1
|
Suth D, Luther S, Lilienkamp T. Chaos control in cardiac dynamics: terminating chaotic states with local minima pacing. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1401661. [PMID: 39022296 PMCID: PMC11252590 DOI: 10.3389/fnetp.2024.1401661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/26/2024] [Indexed: 07/20/2024]
Abstract
Current treatments of cardiac arrhythmias like ventricular fibrillation involve the application of a high-energy electric shock, that induces significant electrical currents in the myocardium and therefore involves severe side effects like possible tissue damage and post-traumatic stress. Using numerical simulations on four different models of 2D excitable media, this study demonstrates that low energy pulses applied shortly after local minima in the mean value of the transmembrane potential provide high success rates. We evaluate the performance of this approach for ten initial conditions of each model, ten spatially different stimuli, and different shock amplitudes. The investigated models of 2D excitable media cover a broad range of dominant frequencies and number of phase singularities, which demonstrates, that our findings are not limited to a specific kind of model or parameterization of it. Thus, we propose a method that incorporates the dynamics of the underlying system, even during pacing, and solely relies on a scalar observable, which is easily measurable in numerical simulations.
Collapse
Affiliation(s)
- Daniel Suth
- Computational Physics for Life Science, Nuremberg Institute of Technology Georg Simon Ohm, Nuremberg, Germany
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Stefan Luther
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, Georg-August-Universität Göttingen, Göttingen, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Lilienkamp
- Computational Physics for Life Science, Nuremberg Institute of Technology Georg Simon Ohm, Nuremberg, Germany
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| |
Collapse
|
2
|
Hussaini S, Lädke SL, Schröder-Schetelig J, Venkatesan V, Quiñonez Uribe RA, Richter C, Majumder R, Luther S. Dissolution of spiral wave's core using cardiac optogenetics. PLoS Comput Biol 2023; 19:e1011660. [PMID: 38060618 PMCID: PMC10729946 DOI: 10.1371/journal.pcbi.1011660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/19/2023] [Accepted: 11/04/2023] [Indexed: 12/20/2023] Open
Abstract
Rotating spiral waves in the heart are associated with life-threatening cardiac arrhythmias such as ventricular tachycardia and fibrillation. These arrhythmias are treated by a process called defibrillation, which forces electrical resynchronization of the heart tissue by delivering a single global high-voltage shock directly to the heart. This method leads to immediate termination of spiral waves. However, this may not be the only mechanism underlying successful defibrillation, as certain scenarios have also been reported, where the arrhythmia terminated slowly, over a finite period of time. Here, we investigate the slow termination dynamics of an arrhythmia in optogenetically modified murine cardiac tissue both in silico and ex vivo during global illumination at low light intensities. Optical imaging of an intact mouse heart during a ventricular arrhythmia shows slow termination of the arrhythmia, which is due to action potential prolongation observed during the last rotation of the wave. Our numerical studies show that when the core of a spiral is illuminated, it begins to expand, pushing the spiral arm towards the inexcitable boundary of the domain, leading to termination of the spiral wave. We believe that these fundamental findings lead to a better understanding of arrhythmia dynamics during slow termination, which in turn has implications for the improvement and development of new cardiac defibrillation techniques.
Collapse
Affiliation(s)
- Sayedeh Hussaini
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Sarah L. Lädke
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Johannes Schröder-Schetelig
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Vishalini Venkatesan
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Raúl A. Quiñonez Uribe
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Claudia Richter
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany
- WG Cardiovascular Optogenetics, Lab Animal Science Unit, Leibniz Institute for Primate research, Göttingen, Germany
| | - Rupamanjari Majumder
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Stefan Luther
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany
- Institute for the Dynamics of Complex Systems, Göttingen University, Germany
| |
Collapse
|
3
|
Biasi N, Seghetti P, Mercati M, Tognetti A. A smoothed boundary bidomain model for cardiac simulations in anatomically detailed geometries. PLoS One 2023; 18:e0286577. [PMID: 37294777 PMCID: PMC10256234 DOI: 10.1371/journal.pone.0286577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/18/2023] [Indexed: 06/11/2023] Open
Abstract
This manuscript presents a novel finite difference method to solve cardiac bidomain equations in anatomical models of the heart. The proposed method employs a smoothed boundary approach that represents the boundaries between the heart and the surrounding medium as a spatially diffuse interface of finite thickness. The bidomain boundary conditions are implicitly implemented in the smoothed boundary bidomain equations presented in the manuscript without the need of a structured mesh that explicitly tracks the heart-torso boundaries. We reported some significant examples assessing the method's accuracy using nontrivial test geometries and demonstrating the applicability of the method to complex anatomically detailed human cardiac geometries. In particular, we showed that our approach could be employed to simulate cardiac defibrillation in a human left ventricle comprising fiber architecture. The main advantage of the proposed method is the possibility of implementing bidomain boundary conditions directly on voxel structures, which makes it attractive for three dimensional, patient specific simulations based on medical images. Moreover, given the ease of implementation, we believe that the proposed method could provide an interesting and feasible alternative to finite element methods, and could find application in future cardiac research guiding electrotherapy with computational models.
Collapse
Affiliation(s)
- Niccolò Biasi
- Information Engineering Department, University of Pisa, Pisa, Italy
| | - Paolo Seghetti
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
- National Research Council, Institute of Clinical Physiology, Pisa, Italy
| | - Matteo Mercati
- Information Engineering Department, University of Pisa, Pisa, Italy
| | - Alessandro Tognetti
- Information Engineering Department, University of Pisa, Pisa, Italy
- Research Centre “E. Piaggio”, University of Pisa, Pisa, Italy
| |
Collapse
|
4
|
Diaz-Maue L, Steinebach J, Richter C. Patterned Illumination Techniques in Optogenetics: An Insight Into Decelerating Murine Hearts. Front Physiol 2022; 12:750535. [PMID: 35087413 PMCID: PMC8787046 DOI: 10.3389/fphys.2021.750535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/02/2021] [Indexed: 11/21/2022] Open
Abstract
Much has been reported about optogenetic based cardiac arrhythmia treatment and the corresponding characterization of photostimulation parameters, but still, our capacity to interact with the underlying spatiotemporal excitation patterns relies mainly on electrical and/or pharmacological approaches. However, these well-established treatments have always been an object of somehow heated discussions. Though being acutely life-saving, they often come with potential side-effects leading to a decreased functionality of the complex cardiac system. Recent optogenetic studies showed the feasibility of the usage of photostimulation as a defibrillation method with comparatively high success rates. Although, these studies mainly concentrated on the description as well as on the comparison of single photodefibrillation approaches, such as locally focused light application and global illumination, less effort was spent on the description of excitation patterns during actual photostimulation. In this study, the authors implemented a multi-site photodefibrillation technique in combination with Multi-Lead electrocardiograms (ECGs). The technical connection of real-time heart rhythm measurements and the arrhythmia counteracting light control provides a further step toward automated arrhythmia classification, which can lead to adaptive photodefibrillation methods. In order to show the power effectiveness of the new approach, transgenic murine hearts expressing channelrhodopsin-2 ex vivo were investigated using circumferential micro-LED and ECG arrays. Thus, combining the best of two methods by giving the possibility to illuminate either locally or globally with differing pulse parameters. The optical technique presented here addresses a number of challenges of technical cardiac optogenetics and is discussed in the context of arrhythmic development during photostimulation.
Collapse
Affiliation(s)
- Laura Diaz-Maue
- Department of Research Electronics, Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany.,Biomedical Physics Research Group, Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK e., V.), Göttingen, Germany
| | - Janna Steinebach
- Biomedical Physics Research Group, Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Claudia Richter
- German Center for Cardiovascular Research (DZHK e., V.), Göttingen, Germany.,Laboratory Animal Science Unit, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
5
|
Qian S, Connolly A, Mendonca-Costa C, Campos F, Williams SE, Whitaker J, Rinaldi CA, Bishop MJ. An in-silico assessment of efficacy of two novel intra-cardiac electrode configurations versus traditional anti-tachycardia pacing therapy for terminating sustained ventricular tachycardia. Comput Biol Med 2021; 139:104987. [PMID: 34741904 PMCID: PMC8669079 DOI: 10.1016/j.compbiomed.2021.104987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/24/2021] [Accepted: 10/24/2021] [Indexed: 11/06/2022]
Abstract
The implanted cardioverter defibrillator (ICD) is an effective direct therapy for the treatment of cardiac arrhythmias, including ventricular tachycardia (VT). Anti-tachycardia pacing (ATP) is often applied by the ICD as the first mode of therapy, but is often found to be ineffective, particularly for fast VTs. In such cases, strong, painful and damaging backup defibrillation shocks are applied by the device. Here, we propose two novel electrode configurations: "bipolar" and "transmural" which both combine the concept of targeted shock delivery with the advantage of reduced energy required for VT termination. We perform an in silico study to evaluate the efficacy of VT termination by applying one single (low-energy) monophasic shock from each novel configuration, comparing with conventional ATP therapy. Both bipolar and transmural configurations are able to achieve a higher efficacy (93% and 85%) than ATP (45%), with energy delivered similar to and two orders of magnitudes smaller than conventional ICD defibrillation shocks, respectively. Specifically, the transmural configuration (which applies the shock vector directly across the scar substrate sustaining the VT) is most efficient, requiring typically less than 1 J shock energy to achieve a high efficacy. The efficacy of both bipolar and transmural configurations are higher when applied to slow VTs (100% and 97%) compared to fast VTs (57% and 29%). Both novel electrode configurations introduced are able to improve electrotherapy efficacy while reducing the overall number of required therapies and need for strong backup shocks.
Collapse
Affiliation(s)
- Shuang Qian
- School of Biomedical Engineering and Imaging Sciences, Rayne Institute, King's College London, 4th Floor, Lambeth Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, United Kingdom.
| | - Adam Connolly
- Invicro, Burlington Danes Building, Du Cane Rd, London, W12 0N, United Kingdom
| | - Caroline Mendonca-Costa
- School of Biomedical Engineering and Imaging Sciences, Rayne Institute, King's College London, 4th Floor, Lambeth Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, United Kingdom
| | - Fernando Campos
- School of Biomedical Engineering and Imaging Sciences, Rayne Institute, King's College London, 4th Floor, Lambeth Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, United Kingdom
| | - Steven E Williams
- School of Biomedical Engineering and Imaging Sciences, Rayne Institute, King's College London, 4th Floor, Lambeth Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, United Kingdom
| | - John Whitaker
- School of Biomedical Engineering and Imaging Sciences, Rayne Institute, King's College London, 4th Floor, Lambeth Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, United Kingdom; Department of Cardiology, Guy's and St Thomas' Hospital, London, SE1 7EH, United Kingdom
| | - Christopher A Rinaldi
- School of Biomedical Engineering and Imaging Sciences, Rayne Institute, King's College London, 4th Floor, Lambeth Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, United Kingdom; Department of Cardiology, Guy's and St Thomas' Hospital, London, SE1 7EH, United Kingdom
| | - Martin J Bishop
- School of Biomedical Engineering and Imaging Sciences, Rayne Institute, King's College London, 4th Floor, Lambeth Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, United Kingdom
| |
Collapse
|
6
|
Roth BJ. Bidomain modeling of electrical and mechanical properties of cardiac tissue. BIOPHYSICS REVIEWS 2021; 2:041301. [PMID: 38504719 PMCID: PMC10903405 DOI: 10.1063/5.0059358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/15/2021] [Indexed: 03/21/2024]
Abstract
Throughout the history of cardiac research, there has been a clear need to establish mathematical models to complement experimental studies. In an effort to create a more complete picture of cardiac phenomena, the bidomain model was established in the late 1970s to better understand pacing and defibrillation in the heart. This mathematical model has seen ongoing use in cardiac research, offering mechanistic insight that could not be obtained from experimental pursuits. Introduced from a historical perspective, the origins of the bidomain model are reviewed to provide a foundation for researchers new to the field and those conducting interdisciplinary research. The interplay of theory and experiment with the bidomain model is explored, and the contributions of this model to cardiac biophysics are critically evaluated. Also discussed is the mechanical bidomain model, which is employed to describe mechanotransduction. Current challenges and outstanding questions in the use of the bidomain model are addressed to give a forward-facing perspective of the model in future studies.
Collapse
Affiliation(s)
- Bradley J. Roth
- Department of Physics, Oakland University, Rochester, Michigan 48309, USA
| |
Collapse
|
7
|
Diaz-Maue L, Schwaerzle M, Ruther P, Luther S, Richter C. Follow the Light - From Low-Energy Defibrillation to Multi-Site Photostimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:4832-4835. [PMID: 30441427 DOI: 10.1109/embc.2018.8513124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
One major cause of death in the industrialized world is sudden cardiac death, which so far can be reliably treated only by applying strong electrical shocks. Developing improved methods, aiming at lowering shock intensity and associated side effects potentially has significant clinical implications. Thus, optogenetic stimulation using structured illumination has been introduced as a promising experimental tool to investigate mechanisms underlying multi-site pacing and to optimize potential low-energy approaches. Furthermore, an objective of this work is to strengthen the application of optogenetic tools for cardiac arrhythmia research, which in turn is expected to improve applicable technologies towards tissue-protective defibrillation.
Collapse
|
8
|
Connolly A, Williams S, Rhode K, Rinaldi CA, Bishop MJ. Conceptual Intra-Cardiac Electrode Configurations That Facilitate Directional Cardiac Stimulation for Optimal Electrotherapy. IEEE Trans Biomed Eng 2019; 66:1259-1268. [PMID: 31021745 PMCID: PMC7054045 DOI: 10.1109/tbme.2018.2871863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Electrotherapy remains the most effective direct therapy against lethal cardiac arrhythmias. When an arrhythmic event is sensed, either strong electric shocks or controlled rapid pacing is automatically applied directly to the heart via an implanted cardioverter defibrillator (ICDs). Despite their success, ICDs remain a highly non-optimal therapy: the strong shocks required for defibrillation cause significant extra-cardiac stimulation, resulting in pain and long-term tissue damage, and can also limit battery life. When used in anti-tachycardia pacing mode, ICDs are also often ineffective, as the pacing electrode can be far away from the centre of the arrhythmia, making it hard for the paced wave to interrupt and terminate it. METHODS In this paper, we present two conceptual intra-cardiac directional electrode configurations in silico based on novel arrangements of pairs of positive-negative electrodes. Both configurations have the potential to cause preferential excitation on specific regions of the heart. RESULTS We demonstrate how the properties of the induced field varies spatially around the electrodes and how it depends upon the specific arrangements of dipole electrode pairs. The results show that when tested within anatomically-realistic rabbit ventricular models, both electrode configurations produce strong virtual electrodes on the targeted endocardial surfaces, with weaker virtual electrodes produced elsewhere. CONCLUSIONS The proposed electrode configurations may facilitate targeted far-field anti-tachycardia pacing and/or defibrillation, which may be useful in cases where conventional anti-tachycardia pacing fails. In addition, the conceptual electrode designs intrinsically confine the electric field to the immediate vicinity of the electrodes, and may, thus, minimize pain due to unnecessary extra-cardiac stimulation.
Collapse
|
9
|
Quiñonez Uribe RA, Luther S, Diaz-Maue L, Richter C. Energy-Reduced Arrhythmia Termination Using Global Photostimulation in Optogenetic Murine Hearts. Front Physiol 2018; 9:1651. [PMID: 30542292 PMCID: PMC6277892 DOI: 10.3389/fphys.2018.01651] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/02/2018] [Indexed: 02/01/2023] Open
Abstract
Complex spatiotemporal non-linearity as observed during cardiac arrhythmia strongly correlates with vortex-like excitation wavelengths and tissue characteristics. Therefore, the control of arrhythmic patterns requires fundamental understanding of dependencies between onset and perpetuation of arrhythmia and substrate instabilities. Available treatments, such as drug application or high-energy electrical shocks, are discussed for potential side effects resulting in prognosis worsening due to the lack of specificity and spatiotemporal precision. In contrast, cardiac optogenetics relies on light sensitive ion channels stimulated to trigger excitation of cardiomyocytes solely making use of the inner cell mechanisms. This enables low-energy, non-damaging optical control of cardiac excitation with high resolution. Recently, the capability of optogenetic cardioversion was shown in Channelrhodopsin-2 (ChR2) transgenic mice. But these studies used mainly structured and local illumination for cardiac stimulation. In addition, since optogenetic and electrical stimulus work on different principles to control the electrical activity of cardiac tissue, a better understanding of the phenomena behind optogenetic cardioversion is still needed. The present study aims to investigate global illumination with regard to parameter characterization and its potential for cardioversion. Our results show that by tuning the light intensity without exceeding 1.10 mW mm-2, a single pulse in the range of 10–1,000 ms is sufficient to reliably reset the heart into sinus rhythm. The combination of our panoramic low-intensity photostimulation with optical mapping techniques visualized wave collision resulting in annihilation as well as propagation perturbations as mechanisms leading to optogenetic cardioversion, which seem to base on other processes than electrical defibrillation. This study contributes to the understanding of the roles played by epicardial illumination, pulse duration and light intensity in optogenetic cardioversion, which are the main variables influencing cardiac optogenetic control, highlighting the advantages and insights of global stimulation. Therefore, the presented results can be modules in the design of novel illumination technologies with specific energy requirements on the way toward tissue-protective defibrillation techniques.
Collapse
Affiliation(s)
- Raúl A Quiñonez Uribe
- RG Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Stefan Luther
- RG Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,Institute for Nonlinear Dynamics, Georg-August University, Göttingen, Germany.,Department of Pharmacology and Toxicology, University Medical Center, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK e.V.), Partner Site Göttingen, Göttingen, Germany
| | - Laura Diaz-Maue
- RG Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Claudia Richter
- RG Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK e.V.), Partner Site Göttingen, Göttingen, Germany.,Department of Cardiology and Pneumology, University Medical Center, Göttingen, Germany
| |
Collapse
|
10
|
Varghese F, Neuber JU, Xie F, Philpott JM, Pakhomov AG, Zemlin CW. Low-energy defibrillation with nanosecond electric shocks. Cardiovasc Res 2018; 113:1789-1797. [PMID: 29016714 DOI: 10.1093/cvr/cvx172] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 08/28/2017] [Indexed: 02/01/2023] Open
Abstract
Aims Reliable defibrillation with reduced energy deposition has long been the focus of defibrillation research. We studied the efficacy of single shocks of 300 ns duration in defibrillating rabbit hearts as well as the tissue damage they may cause. Methods and results New Zealand white rabbit hearts were Langendorff-perfused and two planar electrodes were placed on either side of the heart. Shocks of 300 ns duration and 0.3-3 kV amplitude were generated with a transmission line generator. Single nanosecond shocks consistently induced waves of electrical activation, with a stimulation threshold of 0.9 kV (over 3 cm) and consistent activation for shock amplitudes of 1.2 kV or higher (9/9 successful attempts). We induced fibrillation (35 episodes in 12 hearts) and found that single shock nanosecond-defibrillation could consistently be achieved, with a defibrillation threshold of 2.3-2.4 kV (over 3 cm), and consistent success at 3 kV (11/11 successful attempts). Shocks uniformly depolarized the tissue, and the threshold energy needed for nanosecond defibrillation was almost an order of magnitude lower than the energy needed for defibrillation with a monophasic 10 ms shock delivered with the same electrode configuration. For the parameters studied here, nanosecond defibrillation caused no baseline shift of the transmembrane potential (that could be indicative of electroporative damage), no changes in action potential duration, and only a brief change of diastolic interval, for one beat after the shock was delivered. Histological staining with tetrazolium chloride and propidium iodide showed that effective defibrillation was not associated with tissue death or with detectable electroporation anywhere in the heart (six hearts). Conclusion Nanosecond-defibrillation is a promising technology that may allow clinical defibrillation with profoundly reduced energies.
Collapse
Affiliation(s)
- Frency Varghese
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, USA.,Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Norfolk, VA 23508, USA
| | - Johanna U Neuber
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, USA.,Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Norfolk, VA 23508, USA
| | - Fei Xie
- Department of Engineering, Mount Vernon Nazarene University, Mount Vernon, OH, USA
| | | | - Andrei G Pakhomov
- Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Norfolk, VA 23508, USA
| | - Christian W Zemlin
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, USA.,Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Norfolk, VA 23508, USA
| |
Collapse
|
11
|
Aswath Kumar AK, Drahi A, Jacquemet V. Fitting local repolarization parameters in cardiac reaction-diffusion models in the presence of electrotonic coupling. Comput Biol Med 2016; 81:55-63. [PMID: 28012295 DOI: 10.1016/j.compbiomed.2016.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/15/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Repolarization gradients contribute to arrhythmogenicity. In reaction-diffusion models of cardiac tissue, heterogeneities in action potential duration (APD) can be created by locally modifying an intrinsic membrane kinetics parameter. Electrotonic coupling, however, acts as a confounding factor that modulates APD dispersion. METHOD We developed an algorithm based on a quasi-Newton method that iteratively adjusts the spatial distribution of a membrane parameter to reproduce a pre-defined target APD map in a coupled tissue. The method assumes that the relation between the adjustable parameter and APD is bijective in an isolated cell. Each iteration of the algorithm involved simulating the cardiac reaction-diffusion system with the updated parameter profile for one beat and extracting the APD map. The algorithm was extended to simultaneous estimation of two parameter profiles based on two APD maps at different repolarization thresholds. RESULTS The method was validated in 1D, 2D and 3D atrial tissues using synthetic target APD maps with controllable total variation and maximum APD gradient. The adjustable parameter was local acetylcholine concentration. The iterations converged provided that APD gradients were not too steep. Convergence was found to be faster 2-5 iterations) when the maximal gradient was less steep, when APD range was smaller and when tissue conductivity was reduced. CONCLUSION This algorithm provides a tool to automatically generate arrhythmogenic substrates with controllable repolarization gradients and possibly incorporate experimental APD maps into computer models.
Collapse
Affiliation(s)
- Akshay Kota Aswath Kumar
- Université de Montréal, Département de Pharmacologie et Physiologie , Institut de Génie Biomédical, Montréal, Canada; Hôpital du Sacré-Coeur de Montréal, Centre de Recherche, Montréal, Canada
| | - Angelina Drahi
- Université de Montréal, Département de Pharmacologie et Physiologie , Institut de Génie Biomédical, Montréal, Canada; Hôpital du Sacré-Coeur de Montréal, Centre de Recherche, Montréal, Canada
| | - Vincent Jacquemet
- Université de Montréal, Département de Pharmacologie et Physiologie , Institut de Génie Biomédical, Montréal, Canada; Hôpital du Sacré-Coeur de Montréal, Centre de Recherche, Montréal, Canada.
| |
Collapse
|
12
|
Arevalo HJ, Boyle PM, Trayanova NA. Computational rabbit models to investigate the initiation, perpetuation, and termination of ventricular arrhythmia. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:185-94. [PMID: 27334789 DOI: 10.1016/j.pbiomolbio.2016.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/13/2016] [Indexed: 12/29/2022]
Abstract
Current understanding of cardiac electrophysiology has been greatly aided by computational work performed using rabbit ventricular models. This article reviews the contributions of multiscale models of rabbit ventricles in understanding cardiac arrhythmia mechanisms. This review will provide an overview of multiscale modeling of the rabbit ventricles. It will then highlight works that provide insights into the role of the conduction system, complex geometric structures, and heterogeneous cellular electrophysiology in diseased and healthy rabbit hearts to the initiation and maintenance of ventricular arrhythmia. Finally, it will provide an overview on the contributions of rabbit ventricular modeling on understanding the mechanisms underlying shock-induced defibrillation.
Collapse
Affiliation(s)
- Hermenegild J Arevalo
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Simula Research Laboratory, Oslo, Norway
| | - Patrick M Boyle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
13
|
Technical advances in studying cardiac electrophysiology - Role of rabbit models. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:97-109. [PMID: 27210306 DOI: 10.1016/j.pbiomolbio.2016.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/01/2016] [Indexed: 12/15/2022]
Abstract
Cardiovascular research has made a major contribution to an unprecedented 10 year increase in life expectancy during the last 50 years: most of this increase due to a decline in mortality from heart disease and stroke. The majority of the basic cardiovascular science discoveries, which have led to this impressive extension of human life, came from investigations conducted in various small and large animal models, ranging from mouse to pig. The small animal models are currently popular because they are amenable to genetic engineering and are relatively inexpensive. The large animal models are favored at the translational stage of the investigation, as they are anatomically and physiologically more proximal to humans, and can be implanted with various devices; however, they are expensive and less amenable to genetic manipulations. With the advent of CRISPR genetic engineering technology and the advances in implantable bioelectronics, the large animal models will continue to advance. The rabbit model is particularly poised to become one of the most popular among the animal models that recapitulate human heart diseases. Here we review an array of the rabbit models of atrial and ventricular arrhythmias, as well as a range of the imaging and device technologies enabling these investigations.
Collapse
|
14
|
Gutbrod SR, Efimov IR. A shocking past: a walk through generations of defibrillation development. IEEE Trans Biomed Eng 2015; 61:1466-73. [PMID: 24759279 DOI: 10.1109/tbme.2014.2301035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Defibrillation is one of the most successful and widely recognized applications of electrotherapy. Yet the historical road to its first successful application in a patient and the innovative adaptation to an implantable device is marred with unexpected turns, political and personal setbacks, and public and scientific condemnation at each new idea. Driven by dedicated scientists and ever-advancing creative applications of new technologies, from electrocardiography to high density mapping and computational simulations, the field of defibrillation persevered and continued to evolve to the life-saving tool it is today. In addition to critical technological advances, the history of defibrillation is also marked by the plasticity of the theory of defibrillation. The advancing theories of success have propelled the campaign for reducing the defibrillation energy requirement, instilling hope in the development of a painless and harmless electrical defibrillation strategy.
Collapse
|
15
|
Biophotonic Modelling of Cardiac Optical Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 859:367-404. [DOI: 10.1007/978-3-319-17641-3_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
16
|
Bishop MJ, Plank G. Simulating photon scattering effects in structurally detailed ventricular models using a Monte Carlo approach. Front Physiol 2014; 5:338. [PMID: 25309442 PMCID: PMC4164003 DOI: 10.3389/fphys.2014.00338] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/19/2014] [Indexed: 11/17/2022] Open
Abstract
Light scattering during optical imaging of electrical activation within the heart is known to significantly distort the optically-recorded action potential (AP) upstroke, as well as affecting the magnitude of the measured response of ventricular tissue to strong electric shocks. Modeling approaches based on the photon diffusion equation have recently been instrumental in quantifying and helping to understand the origin of the resulting distortion. However, they are unable to faithfully represent regions of non-scattering media, such as small cavities within the myocardium which are filled with perfusate during experiments. Stochastic Monte Carlo (MC) approaches allow simulation and tracking of individual photon “packets” as they propagate through tissue with differing scattering properties. Here, we present a novel application of the MC method of photon scattering simulation, applied for the first time to the simulation of cardiac optical mapping signals within unstructured, tetrahedral, finite element computational ventricular models. The method faithfully allows simulation of optical signals over highly-detailed, anatomically-complex MR-based models, including representations of fine-scale anatomy and intramural cavities. We show that optical action potential upstroke is prolonged close to large subepicardial vessels than further away from vessels, at times having a distinct “humped” morphology. Furthermore, we uncover a novel mechanism by which photon scattering effects around vessels cavities interact with “virtual-electrode” regions of strong de-/hyper-polarized tissue surrounding cavities during shocks, significantly reducing the apparent optically-measured epicardial polarization. We therefore demonstrate the importance of this novel optical mapping simulation approach along with highly anatomically-detailed models to fully investigate electrophysiological phenomena driven by fine-scale structural heterogeneity.
Collapse
Affiliation(s)
- Martin J Bishop
- Division of Imaging Sciences & Biomedical Engineering, Department of Biomedical Engineering, King's College London London, UK
| | - Gernot Plank
- Institute of Biophysics, Medical University of Graz Graz, Austria ; Oxford eResearch Centre, University of Oxford Oxford, UK
| |
Collapse
|
17
|
Trayanova NA, Rantner LJ. New insights into defibrillation of the heart from realistic simulation studies. Europace 2014; 16:705-13. [PMID: 24798960 PMCID: PMC4010179 DOI: 10.1093/europace/eut330] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/17/2013] [Indexed: 11/12/2022] Open
Abstract
Cardiac defibrillation, as accomplished nowadays by automatic, implantable devices, constitutes the most important means of combating sudden cardiac death. Advancing our understanding towards a full appreciation of the mechanisms by which a shock interacts with the heart, particularly under diseased conditions, is a promising approach to achieve an optimal therapy. The aim of this article is to assess the current state-of-the-art in whole-heart defibrillation modelling, focusing on major insights that have been obtained using defibrillation models, primarily those of realistic heart geometry and disease remodelling. The article showcases the contributions that modelling and simulation have made to our understanding of the defibrillation process. The review thus provides an example of biophysically based computational modelling of the heart (i.e. cardiac defibrillation) that has advanced the understanding of cardiac electrophysiological interaction at the organ level, and has the potential to contribute to the betterment of the clinical practice of defibrillation.
Collapse
Affiliation(s)
- Natalia A. Trayanova
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 3400 N Charles Street, 216 Hackerman Hall, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Lukas J. Rantner
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 3400 N Charles Street, 216 Hackerman Hall, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
18
|
Bragard J, Simic A, Elorza J, Grigoriev RO, Cherry EM, Gilmour RF, Otani NF, Fenton FH. Shock-induced termination of reentrant cardiac arrhythmias: comparing monophasic and biphasic shock protocols. CHAOS (WOODBURY, N.Y.) 2013; 23:043119. [PMID: 24387558 PMCID: PMC3843767 DOI: 10.1063/1.4829632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this article, we compare quantitatively the efficiency of three different protocols commonly used in commercial defibrillators. These are based on monophasic and both symmetric and asymmetric biphasic shocks. A numerical one-dimensional model of cardiac tissue using the bidomain formulation is used in order to test the different protocols. In particular, we performed a total of 4.8 × 10(6) simulations by varying shock waveform, shock energy, initial conditions, and heterogeneity in internal electrical conductivity. Whenever the shock successfully removed the reentrant dynamics in the tissue, we classified the mechanism. The analysis of the numerical data shows that biphasic shocks are significantly more efficient (by about 25%) than the corresponding monophasic ones. We determine that the increase in efficiency of the biphasic shocks can be explained by the higher proportion of newly excited tissue through the mechanism of direct activation.
Collapse
Affiliation(s)
- Jean Bragard
- Department of Physics & Applied Math., University of Navarra, Pamplona, Spain
| | - Ana Simic
- Department of Physics & Applied Math., University of Navarra, Pamplona, Spain
| | - Jorge Elorza
- Department of Physics & Applied Math., University of Navarra, Pamplona, Spain
| | - Roman O Grigoriev
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Elizabeth M Cherry
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Robert F Gilmour
- University of Prince Edward Island, Charlottetown C1A 4P3, Canada
| | - Niels F Otani
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Flavio H Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
19
|
Abstract
In the past decade, optical mapping provided crucial mechanistic insight into electromechanical function and the mechanism of ventricular fibrillation. Therefore, to date, optical mapping dominates experimental cardiac electrophysiology. The first cardiac measurements involving optics were done in the early 1900s using the fast cinematograph that later evolved into methods for high-resolution activation and repolarization mapping and stimulation of specific cardiac cell types. The field of "optocardiography," therefore, emerged as the use of light for recording or interfering with cardiac physiology. In this review, we discuss how optocardiography developed into the dominant research technique in experimental cardiology. Furthermore, we envision how optocardiographic methods can be used in clinical cardiology.
Collapse
|
20
|
Woods MC, Uzelac I, Holcomb MR, Wikswo JP, Sidorov VY. Diastolic field stimulation: the role of shock duration in epicardial activation and propagation. Biophys J 2013; 105:523-32. [PMID: 23870273 DOI: 10.1016/j.bpj.2013.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/02/2013] [Accepted: 06/06/2013] [Indexed: 10/26/2022] Open
Abstract
Detailed knowledge of tissue response to both systolic and diastolic shock is critical for understanding defibrillation. Diastolic field stimulation has been much less studied than systolic stimulation, particularly regarding transient virtual anodes. Here we investigated high-voltage-induced polarization and activation patterns in response to strong diastolic shocks of various durations and of both polarities, and tested the hypothesis that the activation versus shock duration curve contains a local minimum for moderate shock durations, and it grows for short and long durations. We found that 0.1-0.2-ms shocks produced slow and heterogeneous activation. During 0.8-1 ms shocks, the activation was very fast and homogeneous. Further shock extension to 8 ms delayed activation from 1.55 ± 0.27 ms and 1.63 ± 0.21 ms at 0.8 ms shock to 2.32 ± 0.41 ms and 2.37 ± 0.3 ms (N = 7) for normal and opposite polarities, respectively. The traces from hyperpolarized regions during 3-8 ms shocks exhibited four different phases: beginning negative polarization, fast depolarization, slow depolarization, and after-shock increase in upstroke velocity. Thus, the shocks of >3 ms in duration created strong hyperpolarization associated with significant delay (P < 0.05) in activation compared with moderate shocks of 0.8 and 1 ms. This effect appears as a dip in the activation-versus-shock-duration curve.
Collapse
Affiliation(s)
- Marcella C Woods
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|
21
|
Trayanova N, Constantino J, Ashihara T, Plank G. Modeling defibrillation of the heart: approaches and insights. IEEE Rev Biomed Eng 2012; 4:89-102. [PMID: 22273793 DOI: 10.1109/rbme.2011.2173761] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiac defibrillation, as accomplished nowadays by automatic, implantable devices (ICDs), constitutes the most important means of combating sudden cardiac death. While ICD therapy has proved to be efficient and reliable, defibrillation is a traumatic experience. Thus, research on defibrillation mechanisms, particularly aimed at lowering defibrillation voltage, remains an important topic. Advancing our understanding towards a full appreciation of the mechanisms by which a shock interacts with the heart is the most promising approach to achieve this goal. The aim of this paper is to assess the current state-of-the-art in ventricular defibrillation modeling, focusing on both numerical modeling approaches and major insights that have been obtained using defibrillation models, primarily those of realistic ventricular geometry. The paper showcases the contributions that modeling and simulation have made to our understanding of the defibrillation process. The review thus provides an example of biophysically based computational modeling of the heart (i.e., cardiac defibrillation) that has advanced the understanding of cardiac electrophysiological interaction at the organ level and has the potential to contribute to the betterment of the clinical practice of defibrillation.
Collapse
Affiliation(s)
- Natalia Trayanova
- Department of Biomedical Engineering and Institute for Computational Medicine, The Johns Hopkins University, Baltimore, MD 20218, USA.
| | | | | | | |
Collapse
|
22
|
Hörning M, Takagi S, Yoshikawa K. Controlling activation site density by low-energy far-field stimulation in cardiac tissue. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:061906. [PMID: 23005126 DOI: 10.1103/physreve.85.061906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 03/19/2012] [Indexed: 06/01/2023]
Abstract
Tachycardia and fibrillation are potentially fatal arrhythmias associated with the formation of rotating spiral waves in the heart. Presently, the termination of these types of arrhythmia is achieved by use of antitachycardia pacing or cardioversion. However, these techniques have serious drawbacks, in that they either have limited application or produce undesirable side effects. Low-energy far-field stimulation has recently been proposed as a superior therapy. This proposed therapeutic method would exploit the phenomenon in which the application of low-energy far-field shocks induces a large number of activation sites ("virtual electrodes") in tissue. It has been found that the formation of such sites can lead to the termination of undesired states in the heart and the restoration of normal beating. In this study we investigate a particular aspect of this method. Here we seek to determine how the activation site density depends on the applied electric field through in vitro experiments carried out on neonatal rat cardiac tissue cultures. The results indicate that the activation site density increases exponentially as a function of the intracellular conductivity and the level of cell isotropy. Additionally, we report numerical results obtained from bidomain simulations of the Beeler-Reuter model that are quantitatively consistent with our experimental results. Also, we derive an intuitive analytical framework that describes the activation site density and provides useful information for determining the ratio of longitudinal to transverse conductivity in a cardiac tissue culture. The results obtained here should be useful in the development of an actual therapeutic method based on low-energy far-field pacing. In addition, they provide a deeper understanding of the intrinsic properties of cardiac cells.
Collapse
Affiliation(s)
- Marcel Hörning
- Department of Physics, Graduate School of Science, Kyoto University, Japan.
| | | | | |
Collapse
|
23
|
Rantner LJ, Arevalo HJ, Constantino JL, Efimov IR, Plank G, Trayanova NA. Three-dimensional mechanisms of increased vulnerability to electric shocks in myocardial infarction: altered virtual electrode polarizations and conduction delay in the peri-infarct zone. J Physiol 2012; 590:4537-51. [PMID: 22586222 DOI: 10.1113/jphysiol.2012.229088] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Defibrillation efficacy is decreased in infarcted hearts, but the mechanisms by which infarcted hearts are more vulnerable to electric shocks than healthy hearts remain poorly understood. The goal of this study was to provide insight into the 3D mechanisms for the increased vulnerability to electric shocks in infarcted hearts. We hypothesized that changes in virtual electrode polarizations (VEPs) and propagation delay through the peri-infarct zone (PZ) were responsible. We developed a micro anatomically detailed rabbit ventricular model with chronic myocardial infarction from magnetic resonance imaging and enriched the model with data from optical mapping experiments. We further developed a control model without the infarct. The simulation protocol involved apical pacing followed by biphasic shocks. Simulation results from both models were compared.The upper limit of vulnerability(ULV) was 8 V cm(-1) in the infarction model and 4 V cm(-1) in the control model. VEPs were less pronounced in the infarction model, providing a larger excitable area for postshock propagation but smaller transmembrane potential gradients to initiate new wavefronts. Initial post-shock transmural activation occurred at a later time in the infarction model, and the PZ served to delay propagation in subsequent beats. The presence of the PZ was found to be responsible for the increased vulnerability.
Collapse
Affiliation(s)
- Lukas J Rantner
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | | | | | | | | | | |
Collapse
|
24
|
SUZUKI TOHRU, SATO SHUNSUKE, OHE TOHRU, SUZUKI RYOJI, KAJIYA FUMIHIKO. ANALYSIS OF THE VIRTUAL ELECTRODE PHENOMENA USING BIDOMAIN MODEL: BASIC CHARACTERISTICS FOR PASSIVE MEMBRANE. J MECH MED BIOL 2011. [DOI: 10.1142/s0219519406002023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The virtual electrode (VE) has been recognized as an important factor for success or failure of cardiac defibrillation. Many researches have been performed to study characteristics of the VE. However, there are some questions which remain unanswered. In this study, we developed a simulator to solve a three-dimensional bidomain model and performed several simulations to elucidate the basic characteristics of VE in a simplified cardiac tissue with passive membrane when a constant unipolar cathodal stimulus was applied. The results showed that for smaller electrodes, VE has a typical dog-bone shaped virtual cathode (VC) and two egg-shaped virtual anodes (VAs). The distributions both in intra- and extracellular potentials have concentric ellipsoidal isosurfaces, but their ellipticities are subtly different, producing VE. For larger electrodes, VC becomes larger and has a flat-dish shape rather than dog-bone, and VA becomes smaller and also flattens and collapses. The peak values of VE are larger for smaller electrodes, but their time courses show similar tendency among the different sized electrodes. The change of stimulus strength and polarity only affects the magnitude of VE in a linear manner and the distribution pattern is unchanged. These results provide us fundamental knowledge about VE.
Collapse
Affiliation(s)
- TOHRU SUZUKI
- Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - SHUNSUKE SATO
- Department of Physical Therapy, Aino University, Ibaraki, Osaka 567-0012, Japan
| | - TOHRU OHE
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - RYOJI SUZUKI
- Human Information System Laboratory, Kanazawa Institute of Technology, Hakusan, Ishikawa 924-0838, Japan
| | - FUMIHIKO KAJIYA
- Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
25
|
Lou Q, Li W, Efimov IR. The role of dynamic instability and wavelength in arrhythmia maintenance as revealed by panoramic imaging with blebbistatin vs. 2,3-butanedione monoxime. Am J Physiol Heart Circ Physiol 2011; 302:H262-9. [PMID: 22037192 DOI: 10.1152/ajpheart.00711.2011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Unlike other excitation-contraction uncouplers, blebbistatin has few electrophysiological side effects and has gained increasing acceptance as an excitation-contraction uncoupler in optical mapping experiments. However, the possible role of blebbistatin in ventricular arrhythmia has hitherto been unknown. Furthermore, experiments with blebbistatin and 2,3-butanedione monoxime (BDM) offer an opportunity to assess the contribution of dynamic instability and wavelength of impulse propagation to the induction and maintenance of ventricular arrhythmia. Recordings of monophasic action potentials were used to assess effects of blebbistatin in Langendorff-perfused rabbit hearts (n = 5). Additionally, panoramic optical mapping experiments were conducted in rabbit hearts (n = 7) that were sequentially perfused with BDM, then washed out, and subsequently perfused with blebbistatin. The susceptibility to arrhythmia was investigated using a shock-on-T protocol. We found that 1) application of blebbistatin did not change action potential duration (APD) restitution; 2) in contrast to blebbistatin, BDM flattened APD restitution curve and reduced the wavelength; and 3) incidence of sustained arrhythmia was much lower under blebbistatin than under BDM (2/123 vs. 23/99). While arrhythmias under BDM were able to stabilize, the arrhythmias under blebbistatin were unstable and terminated spontaneously. In conclusion, the lower susceptibility to arrhythmia under blebbistatin than under BDM indicates that blebbistatin has less effects on arrhythmia dynamics. A steep restitution slope under blebbistatin is associated with higher dynamic instability, manifested by the higher incidence of not only wave breaks but also wave extinctions. This relatively high dynamic instability leads to the self-termination of arrhythmia because of the sufficiently long wavelength under blebbistatin.
Collapse
Affiliation(s)
- Qing Lou
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130-4899, USA
| | | | | |
Collapse
|
26
|
Lang D, Sulkin M, Lou Q, Efimov IR. Optical mapping of action potentials and calcium transients in the mouse heart. J Vis Exp 2011:3275. [PMID: 21946907 PMCID: PMC3230201 DOI: 10.3791/3275] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The mouse heart is a popular model for cardiovascular studies due to the existence of low cost technology for genetic engineering in this species. Cardiovascular physiological phenotyping of the mouse heart can be easily done using fluorescence imaging employing various probes for transmembrane potential (Vm), calcium transients (CaT), and other parameters. Excitation-contraction coupling is characterized by action potential and intracellular calcium dynamics; therefore, it is critically important to map both Vm and CaT simultaneously from the same location on the heart1-4. Simultaneous optical mapping from Langendorff perfused mouse hearts has the potential to elucidate mechanisms underlying heart failure, arrhythmias, metabolic disease, and other heart diseases. Visualization of activation, conduction velocity, action potential duration, and other parameters at a myriad of sites cannot be achieved from cellular level investigation but is well solved by optical mapping1,5,6. In this paper we present the instrumentation setup and experimental conditions for simultaneous optical mapping of Vm and CaT in mouse hearts with high spatio-temporal resolution using state-of-the-art CMOS imaging technology. Consistent optical recordings obtained with this method illustrate that simultaneous optical mapping of Langendorff perfused mouse hearts is both feasible and reliable.
Collapse
Affiliation(s)
- Di Lang
- Department of Biomedical Engineering, Washington University in St. Louis, USA
| | | | | | | |
Collapse
|
27
|
Caldwell BJ, Wellner M, Mitrea BG, Pertsov AM, Zemlin CW. Probing field-induced tissue polarization using transillumination fluorescent imaging. Biophys J 2011; 99:2058-66. [PMID: 20923639 DOI: 10.1016/j.bpj.2010.07.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 07/27/2010] [Accepted: 07/28/2010] [Indexed: 10/19/2022] Open
Abstract
Despite major successes of biophysical theories in predicting the effects of electrical shocks within the heart, recent optical mapping studies have revealed two major discrepancies between theory and experiment: 1), the presence of negative bulk polarization recorded during strong shocks; and 2), the unexpectedly small surface polarization under shock electrodes. There is little consensus as to whether these differences result from deficiencies of experimental techniques, artifacts of tissue damage, or deficiencies of existing theories. Here, we take advantage of recently developed near-infrared voltage-sensitive dyes and transillumination optical imaging to perform, for the first time that we know of, noninvasive probing of field effects deep inside the intact ventricular wall. This technique removes some of the limitations encountered in previous experimental studies. We explicitly demonstrate that deep inside intact myocardial tissue preparations, strong electrical shocks do produce considerable negative bulk polarization previously inferred from surface recordings. We also demonstrate that near-threshold diastolic field stimulation produces activation of deep myocardial layers 2-6 mm away from the cathodal surface, contrary to theory. Using bidomain simulations we explore factors that may improve the agreement between theory and experiment. We show that the inclusion of negative asymmetric current can qualitatively explain negative bulk polarization in a discontinuous bidomain model.
Collapse
Affiliation(s)
- Bryan J Caldwell
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York, NY, USA.
| | | | | | | | | |
Collapse
|
28
|
Arrhythmogenic mechanisms of the Purkinje system during electric shocks: a modeling study. Heart Rhythm 2009; 6:1782-9. [PMID: 19959130 DOI: 10.1016/j.hrthm.2009.08.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 08/15/2009] [Indexed: 11/22/2022]
Abstract
BACKGROUND The function of the Purkinje system (PS) is to ensure fast and uniform activation of the heart. Although this vital role during sinus rhythm is well understood, this is not the case when shocks are applied to the heart, especially in the case of failed defibrillation. The PS activates differently from the myocardium, has different electrophysiological properties, and provides alternate propagation pathways; thus, there are many ways in which it can contribute to postshock behavior. OBJECTIVE The purpose of this study was to elucidate the role of the PS in the initiation and maintenance of postshock arrhythmias. METHODS A computer model of the ventricles including the PS was subjected to different reentry induction protocols. RESULTS The PS facilitated reentry induction at relatively weaker shocks. Disconnecting the PS from the ventricles during the postshock interval revealed that the PS helps stabilize early-stage reentry by providing focal breakthroughs. During later stages, the PS contributed to reentry by leading to higher frequency rotors. The PS also promoted wave front splitting during reentry due to electrotonic coupling, which prolongs action potential durations at PS-myocyte junctions. The presence of a PS results in the anchoring of reentrant activations that propagate through the pathways provided by the PS. CONCLUSIONS The PS is proarrhythmic in that it provides pathways that prolong activity, and it plays a supplementary role in maintaining the later stages of reentry (>800 ms).
Collapse
|
29
|
Abstract
BACKGROUND The strongest shock that induces reentry in the heart is the upper limit of vulnerability (ULV). In order to understand defibrillation, one must know what causes the ULV. OBJECTIVE The goal of this study was to examine the mechanism of the upper limit of vulnerability. METHODS Numerical simulations of cardiac tissue were performed using the bidomain model. An S2 shock was applied during the refractory period of the S1 action potential, and results using a smooth curving fiber geometry were compared with results using a smooth plus random fiber geometry. RESULTS When using a smooth fiber geometry only, no ULV was observed. However, when a random fiber geometry was included, the ULV was present. The difference arises from the fate of the shock-induced break wave front when it reaches the edge of the tissue hyperpolarized by the shock (the virtual anode). CONCLUSION Our numerical simulations suggest that local heterogeneities throughout the tissue may be crucial for determining the fate of the shock-induced wave front at the edge of the virtual anode, and therefore play an important role in the mechanism underlying the ULV.
Collapse
Affiliation(s)
- Nachaat Mazeh
- Department of Physics, Oakland University, Rochester, Michigan 48309, USA
| | | |
Collapse
|
30
|
Maleckar MM, Woods MC, Sidorov VY, Holcomb MR, Mashburn DN, Wikswo JP, Trayanova NA. Polarity reversal lowers activation time during diastolic field stimulation of the rabbit ventricles: insights into mechanisms. Am J Physiol Heart Circ Physiol 2008; 295:H1626-33. [PMID: 18708441 DOI: 10.1152/ajpheart.00706.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To fully characterize the mechanisms of defibrillation, it is necessary to understand the response, within the three-dimensional (3D) volume of the ventricles, to shocks given in diastole. Studies that have examined diastolic responses conducted measurements on the epicardium or on a transmural surface of the left ventricular (LV) wall only. The goal of this study was to use optical imaging experiments and 3D bidomain simulations, including a model of optical mapping, to ascertain the shock-induced virtual electrode and activation patterns throughout the rabbit ventricles following diastolic shocks. We tested the hypothesis that the locations of shock-induced regions of hyperpolarization govern the different diastolic activation patterns for shocks of reversed polarity. In model and experiment, uniform-field monophasic shocks of reversed polarities (cathode over the right ventricle is RV-, reverse polarity is LV-) were applied to the ventricles in diastole. Experiments and simulations revealed that RV- shocks resulted in longer activation times compared with LV- shocks of the same strength. 3D simulations demonstrated that RV- shocks induced a greater volume of hyperpolarization at shock end compared with LV- shocks; most of these hyperpolarized regions were located in the LV. The results of this study indicate that ventricular geometry plays an important role in both the location and size of the shock-induced virtual anodes that determine activation delay during the shock and subsequently affect shock-induced propagation. If regions of hyperpolarization that develop during the shock are sufficiently large, activation delay may persist until shock end.
Collapse
Affiliation(s)
- M M Maleckar
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Quantitative panoramic imaging of epicardial electrical activity. Ann Biomed Eng 2008; 36:1649-58. [PMID: 18654852 DOI: 10.1007/s10439-008-9539-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 07/14/2008] [Indexed: 10/21/2022]
Abstract
Fluorescent imaging with voltage- and/or calcium-sensitive dyes has revolutionized cardiac physiology research. Here we present improved panoramic imaging for optically mapping electrical activity from the entire epicardium of the Langendorff-perfused rabbit heart. Combined with reconstruction of the 3D heart surface, the functional data can be conveniently visualized on the realistic heart geometry. Methods to quantify the panoramic data set are introduced by first describing a simple approach to mesh the heart in regular grid form. The regular grid mesh provides substrate for easy translation of previously available non-linear dynamics methods for 2D array data. It also simplifies the unwrapping of curved three-dimensional surface to 2D surface for global epicardial visualization of the functional data. The translated quantification methods include activation maps (isochrones), phase maps, phase singularity, and electric stimulus-induced virtual electrode polarization (VEP) maps. We also adapt a method to calculate the conduction velocities on the global epicardial surface by taking the curvature of the heart surface into account.
Collapse
|
32
|
Bishop MJ, Rodriguez B, Trayanova N, Gavaghan DJ. Modulation of shock-end virtual electrode polarisation as a direct result of 3D fluorescent photon scattering. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2008; 2006:1556-9. [PMID: 17946049 DOI: 10.1109/iembs.2006.259243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Due to the large transmural variation in transmembrane potential following the application of strong electric shocks, it is thought that fluorescent photon scattering from depth plays a significant role in optical signal modulation at shock-end. For the first time, a model of photon scattering is used to accurately synthesize fluorescent signals over the irregular geometry of the rabbit ventricles following the application of such strong shocks. A bidomain representation of electrical activity is combined with finite element solutions to the photon diffusion equation, simulating both the excitation and emission processes, over an anatomically-based model of rabbit ventricular geometry and fiber orientation. Photon scattering from within a 3D volume beneath the epicardial optical recording site is shown to transduce differences in transmembrane potential within this volume through the myocardial wall. This leads directly to a significantly modulated optical signal response with respect to that predicted by the bidomain simulations, distorting epicardial virtual electrode polarization produced at shock-end. Furthermore, we show that this degree of distortion is very sensitive to the optical properties of the tissue, an important variable to consider during experimental mapping set-ups. These findings provide an essential first-step in aiding the interpretation of experimental optical mapping recordings following strong defibrillation shocks.
Collapse
Affiliation(s)
- M J Bishop
- Computational Biology Group, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
33
|
Austin T, Trew M, Pullan A. Multilevel homogenization applied to the cardiac bidomain equations. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2008; 2006:584-7. [PMID: 17945987 DOI: 10.1109/iembs.2006.259683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Accurate cardiac tissue-based modeling using the bidomain equations requires the incorporation of fine-scale structures observed at the 50-100 micron level. By including such features we can more easily observe how defibrillation shocks lead to total depolarization of the heart. Several modeling studies that have investigated the effect of fine scale structures on defibrillation success have been completed. Results have shown that such structures aid, through the creation of virtual electrodes, in total depolarization. An obstacle that occurs with this modeling style is the massive amount of data that must be incorporated into detailed tissue models for even a cubic millimeter sample of cardiac tissue. In this paper, we discuss our approach to generating upscaled, or homogenized, versions of these models that can be used to perform simulations at a more reasonable modeling scale. They have the advantage of incorporating fine scale structure into the model at a reduced modeling cost. We introduce and briefly explore the advantages of this upscaling method.
Collapse
Affiliation(s)
- Travis Austin
- Bioengineering Institute, University of Auckland, New Zealand.
| | | | | |
Collapse
|
34
|
Cysyk J, Tung L. Electric field perturbations of spiral waves attached to millimeter-size obstacles. Biophys J 2008; 94:1533-41. [PMID: 17921205 PMCID: PMC2212699 DOI: 10.1529/biophysj.107.116244] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 09/26/2007] [Indexed: 11/18/2022] Open
Abstract
Reentrant spiral waves can become pinned to small anatomical obstacles in the heart and lead to monomorphic ventricular tachycardia that can degenerate into polymorphic tachycardia and ventricular fibrillation. Electric field-induced secondary source stimulation can excite directly at the obstacle, and may provide a means to terminate the pinned wave or inhibit the transition to more complex arrhythmia. We used confluent monolayers of neonatal rat ventricular myocytes to investigate the use of low intensity electric field stimulation to perturb the spiral wave. A hole 2-4 mm in diameter was created in the center to pin the spiral wave. Monolayers were stained with voltage-sensitive dye di-4-ANEPPS and mapped at 253 sites. Spiral waves were initiated that attached to the hole (n = 10 monolayers). Electric field pulses 1-s in duration were delivered with increasing strength (0.5-5 V/cm) until the wave terminated after detaching from the hole. At subdetachment intensities, cycle length increased with field strength, was sustained for the duration of the pulse, and returned to its original value after termination of the pulse. Mechanistically, conduction velocity near the wave tip decreased with field strength in the region of depolarization at the obstacle. In summary, electric fields cause strength-dependent slowing or detachment of pinned spiral waves. Our results suggest a means to decelerate tachycardia that may help to prevent wave degeneration.
Collapse
Affiliation(s)
- Joshua Cysyk
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
35
|
Ashihara T, Constantino J, Trayanova NA. Tunnel propagation of postshock activations as a hypothesis for fibrillation induction and isoelectric window. Circ Res 2008; 102:737-45. [PMID: 18218982 DOI: 10.1161/circresaha.107.168112] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Comprehensive understanding of the ventricular response to shocks is the approach most likely to succeed in reducing defibrillation threshold. We propose a new theory of shock-induced arrhythmogenesis that unifies all known aspects of the response of the heart to monophasic (MS) and biphasic (BS) shocks. The central hypothesis is that submerged "tunnel" propagation of postshock activations through shock-induced intramural excitable areas underlies fibrillation induction and the existence of isoelectric window. We conducted simulations of fibrillation induction using a realistic bidomain model of rabbit ventricles. Following pacing, MS and BS of various strengths/timings were delivered. The results demonstrated that, during the isoelectric window, an activation originated deep within the ventricular wall, arising from virtual electrodes; it then propagated fully intramurally through an excitable tunnel induced by the shock, until it emerged onto the epicardium, becoming the earliest-propagated postshock activation. Differences in shock outcomes for MS and BS were found to stem from the narrower BS intramural postshock excitable area, often resulting in conduction block, and the difference in the mechanisms of origin of the postshock activations, namely intramural virtual electrode-induced phase singularity for MS and virtual electrode-induced propagated graded response for BS. This study provides a novel analysis of the 3D mechanisms underlying the origin of postshock activations in the process of fibrillation induction by MS and BS and the existence of isoelectric window. The tunnel propagation hypothesis could open a new avenue for interventions exploration to achieve significantly lower defibrillation threshold.
Collapse
Affiliation(s)
- Takashi Ashihara
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan
| | | | | |
Collapse
|
36
|
Bishop MJ, Gavaghan DJ, Trayanova NA, Rodriguez B. Photon scattering effects in optical mapping of propagation and arrhythmogenesis in the heart. J Electrocardiol 2008; 40:S75-80. [PMID: 17993334 DOI: 10.1016/j.jelectrocard.2007.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2007] [Accepted: 06/07/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Optical mapping is a widely used experimental tool providing high-resolution recordings of cardiac electrical activity. However, the technique is limited by signal distortion due to photon scattering in the tissue. Computational models of the fluorescence recording are capable of assessing these distortion effects, providing important insight to assist experimental data interpretation. METHODS We present results from a new panoramic optical mapping model, which is used to assess distortion in ventricular optical mapping signals during pacing and arrhythmogenesis arising from 3-dimensional photon scattering. RESULTS/CONCLUSIONS We demonstrate that accurate consideration of wavefront propagation within the complex ventricular structure, along with accurate representation of photon scattering in 3 dimensions, is essential to faithfully assess distortion effects arising during optical mapping. In this article, examined effects include (1) the specific morphology of the optical action potential upstroke during pacing and (2) the shift in the location of epicardial phase singularities obtained from fluorescent maps.
Collapse
Affiliation(s)
- Martin J Bishop
- Computational Biology Group, University of Oxford Computing Laboratory, Oxford, UK
| | | | | | | |
Collapse
|
37
|
The role of photon scattering in optical signal distortion during arrhythmia and defibrillation. Biophys J 2008; 93:3714-26. [PMID: 17978166 DOI: 10.1529/biophysj.107.110981] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Optical mapping of arrhythmias and defibrillation provides important insights; however, a limitation of the technique is signal distortion due to photon scattering. The goal of this experimental/simulation study is to investigate the role of three-dimensional photon scattering in optical signal distortion during ventricular tachycardia (VT) and defibrillation. A three-dimensional realistic bidomain rabbit ventricular model was combined with a model of photon transport. Shocks were applied via external electrodes to induce sustained VT, and transmembrane potentials (V(m)) were compared with synthesized optical signals (V(opt)). Fluorescent recordings were conducted in isolated rabbit hearts to validate simulation results. Results demonstrate that shock-induced membrane polarization magnitude is smaller in V(opt) and in experimental signals as compared to V(m). This is due to transduction of potentials from weakly polarized midmyocardium to the epicardium. During shock-induced reentry and in sustained VT, photon scattering, combined with complex wavefront dynamics, results in optical action potentials near a filament exhibiting i), elevated resting potential, ii), reduced amplitude relative to pacing, and iii), dual-humped morphologies. A shift of up to 4 mm in the phase singularity location was observed in V(opt) maps when compared to V(m). This combined experimental/simulation study provides an interpretation of optical recordings during VT and defibrillation.
Collapse
|
38
|
Maharaj T, Blake R, Trayanova N, Gavaghan D, Rodriguez B. The role of transmural ventricular heterogeneities in cardiac vulnerability to electric shocks. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 96:321-38. [PMID: 17915299 PMCID: PMC2821334 DOI: 10.1016/j.pbiomolbio.2007.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transmural electrophysiological heterogeneities have been shown to contribute to arrhythmia induction in the heart; however, their role in defibrillation failure has never been examined. The goal of this study is to investigate how transmural heterogeneities in ionic currents and gap-junctional coupling contribute to arrhythmia generation following defibrillation strength shocks. This study used a 3D anatomically realistic bidomain model of the rabbit ventricles. Transmural heterogeneity in ionic currents and reduced sub-epicardial intercellular coupling were incorporated based on experimental data. The ventricles were paced apically, and truncated-exponential monophasic shocks of varying strength and timing were applied via large external electrodes. Simulations demonstrate that inclusion of transmural heterogeneity in ionic currents results in an increase in vulnerability to shocks, reflected in the increased upper limit of vulnerability, ULV, and the enlarged vulnerable window, VW. These changes in vulnerability stem from increased post-shock dispersion in repolarisation as it increases the likelihood of establishment of re-entrant circuits. In contrast, reduced sub-epicardial coupling results in decrease in both ULV and VW. This decrease is caused by altered virtual electrode polarisation around the region of sub-epicardal uncoupling, and specifically, by the increase in (1) the amount of positively polarised myocardium at shock-end and (2) the spatial extent of post-shock wavefronts.
Collapse
Affiliation(s)
- Thushka Maharaj
- Computing Laboratory, University of Oxford, Oxford, OX1 3PG, UK.
| | | | | | | | | |
Collapse
|
39
|
Sedmera D. Development of cardiac conduction system in mammals with a focus on the anatomical, functional and medical/genetical aspects. J Appl Biomed 2007. [DOI: 10.32725/jab.2007.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
40
|
|
41
|
Abstract
I am deeply grateful and honored to receive the 2006 Distinguished Scientist Award from the Heart Rhythm Society. Many outstanding individuals have received this award since it was established in 1982, and it is humbling to realize that my small feet are walking in the footsteps of these giants. I would be remiss if I did not thank the numerous colleagues, fellows, and students who performed most of the work leading to the papers of which I am a coauthor.
Collapse
Affiliation(s)
- Raymond E Ideker
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama, Birmingham, Alabama 35294-0019, USA.
| |
Collapse
|
42
|
Langrill Beaudoin D, Roth B. Small random fiber angle variations as a mechanism for far-field stimulation of cardiac tissue. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2004:3975-8. [PMID: 17271168 DOI: 10.1109/iembs.2004.1404110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The mechanism by which an electric field stimulates cardiac tissue far from the stimulating electrode is not known. Current theories rely on the inherent heterogeneity of cardiac tissue as contributing to this phenomenon. This paper explores a possible mechanism for far-field stimulation in relation to fiber curvature. We incorporate a randomized fiber angle geometry into a two-dimensional active cardiac tissue model with unequal anisotropy ratios already exhibiting smooth, curving fibers. We simulate cross-field stimulation to initiate reentry in the tissue model, and compare the electric field thresholds at different S1-S2 intervals for tissue with randomized fiber angles and tissue with a smooth fiber geometry. The tissue with random fiber angles has a significantly lower threshold for reentry at certain intervals on the strength-interval curve. We conclude that a random fiber geometry may have an effect on the mechanism for far-field stimulation.
Collapse
|
43
|
Abstract
Myocardial ischemia is one of the main causes of sudden cardiac death, with 80% of victims suffering from coronary heart disease. In acute myocardial ischemia, the obstruction of coronary flow leads to the interruption of oxygen flow, glucose, and washout in the affected tissue. Cellular metabolism is impaired and severe electrophysiological changes in ionic currents and concentrations ensue, which favor the development of lethal cardiac arrhythmias such as ventricular fibrillation. Due to the burden imposed by ischemia in our societies, a large body of research has attempted to unravel the mechanisms of initiation, sustenance, and termination of cardiac arrhythmias in acute ischemia, but the rapidity and complexity of ischemia-induced changes as well as the limitations in current experimental techniques have hampered evaluation of ischemia-induced alterations in cardiac electrical activity and understanding of the underlying mechanisms. Over the last decade, computer simulations have demonstrated the ability to provide insight, with high spatiotemporal resolution, into ischemic abnormalities in cardiac electrophysiological behavior from the ionic channel to the whole organ. This article aims to review and summarize the results of these studies and to emphasize the role of computer simulations in improving the understanding of ischemia-related arrhythmias and how to efficiently terminate them.
Collapse
Affiliation(s)
- Blanca Rodríguez
- Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford, UK.
| | | | | |
Collapse
|
44
|
Abstract
Despite its critical role in restoring cardiac rhythm and thus in saving human life, cardiac defibrillation remains poorly understood. Further mechanistic inquiry is hampered by the inability of presently available experimental techniques to resolve, with sufficient accuracy, electrical behaviour confined to the depth of the ventricles. The objective of this review article is to demonstrate that realistic 3-D simulations of the ventricular defibrillation process in close conjunction with experimental observations are capable of bringing a new level of understanding of the electrical events that ensue from the interaction between fibrillating myocardium and applied shock. The article does this by reviewing the results of two studies, one on vulnerability to electric shocks and another on defibrillation. An overview of the modelling tools used in these studies is also provided.
Collapse
Affiliation(s)
- Natalia Trayanova
- Department of Biomedical Engineering, 500 Lindy Boggs Center, Suite 500, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
45
|
Maharaj T, Rodriguez B, Blake R, Trayanova NA, Gavaghan DJ. Transmural electrophysiological heterogeneities in action potential duration increase the upper limit of vulnerability. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2006; 2006:4043-4046. [PMID: 17946217 DOI: 10.1109/iembs.2006.259345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Transmural dispersion in action potential duration (APD) has been shown to contribute to arrhythmia induction in the heart. However, its role in termination of lethal arrhythmias by defibrillation shocks has never been examined. The goal of this study is to investigate how transmural dispersion in APD affects cardiac vulnerability to electric shocks, in an attempt to better understand the mechanisms behind defibrillation failure. This study used a three- dimensional, geometrically accurate finite element bidomain rabbit ventricular model. Transmural heterogeneities in ionic currents were incorporated based on experimental data to generate the transmural APD profile recorded in adult rabbits during pacing. Results show that the incorporation of transmural APD heterogeneities in the model causes an increase in the upper limit of vulnerability from 26.7 V/cm in the homogeneous APD ventricles to 30.5 V/cm in the ventricles with heterogeneous transmural APD profile. Examination of shock-end virtual electrode polarisation and postshock electrical activity reveals that the higher ULV in the heterogeneous model is caused by increased dispersion in postshock repolarisation within the LV wall, which increases the likelihood of the establishment of intramural re-entrant circuits.
Collapse
|
46
|
Dumas JH, Knisley SB, Kinisley SB. Two-Photon Excitation of di-4-ANEPPS for Optical Recording of Action Potentials in Rabbit Heart. Ann Biomed Eng 2005; 33:1802-7. [PMID: 16389528 DOI: 10.1007/s10439-005-8466-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 09/12/2005] [Indexed: 11/24/2022]
Abstract
Cardiac action potentials have been measured with single-photon excitation (SPE) of transmembrane voltage-sensitive fluorescent dye. Two-photon excitation (TPE) may have advantages for localization and depth of the tissue region from which the action potential is measured. However measurements of action potentials with SPE have not been demonstrated. We sought to develop a method for TPE of di-4-ANEPPS and test whether the method yields voltage-dependent fluorescence in cardiac tissue. We modified our SPE and ratio-metric fluorescence recording system to use a femtosecond pulsed near-infrared laser. Modifications were made to enhance fluorescence collection efficiency and to block infrared laser light from entering the fluorescence collection system. Fluorescence was collected simultaneously in green (510-570 nm) and red (590-700 nm) wavelength bands. Action potentials were observed in the ratio of the green signal to the red signal, but were not observed above the noise level in either of the individual signals. Incorporation of a common-mode noise subtraction method revealed action potentials in green and red signals. We also found that the di-4-ANEPPS fluorescence emission spectrum for TPE at 930 nm was similar to the emission spectrum for SPE at 488 nm. The multiphoton method may be beneficial for highly localized cardiac optical measurements.
Collapse
Affiliation(s)
- John H Dumas
- Department of Biomedical Engineering, The University of North Carolina, Chapel Hill, North Carolina 27599-7575, USA
| | | | | |
Collapse
|
47
|
Beaudoin DL, Roth BJ. How the spatial frequency of polarization influences the induction of reentry in cardiac tissue. J Cardiovasc Electrophysiol 2005; 16:748-52. [PMID: 16050833 DOI: 10.1111/j.1540-8167.2005.40651.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
UNLABELLED Influences of spatial frequency of polarization. INTRODUCTION The mechanism by which an electric field induces a rotor during cross-field stimulation of cardiac tissue is not entirely known. Different heterogeneous aspects of cardiac tissue have been offered as possible theories, a prominent one being fiber curvature. The polarization produced when an electric field is applied to a sheet of tissue is varied over many spatial frequencies, depending upon the fiber angle. This article compares the effect of high and low spatial frequencies of polarization on reentry induction. METHODS AND RESULTS We incorporate a randomized fiber angle geometry into a two-dimensional active cardiac tissue model with unequal anisotropy ratios already exhibiting smooth, curving fibers. We simulate cross-field stimulation to initiate reentry in the tissue model, and compare the electric field thresholds at different S1-S2 intervals for tissue with randomized fiber angles, tissue with a smooth fiber geometry, and tissue with randomized fiber angles plus smooth, curving fibers. The tissue with both small, random fiber angles and curving fibers has a significantly lower threshold for reentry at certain intervals on the strength-interval curve than for the two cases individually. CONCLUSION Cardiac tissue exhibiting a random fiber geometry in conjunction with a smooth fiber geometry includes high and low spatial frequencies of polarization that may have an effect on the mechanism for reentry at certain S1-S2 intervals. Low spatial frequency regions of hyperpolarization carve out excitable pathways, and high spatial frequency regions provide the large gradient of transmembrane potential required to initiate break excitation.
Collapse
|
48
|
Rodríguez B, Li L, Eason JC, Efimov IR, Trayanova NA. Differences between left and right ventricular chamber geometry affect cardiac vulnerability to electric shocks. Circ Res 2005; 97:168-75. [PMID: 15976315 PMCID: PMC2925187 DOI: 10.1161/01.res.0000174429.00987.17] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although effects of shock strength and waveform on cardiac vulnerability to electric shocks have been extensively documented, the contribution of ventricular anatomy to shock-induced polarization and postshock propagation and thus, to shock outcome, has never been quantified; this is caused by lack of experimental methodology capable of mapping 3-D electrical activity. The goal of this study was to use optical imaging experiments and 3-D bidomain simulations to investigate the role of structural differences between left and right ventricles in vulnerability to electric shocks in rabbit hearts. The ventricles were paced apically, and uniform-field, truncated-exponential, monophasic shocks of reversed polarity were applied over a range of coupling intervals (CIs) in experiment and model. Experiments and simulations revealed that reversing the direction of externally-applied field (RV- or LV- shocks) alters the shape of the vulnerability area (VA), the 2-D grid encompassing episodes of arrhythmia induction. For RV- shocks, VA was nearly rectangular indicating little dependence of postshock arrhythmogenesis on CI. For LV- shocks, the probability of arrhythmia induction was higher for longer than for shorter CIs. The 3-D simulations demonstrated that these effects stem from the fact that reversal of field direction results in relocation of the main postshock excitable area from LV wall (RV- shocks) to septum (LV- shocks). Furthermore, the effect of septal (but not LV) excitable area in postshock propagation was found to strongly depend on preshock state. Knowledge regarding the location of the main postshock excitable area within the 3-D ventricular volume could be important for improving defibrillation efficacy.
Collapse
|
49
|
Qu F, Li L, Nikolski VP, Sharma V, Efimov IR. Mechanisms of superiority of ascending ramp waveforms: new insights into mechanisms of shock-induced vulnerability and defibrillation. Am J Physiol Heart Circ Physiol 2005; 289:H569-77. [PMID: 15792989 DOI: 10.1152/ajpheart.01117.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Monophasic ascending ramp (AR) and descending ramp (DR) waveforms are known to have significantly different defibrillation thresholds. We hypothesized that this difference arises due to differences in mechanisms of arrhythmia induction for the two waveforms. Rabbit hearts (n = 10) were Langendorff perfused, and AR and DR waveforms (7, 20, and 40 ms) were randomly delivered from two line electrodes placed 10 mm apart on the anterior ventricular epicardium. We optically mapped cellular responses to shocks of various strengths (5, 10, and 20 V/cm) and coupling intervals (CIs; 120, 180, and 300 ms). Optical mapping revealed that maximum virtual electrode polarization (VEP) was reached at significantly different times for AR and DR of the same duration (P < 0.05) for all tested CIs. As a result, VEP for AR were stronger than for DR at the end of the shock. Postshock break excitation resulting from AR generated faster propagation and typically could not form reentry. In contrast, partially dissipated VEP resulting from DR generated slower propagation; the wavefront was able to propagate into deexcited tissue and thus formed a shock-induced reentry circuit. Therefore, for the same delivered energy, AR was less proarrhythmic compared with DR. An active bidomain model was used to confirm the electrophysiological results. The VEP hypothesis explains differences in vulnerability associated with monophasic AR and DR waveforms and, by extension, the superior defibrillation efficacy of the AR waveform compared with the DR waveform.
Collapse
Affiliation(s)
- Fujian Qu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | |
Collapse
|
50
|
Kuijpers NHL, Keldermann RH, Arts T, Hilbers PAJ. Computer simulations of successful defibrillation in decoupled and non-uniform cardiac tissue. ACTA ACUST UNITED AC 2005; 7 Suppl 2:166-77. [PMID: 16102514 DOI: 10.1016/j.eupc.2005.03.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 02/03/2005] [Accepted: 05/03/2005] [Indexed: 11/19/2022]
Abstract
Abstract
Aim
The aim of the present study is to investigate the origin and effect of virtual electrode polarization in uniform, decoupled and non-uniform cardiac tissue during field stimulation.
Methods
A discrete bidomain model with active membrane behaviour was used to simulate normal cardiac tissue as well as cardiac tissue that is decoupled due to fibrosis and gap junction remodelling. Various uniform and non-uniform electric fields were applied to the external domain of uniform, decoupled and non-uniform resting cardiac tissue as well as cardiac tissue in which spiral waves were induced.
Results
Field stimulation applied on non-uniform tissue results in more virtual electrodes compared with uniform tissue. The spiral waves were terminated in decoupled tissue, but not in uniform, homogeneous tissue. By gradually increasing local differences in intracellular conductivities, the amount and spread of virtual electrodes increased and the spiral waves were terminated.
Conclusion
Fast depolarization of the tissue after field stimulation may be explained by intracellular decoupling and spatial heterogeneity present in normal and pathological cardiac tissue. We demonstrated that termination of spiral waves by means of field stimulation can be achieved when the tissue is modelled as a non-uniform, anisotropic bidomain with active membrane behaviour.
Collapse
Affiliation(s)
- N H L Kuijpers
- Department of Biomedical Engineering, Technische Universiteit Eindhoven, The Netherlands.
| | | | | | | |
Collapse
|