle's functionality. These perturbations may prompt or sustain basal low-cardiac performance and limited exercise capacity. Yet the precise steps involved in this mitochondrial failure remain elusive. Here, we have identified dysfunctional mitochondrial respiration with substrates of complex I, II, and IV and lowered thioredoxin-2/glutathione (GSH) pools as the main processes accounting for impaired state 4→3 energetic transition shown by mitochondria from hearts of type 2 diabetic db/db mice upon challenge with high glucose (HG) and the β-agonist isoproterenol (ISO). By mimicking clinically relevant conditions in type 2 diabetic patients, this regimen triggers a major overflow of reactive oxygen species (ROS) from mitochondria that directly perturbs cardiac electro-contraction coupling, ultimately leading to heart dysfunction. Exogenous GSH or, even more so, the fatty acid palmitate rescues basal and β-stimulated function in db/db myocyte/heart preparations exposed to HG/ISO. This occurs because both interventions provide the reducing equivalents necessary to counter mitochondrial ROS outburst and energetic failure. Thus, in the presence of poor glycemic control, the diabetic patient's inability to cope with increased cardiac work demand largely stems from mitochondrial redox/energetic disarrangements that mutually influence each other, leading to myocyte or whole-heart mechanical dysfunction.
Collapse
Affiliation(s)
- Carlo G. Tocchetti
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Viviane Caceres
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brian A. Stanley
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chaoqin Xie
- Cardiovascular Research Center, Division of Cardiology, Mount Sinai School of Medicine, New York, New York
| | - Sa Shi
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Walter H. Watson
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, Kentucky
| | - Brian O’Rourke
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Sonia Cortassa
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Fadi G. Akar
- Cardiovascular Research Center, Division of Cardiology, Mount Sinai School of Medicine, New York, New York
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Dipartimento di Medicina Clinica e Sperimentale, Universita di Perugia, Perugia, Italy
| | - Miguel A. Aon
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Corresponding author: Miguel A. Aon,
| |
Collapse
|
31
|
Han JC, Tran K, Taberner AJ, Nickerson DP, Kirton RS, Nielsen PMF, Ward ML, Nash MP, Crampin EJ, Loiselle DS. Myocardial twitch duration and the dependence of oxygen consumption on pressure-volume area: experiments and modelling. J Physiol 2012; 590:4603-22. [PMID: 22570375 PMCID: PMC3477760 DOI: 10.1113/jphysiol.2012.228965] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 05/02/2012] [Indexed: 11/08/2022] Open
Abstract
We tested the proposition that linear length dependence of twitch duration underlies the well-characterised linear dependence of oxygen consumption (V(O(2)) ) on pressure–volume area (PVA) in the heart. By way of experimental simplification, we reduced the problem from three dimensions to one by substituting cardiac trabeculae for the classically investigated whole-heart. This allowed adoption of stress–length area (SLA) as a surrogate for PVA, and heat as a proxy for V(O(2)) . Heat and stress (force per cross-sectional area), at a range of muscle lengths and at both 1 mM and 2 mM [Ca(2+)](o), were recorded from continuously superfused rat right-ventricular trabeculae undergoing fixed-end contractions. The heat–SLA relations of trabeculae (reported here, for the first time) are linear. Twitch duration increases monotonically (but not strictly linearly) with muscle length. We probed the cellular mechanisms of this phenomenon by determining: (i) the length dependence of the duration of the Ca(2+) transient, (ii) the length dependence of the rate of force redevelopment following a length impulse (an index of Ca(2+) binding to troponin-C), (iii) the effect on the simulated time course of the twitch of progressive deletion of length and Ca(2+)-dependent mechanisms of crossbridge cooperativity, using a detailed mathematical model of the crossbridge cycle, and (iv) the conditions required to achieve these multiple length dependencies, using a greatly simplified model of twitch mechano-energetics. From the results of these four independent investigations, we infer that the linearity of the heat–SLA relation (and, by analogy, the V(O(2))–PVA relation) is remarkably robust in the face of departures from linearity of length-dependent twitch duration.
Collapse
Affiliation(s)
- J-C Han
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Anzawa R, Seki S, Nagoshi T, Taniguchi I, Feuvray D, Yoshimura M. The role of Na+/H+ exchanger in Ca2+ overload and ischemic myocardial damage in hearts from type 2 diabetic db/db mice. Cardiovasc Diabetol 2012; 11:33. [PMID: 22490613 PMCID: PMC3366908 DOI: 10.1186/1475-2840-11-33] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 04/11/2012] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND A higher increase in intracellular Na(+) via Na(+)/H(+) exchanger (NHE) during ischemia has been reported in type 2 diabetic mouse hearts. We investigated the role of NHE in inducing changes in cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) and alterations in ventricular function during ischemia-reperfusion in type 2 diabetic mouse hearts. METHODS Hearts from male type 2 diabetic db/db (12-15 weeks old) and age-matched control db/+ mice were subjected to Langendorff perfusion and loaded with 4 μM of the Ca(2+) indicator fura-2. The hearts were exposed to no-flow ischemia for 15 minutes and then reperfused. [Ca(2+)](i) was measured by monitoring fura-2 fluorescence at 500 nm (excitation wavelengths of 340 and 380 nm), while left ventricular (LV) pressure was simultaneously measured. RESULTS db/db hearts exhibited a lower recovery of LV developed pressure than db/+ hearts during reperfusion following ischemia. Diastolic [Ca(2+)](i) was increased to a greater level in diabetic hearts than in the control hearts during ischemia and reperfusion. Such an increase in cytoplasmic Ca(2+) overload during ischemia-reperfusion in diabetic hearts was markedly reduced in the presence of the NHE inhibitor cariporide. This was accompanied by a significantly improved recovery of ventricular function on reperfusion, as shown by a lower increase in diastolic pressure and increased recovery of developed pressure. CONCLUSION NHE plays a key role in enhancing cytoplasmic Ca(2+) overload during ischemia-reperfusion and severely impairing post-ischemic cardiac function in hearts from type 2 diabetic db/db mice.
Collapse
Affiliation(s)
- Ryuko Anzawa
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Belke DD, Severson DL. Diabetes in mice with monogenic obesity: the db/db mouse and its use in the study of cardiac consequences. Methods Mol Biol 2012; 933:47-57. [PMID: 22893400 DOI: 10.1007/978-1-62703-068-7_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The leptin receptor deficient db/db mouse has served as a rodent model for obesity and type 2 diabetes for more than 40 years. Diabetic features in db/db mice follow an age-dependent progression, with early insulin resistance followed by an insulin secretory defect resulting in profound hyperglycemia. Diabetic db/db mice have been utilized to assess the cardiac consequences of diabetes, specifically evidence for a distinct diabetic cardiomyopathy. The db/db model is characterized by a contractile function deficit in the heart which becomes manifest 8-10 weeks after birth. Metabolic changes include an increased reliance on fatty acids and a decreased reliance on glucose as a fuel source for oxidative metabolism within the heart. As a mouse model for type 2 diabetes, both drug treatment and transgenic manipulation have proven beneficial towards improving metabolism and contractile function. The db/db mouse model has provided a useful resource to understand and treat the type 2 diabetic condition.
Collapse
|
34
|
Hafstad AD, Boardman NT, Lund J, Hagve M, Khalid AM, Wisløff U, Larsen TS, Aasum E. High intensity interval training alters substrate utilization and reduces oxygen consumption in the heart. J Appl Physiol (1985) 2011; 111:1235-41. [PMID: 21836050 DOI: 10.1152/japplphysiol.00594.2011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
AIMS although exercise training induces hypertrophy with improved contractile function, the effect of exercise on myocardial substrate metabolism and cardiac efficiency is less clear. High intensity training has been shown to produce more profound effects on cardiovascular function and aerobic capacity than isocaloric low and moderate intensity training. The aim of the present study was to explore metabolic and mechanoenergetic changes in the heart following endurance exercise training of both high and moderate intensity. METHODS AND RESULTS C57BL/6J mice were subjected to 10 wk treadmill running, either high intensity interval training (HIT) or distance-matched moderate intensity training (MIT), where HIT led to a pronounced increase in maximal oxygen uptake. Although both modes of exercise were associated with a 10% increase in heart weight-to-body weight ratio, only HIT altered cardiac substrate utilization, as revealed by a 36% increase in glucose oxidation and a concomitant reduction in fatty acid oxidation. HIT also improved cardiac efficiency by decreasing work-independent myocardial oxygen consumption. In addition, it increased cardiac maximal mitochondrial respiratory capacity. CONCLUSION This study shows that high intensity training is required for induction of changes in cardiac substrate utilization and energetics, which may contribute to the superior effects of high compared with moderate intensity training in terms of increasing aerobic capacity.
Collapse
Affiliation(s)
- A D Hafstad
- Cardiovascular Research Group, Institute of Medical Biology, Faculty of Health Sciences, Univ. of Tromsø, N-9037 Tromsø, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Khalid AM, Hafstad AD, Larsen TS, Severson DL, Boardman N, Hagve M, Berge RK, Aasum E. Cardioprotective effect of the PPAR ligand tetradecylthioacetic acid in type 2 diabetic mice. Am J Physiol Heart Circ Physiol 2011; 300:H2116-22. [DOI: 10.1152/ajpheart.00357.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tetradecylthioacetic acid (TTA) is a novel peroxisome proliferator-activated receptor (PPAR) ligand with marked hypolipidemic and insulin-sensitizing effects in obese models. TTA has recently been shown to attenuate dyslipidemia in patients with type 2 diabetes, corroborating the potential for TTA in antidiabetic therapy. In a recent study on normal mice, we showed that TTA increased myocardial fatty acid (FA) oxidation, which was associated with decreased cardiac efficiency and impaired postischemic functional recovery. The aim of the present study was, therefore, to elucidate the effects of TTA treatment (0.5%, 8 days) on cardiac metabolism and function in a hyperlipidemic type 2 diabetic model. We found that TTA treatment increased myocardial FA oxidation, not only in nondiabetic ( db/+) mice but also in diabetic ( db/db) mice, despite a clear lipid-lowering effect. Although TTA had deleterious effects in hearts from nondiabetic mice (decreased efficiency and impaired mitochondrial respiratory capacity), these effects were not observed in db/db hearts. In db/db hearts, TTA improved ischemic tolerance, an effect that is most likely related to the antioxidant property of TTA. The present study strongly advocates the need for investigation of the cardiac effects of PPAR ligands used in antidiabetic/hypolipidemic therapy, because of their pleiotropic properties.
Collapse
Affiliation(s)
- Ahmed M. Khalid
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø
| | - Anne Dragøy Hafstad
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø
| | - Terje S. Larsen
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø
| | - David L. Severson
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Neoma Boardman
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø
| | - Martin Hagve
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø
| | - Rolf K. Berge
- The Lipid Research Group, Institute of Medicine, University of Bergen, Norway; and
| | - Ellen Aasum
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø
| |
Collapse
|
36
|
McGill JB, Peterson LR, Herrero P, Saeed IM, Recklein C, Coggan AR, DeMoss AJ, Schechtman KB, Dence CS, Gropler RJ. Potentiation of abnormalities in myocardial metabolism with the development of diabetes in women with obesity and insulin resistance. J Nucl Cardiol 2011; 18:421-9; quiz 432-3. [PMID: 21516378 PMCID: PMC3811030 DOI: 10.1007/s12350-011-9362-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 02/16/2011] [Indexed: 01/22/2023]
Abstract
BACKGROUND Because studies in animal models of type-2 diabetes mellitus (DM) show that excessive myocardial fatty acid (FA) metabolism (at the expense of glucose metabolism) cause cardiac dysfunction, we hypothesized that women with DM would have more FA and less glucose myocardial metabolism than normal or even obese (OB) women. RESEARCH DESIGN AND METHODS Women who were lean volunteers (NV) (N = 14; age 35 ± 17 years, body mass index 23 ± 1 kg/m(2)), OB (N = 28;31 ± 6 years, BMI 39 ± 7 kg/m2), and DM (n = 22; 54 ± 11 years, BMI 38 ± 5 kg/m2) were studied. Cardiac positron emission tomography was performed for the determination of myocardial blood flow, oxygen consumption, FA and glucose metabolism. Cardiac work was measured by echocardiography and efficiency by the ratio of work to myocardial oxygen consumption. RESULTS Fractional glucose uptake was comparable between NV and OB but lower in DM (P < .05 versus NV). Myocardial FA utilization and oxidation were both higher in DM compared with NV and OB (P < .0001). Myocardial FA utilization and oxidation had positive correlations with HOMA (R = 0.35, P = .005 and R = 0.40, P = .001, respectively) whereas fractional glucose uptake exhibited an inverse correlation (R = -.31, P = .01). Cardiac work and efficiency were similar among the three groups. CONCLUSIONS In women, the presence of OB and DM compared with OB alone is associated with a greater reliance on myocardial FA metabolism at the expense of glucose metabolism. These perturbations in myocardial metabolism are not associated in a decline left ventricular efficiency or function suggesting that the metabolic perturbations may precede an eventual decline left ventricular function as is seen in animal models of DM.
Collapse
Affiliation(s)
- Janet B. McGill
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Linda R. Peterson
- Division of Cardiovascular Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Division of Radiological Sciences, Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Pilar Herrero
- Division of Radiological Sciences, Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Ibrahim M. Saeed
- Division of Cardiovascular Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Carol Recklein
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Andrew R. Coggan
- Division of Radiological Sciences, Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Amanda J. DeMoss
- Division of Radiological Sciences, Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | | | - Carmen S. Dence
- Division of Radiological Sciences, Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Robert J. Gropler
- Division of Cardiovascular Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Division of Radiological Sciences, Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
- Cardiovascular Imaging Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
37
|
Boardman NT, Larsen TS, Severson DL, Essop MF, Aasum E. Chronic and acute exposure of mouse hearts to fatty acids increases oxygen cost of excitation-contraction coupling. Am J Physiol Heart Circ Physiol 2011; 300:H1631-6. [DOI: 10.1152/ajpheart.01190.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of the present study was to evaluate the underlying processes involved in the oxygen wasting induced by inotropic drugs and acute and chronic elevation of fatty acid (FA) supply, using unloaded perfused mouse hearts from normal and type 2 diabetic ( db/db) mice. We found that an acute elevation of the FA supply in normal hearts, as well as a chronic (in vivo) exposure to elevated FA as in db/db hearts, increased myocardial oxygen consumption (MV̇o2unloaded) due to increased oxygen cost for basal metabolism and for excitation-contraction (EC) coupling. Isoproterenol stimulation, on top of a high FA supply, led to an additive increase in MV̇o2unloaded, because of a further increase in oxygen cost for EC coupling. In db/db hearts, the acute elevation of FA did not further increase MV̇o2. Since the elevation in the FA supply is accompanied by increased rates of myocardial FA oxidation, the present study compared MV̇o2 following increased FA load versus FA oxidation rate by exposing normal hearts to normal and high FA concentration (NF and HF, respectively) and to compounds that either stimulate (GW-610742) or inhibit [dichloroacetate (DCA)] FA oxidation. While HF and NF + GW-610742 increased FA oxidation to the same extent, only HF increased MV̇o2unloaded. Although DCA counteracted the HF-induced increase in FA oxidation, DCA did not reduce MV̇o2unloaded. Thus, in normal hearts, acute FA-induced oxygen waste is 1) due to an increase in the oxygen cost for both basal metabolism and EC coupling and 2) not dependent on the myocardial FA oxidation rate per se, but on processes initiated by the presence of FAs. In diabetic hearts, chronic exposure to elevated circulating FAs leads to adaptations that afford protection against the detrimental effect of an acute FA load, suggesting different underlying mechanisms behind the increased MV̇o2 following acute and chronic FA load.
Collapse
Affiliation(s)
- Neoma T. Boardman
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Terje S. Larsen
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - David L. Severson
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Canada; and
| | - M. Faadiel Essop
- Cardio-Metabolic Research Group, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Ellen Aasum
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| |
Collapse
|
38
|
Heather LC, Clarke K. Metabolism, hypoxia and the diabetic heart. J Mol Cell Cardiol 2011; 50:598-605. [PMID: 21262230 DOI: 10.1016/j.yjmcc.2011.01.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 01/06/2011] [Accepted: 01/11/2011] [Indexed: 12/18/2022]
Abstract
The diabetic heart becomes metabolically remodelled as a consequence of exposure to abnormal circulating substrates and hormones. Fatty acid uptake and metabolism are increased in the type 2 diabetic heart, resulting in accumulation of intracellular lipid intermediates and an increased contribution of fatty acids towards energy generation. Cardiac glucose uptake and oxidation are decreased, predominantly due to increased fatty acid metabolism, which suppresses glucose utilisation via the Randle cycle. These metabolic changes decrease cardiac efficiency and energetics in both humans and animal models of diabetes. Diabetic hearts have decreased recovery following ischemia, indicating a reduced tolerance to oxygen-limited conditions. There is evidence that diabetic hearts have a compromised hypoxia signalling pathway, as hypoxia-inducible factor (HIF) and downstream signalling from HIF are reduced following ischemia. Failure to activate HIF under oxygen-limited conditions results in less angiogenesis, and an inability to upregulate glycolytic ATP generation. Given that glycolysis is already suppressed in the diabetic heart under normoxic conditions, the inability to upregulate glycolysis in response to hypoxia may have deleterious effects on ATP production. Thus, impaired HIF signalling may contribute to metabolic and energetic abnormalities, and impaired collateral vessel development following myocardial infarction in the type 2 diabetic heart.
Collapse
Affiliation(s)
- Lisa C Heather
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | | |
Collapse
|
39
|
Cole MA, Murray AJ, Cochlin LE, Heather LC, McAleese S, Knight NS, Sutton E, Jamil AA, Parassol N, Clarke K. A high fat diet increases mitochondrial fatty acid oxidation and uncoupling to decrease efficiency in rat heart. Basic Res Cardiol 2011; 106:447-57. [PMID: 21318295 PMCID: PMC3071466 DOI: 10.1007/s00395-011-0156-1] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/12/2010] [Accepted: 12/23/2010] [Indexed: 12/03/2022]
Abstract
Elevated levels of cardiac mitochondrial uncoupling protein 3 (UCP3) and decreased cardiac efficiency (hydraulic power/oxygen consumption) with abnormal cardiac function occur in obese, diabetic mice. To determine whether cardiac mitochondrial uncoupling occurs in non-genetic obesity, we fed rats a high fat diet (55% kcal from fat) or standard laboratory chow (7% kcal from fat) for 3 weeks, after which we measured cardiac function in vivo using cine MRI, efficiency in isolated working hearts and respiration rates and ADP/O ratios in isolated interfibrillar mitochondria; also, measured were medium chain acyl-CoA dehydrogenase (MCAD) and citrate synthase activities plus uncoupling protein 3 (UCP3), mitochondrial thioesterase 1 (MTE-1), adenine nucleotide translocase (ANT) and ATP synthase protein levels. We found that in vivo cardiac function was the same for all rats, yet oxygen consumption was 19% higher in high fat-fed rat hearts, therefore, efficiency was 21% lower than in controls. We found that mitochondrial fatty acid oxidation rates were 25% higher, and MCAD activity was 23% higher, in hearts from rats fed the high fat diet when compared with controls. Mitochondria from high fat-fed rat hearts had lower ADP/O ratios than controls, indicating increased respiratory uncoupling, which was ameliorated by GDP, a UCP3 inhibitor. Mitochondrial UCP3 and MTE-1 levels were both increased by 20% in high fat-fed rat hearts when compared with controls, with no significant change in ATP synthase or ANT levels, or citrate synthase activity. We conclude that increased cardiac oxygen utilisation, and thereby decreased cardiac efficiency, occurs in non-genetic obesity, which is associated with increased mitochondrial uncoupling due to elevated UCP3 and MTE-1 levels.
Collapse
Affiliation(s)
- Mark A Cole
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Daniels A, van Bilsen M, Janssen BJA, Brouns AE, Cleutjens JPM, Roemen THM, Schaart G, van der Velden J, van der Vusse GJ, van Nieuwenhoven FA. Impaired cardiac functional reserve in type 2 diabetic db/db mice is associated with metabolic, but not structural, remodelling. Acta Physiol (Oxf) 2010; 200:11-22. [PMID: 20175764 DOI: 10.1111/j.1748-1716.2010.02102.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIM To identify the initial alterations in myocardial tissue associated with the early signs of diabetic cardiac haemodynamic dysfunction, we monitored changes in cardiac function, structural remodelling and gene expression in hearts of type 2 diabetic db/db mice. METHODS Cardiac dimensions and function were determined echocardiographically at 8, 12, 16 and 18 weeks of age. Left ventricular pressure characteristics were measured at 18 weeks under baseline conditions and upon dobutamine infusion. RESULTS The db/db mice were severely diabetic already at 8 weeks after birth, showing elevated fasting blood glucose levels and albuminuria. Nevertheless, echocardiography revealed no significant changes in cardiac function up to 18 weeks of age. At 18 weeks of age, left ventricular pressure characteristics were not significantly different at baseline between diabetic and control mice. However, dobutamine stress test revealed significantly attenuated cardiac inotropic and lusitropic responses in db/db mice. Post-mortem cardiac tissue analyses showed minor structural remodelling and no significant changes in gene expression levels of the sarcoplasmic reticulum calcium ATPase (SERCA2a) or beta1-adrenoceptor (beta1-AR). Moreover, the phosphorylation state of known contractile protein targets of protein kinase A (PKA) was not altered, indicating unaffected cardiac beta-adrenergic signalling activity in diabetic animals. By contrast, the substantially increased expression of uncoupling protein-3 (UCP3) and angiopoietin-like-4 (Angptl4), along with decreased phosphorylation of AMP-activated protein kinase (AMPK) in the diabetic heart, is indicative of marked changes in cardiac metabolism. CONCLUSION db/db mice show impaired cardiac functional reserve capacity during maximal beta-adrenergic stimulation which is associated with unfavourable changes in cardiac energy metabolism.
Collapse
Affiliation(s)
- A Daniels
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mellor KM, Ritchie RH, Delbridge LMD. Reactive oxygen species and insulin-resistant cardiomyopathy. Clin Exp Pharmacol Physiol 2010; 37:222-8. [DOI: 10.1111/j.1440-1681.2009.05274.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|