1
|
Attia EF, Maleche-Obimbo E, Ellington LE, North CM. Pulmonary Immunocompromise in Human Immunodeficiency Virus Disease. Clin Chest Med 2025; 46:185-201. [PMID: 39890288 DOI: 10.1016/j.ccm.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
The spectrum of pulmonary disease in people with human immunodeficiency virus (PWH) across the lifespan has shifted from acute, infectious, and acquired immunodeficiency syndrome (AIDS)-defining illnesses to a greater burden of chronic, non-communicable processes. Here, the authors review the epidemiology and risk factors of pulmonary disease in PWH across the lifespan during the contemporary antiretroviral therapy era. The authors focus on recommendations for clinical care of pulmonary disease relevant to PWH, including emerging data from recent and ongoing clinical trials.
Collapse
Affiliation(s)
- Engi F Attia
- Division of Pulmonary, Critical Care and Sleep Medicine, Departments of Medicine and Global Health, University of Washington School of Medicine, Seattle, WA, USA.
| | | | - Laura E Ellington
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle Children's Research Institute, Seattle, WA, USA
| | - Crystal M North
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Castro CFG, Nardiello C, Hadzic S, Kojonazarov B, Kraut S, Gierhardt M, Schäffer J, Bednorz M, Quanz K, Heger J, Korfei M, Wilhelm J, Hecker M, Bartkuhn M, Arnhold S, Guenther A, Seeger W, Schulz R, Weissmann N, Sommer N, Pak O. The Role of the Redox Enzyme p66Shc in Biological Aging of the Lung. Aging Dis 2024; 15:911-926. [PMID: 37548932 PMCID: PMC10917546 DOI: 10.14336/ad.2023.0715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/15/2023] [Indexed: 08/08/2023] Open
Abstract
The mitochondrial adaptor protein p66Shc has been suggested to control life span in mice via the release of hydrogen peroxide. However, the role of p66Shc in lung aging remains unsolved. Thus, we investigated the effects of p66Shc-/- on the aging of the lung and pulmonary circulation. In vivo lung and cardiac characteristics were investigated in p66Shc-/- and wild type (WT) mice at 3, 12, and 24 months of age by lung function measurements, micro-computed tomography (µCT), and echocardiography. Alveolar number and muscularization of small pulmonary arteries were measured by stereology and vascular morphometry, respectively. Protein and mRNA levels of senescent markers were measured by western blot and PCR, respectively. Lung function declined similarly in WT and p66Shc-/- mice during aging. However, µCT analyses and stereology showed slightly enhanced signs of aging-related parameters in p66Shc-/- mice, such as a decline of alveolar density. Accordingly, p66Shc-/- mice showed higher protein expression of the senescence marker p21 in lung homogenate compared to WT mice of the corresponding age. Pulmonary vascular remodeling was increased during aging, but aged p66Shc-/- mice showed similar muscularization of pulmonary vessels and hemodynamics like WT mice. In the heart, p66Shc-/- prevented the deterioration of right ventricular (RV) function but promoted the decline of left ventricular (LV) function during aging. p66Shc-/- affects the aging process of the lung and the heart differently. While p66Shc-/- slightly accelerates lung aging and deteriorates LV function in aged mice, it seems to exert protective effects on RV function during aging.
Collapse
Affiliation(s)
- Claudia F. Garcia Castro
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Claudio Nardiello
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Stefan Hadzic
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Baktybek Kojonazarov
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
- Institute for Lung Health (ILH), Giessen, Germany.
| | - Simone Kraut
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Mareike Gierhardt
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| | - Julia Schäffer
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Mariola Bednorz
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Karin Quanz
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Jacqueline Heger
- Institute of Physiology, Justus-Liebig University of Giessen, Giessen, Germany.
| | - Martina Korfei
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Jochen Wilhelm
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
- Institute for Lung Health (ILH), Giessen, Germany.
| | - Matthias Hecker
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Marek Bartkuhn
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
- Institute for Lung Health (ILH), Giessen, Germany.
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig University of Giessen, Giessen, Germany.
| | - Andreas Guenther
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
- European IPF Registry & Biobank (eurIPFreg), Giessen, Germany.
- Agaplesion Evangelisches Krankenhaus Mittelhessen, Giessen, Germany
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Institute for Lung Health (ILH), Giessen, Germany.
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University of Giessen, Giessen, Germany.
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Natascha Sommer
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Oleg Pak
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| |
Collapse
|
3
|
Hadzic S, Wu CY, Gredic M, Pak O, Loku E, Kraut S, Kojonazarov B, Wilhelm J, Brosien M, Bednorz M, Seimetz M, Günther A, Kosanovic D, Sommer N, Warburton D, Li X, Grimminger F, Ghofrani HA, Schermuly RT, Seeger W, El Agha E, Bellusci S, Weissmann N. Fibroblast growth factor 10 reverses cigarette smoke- and elastase-induced emphysema and pulmonary hypertension in mice. Eur Respir J 2023; 62:2201606. [PMID: 37884305 PMCID: PMC10632559 DOI: 10.1183/13993003.01606-2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/28/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND COPD is an incurable disease and a leading cause of death worldwide. In mice, fibroblast growth factor (FGF)10 is essential for lung morphogenesis, and in humans, polymorphisms in the human FGF10 gene correlate with an increased susceptibility to develop COPD. METHODS We analysed FGF10 signalling in human lung sections and isolated cells from healthy donor, smoker and COPD lungs. The development of emphysema and PH was investigated in Fgf10+/- and Fgfr2b+/- (FGF receptor 2b) mice upon chronic exposure to cigarette smoke. In addition, we overexpressed FGF10 in mice following elastase- or cigarette smoke-induced emphysema and pulmonary hypertension (PH). RESULTS We found impaired FGF10 expression in human lung alveolar walls and in primary interstitial COPD lung fibroblasts. In contrast, FGF10 expression was increased in large pulmonary vessels in COPD lungs. Consequently, we identified impaired FGF10 signalling in alveolar walls as an integral part of the pathomechanism that leads to emphysema and PH development: mice with impaired FGF10 signalling (Fgf10+/- and Fgfr2b+/- ) spontaneously developed lung emphysema, PH and other typical pathomechanistic features that generally arise in response to cigarette smoke exposure. CONCLUSION In a therapeutic approach, FGF10 overexpression successfully restored lung alveolar and vascular structure in mice with established cigarette smoke- and elastase-induced emphysema and PH. FGF10 treatment triggered an initial increase in the number of alveolar type 2 cells that gradually returned to the basal level when the FGF10-mediated repair process progressed. Therefore, the application of recombinant FGF10 or stimulation of the downstream signalling cascade might represent a novel therapeutic strategy in the future.
Collapse
Affiliation(s)
- Stefan Hadzic
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Cheng-Yu Wu
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Marija Gredic
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Oleg Pak
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Edma Loku
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Simone Kraut
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Baktybek Kojonazarov
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig-University, Giessen, Germany
| | - Jochen Wilhelm
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig-University, Giessen, Germany
| | - Monika Brosien
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Mariola Bednorz
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Andreas Günther
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Djuro Kosanovic
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Natascha Sommer
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - David Warburton
- Children's Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, P.R. China
| | - Friedrich Grimminger
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Hossein A Ghofrani
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Ralph T Schermuly
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
- Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Elie El Agha
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig-University, Giessen, Germany
| | - Saverio Bellusci
- Oujiang Laboratory (Zheijiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
- Laboratory of Extracellular Matrix Remodelling, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
- S. Bellusci and N. Weissmann contributed equally to this article as lead authors and supervised the work
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
- S. Bellusci and N. Weissmann contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
4
|
Gredic M, Hadzic S. Pulmonary Hypertension: Unveiling Molecular Mechanisms, Diagnosis, and Therapeutic Targets. J Pers Med 2023; 13:1446. [PMID: 37888057 PMCID: PMC10608029 DOI: 10.3390/jpm13101446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Pulmonary hypertension (PH) is a progressive and life-threatening disease characterized by increased pulmonary arterial pressure, which leads to right heart hypertrophy and eventually right heart failure [...].
Collapse
Affiliation(s)
| | - Stefan Hadzic
- Excellence Cluster Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University, 35392 Giessen, Germany;
| |
Collapse
|
5
|
Joshi I, Devine AJ, Joshi R, Smith NJ, Varisco BM. A titratable murine model of progressive emphysema using tracheal porcine pancreatic elastase. Sci Rep 2023; 13:15259. [PMID: 37709810 PMCID: PMC10502133 DOI: 10.1038/s41598-023-41527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
Progressive emphysema often leads to end-stage lung disease. Most mouse models of emphysema are typically modest (i.e. cigarette smoke exposure), and changes over time are difficult to quantify. The tracheal porcine pancreatic elastase model (PPE) produces severe injury, but the literature is conflicted as to whether emphysema improves, is stable, or progresses over time. We hypothesized a threshold of injury below which repair would occur and above which emphysema would be stable or progress. We treated 8-week-old C57BL6 mixed sex mice with 0, 0.5, 2, or 4 activity units of PPE in 100 µL PBS and performed lung stereology at 21 and 84 days. There were no significant differences in weight gain or mouse health. Despite minimal emphysema at 21-days in the 0.5 units group (2.8 µm increased mean linear intercept, MLI), MLI increased by 4.6 µm between days 21 and 84 (p = 0.0007). In addition to larger MLI at 21 days in 2- and 4-unit groups, MLI increases from day 21 to 84 were 17.2 and 34 µm respectively (p = 0.002 and p = 0.0001). Total lung volume increased, and alveolar surface area decreased with time and injury severity. Contrary to our hypothesis, we found no evidence of alveolar repair over time. Airspace destruction was both progressive and accelerative. Future mechanistic studies in lung immunity, mechano-biology, senescence, and cell-specific changes may lead to novel therapies to slow or halt progressive emphysema in humans.
Collapse
Affiliation(s)
- Imani Joshi
- College of Arts and Sciences, Xavier University, Cincinnati, OH, USA
| | - Andrew J Devine
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rashika Joshi
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Noah J Smith
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brian M Varisco
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- University of Arkansas for Medical Sciences, 1 Children's Way Slot 663, Little Rock, AR, 72202, USA.
| |
Collapse
|
6
|
Gredic M, Sharma V, Hadzic S, Wu CY, Pak O, Kojonazarov B, Duerr J, Mall MA, Guenther A, Schermuly RT, Grimminger F, Seeger W, Kraut S, Sommer N, Weissmann N. iNOS Deletion in Alveolar Epithelium Cannot Reverse the Elastase-Induced Emphysema in Mice. Cells 2022; 12:cells12010125. [PMID: 36611917 PMCID: PMC9818765 DOI: 10.3390/cells12010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/26/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. In addition to chronic bronchitis and emphysema, patients often develop at least mild pulmonary hypertension (PH). We previously demonstrated that inhibition of inducible nitric oxide synthase (iNOS) prevents and reverses emphysema and PH in mice. Interestingly, strong iNOS upregulation was found in alveolar epithelial type II cells (AECII) in emphysematous murine lungs, and peroxynitrite, which can be formed from iNOS-derived NO, was shown to induce AECII apoptosis in vitro. However, the specific cell type(s) that drive(s) iNOS-dependent lung regeneration in emphysema/PH has (have) not been identified yet. AIM we tested whether iNOS knockout in AECII affects established elastase-induced emphysema in mice. METHODS four weeks after a single intratracheal instillation of porcine pancreatic elastase for the induction of emphysema and PH, we induced iNOS knockout in AECII in mice, and gave an additional twelve weeks for the potential recovery. RESULTS iNOS knockout in AECII did not reduce elastase-induced functional and structural lung changes such as increased lung compliance, decreased mean linear intercept and increased airspace, decreased right ventricular function, increased right ventricular systolic pressure and increased pulmonary vascular muscularization. In vitro, iNOS inhibition did not reduce apoptosis of AECII following exposure to a noxious stimulus. CONCLUSION taken together, our data demonstrate that iNOS deletion in AECII is not sufficient for the regeneration of emphysematous murine lungs, and suggest that iNOS expression in pulmonary vascular or stromal cells might be critically important in this regard.
Collapse
Affiliation(s)
- Marija Gredic
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, 35392 Giessen, Germany
- Correspondence: ; Tel.: +49-641-994-2417
| | - Vinita Sharma
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, 35392 Giessen, Germany
| | - Stefan Hadzic
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, 35392 Giessen, Germany
| | - Cheng-Yu Wu
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, 35392 Giessen, Germany
| | - Oleg Pak
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, 35392 Giessen, Germany
| | - Baktybek Kojonazarov
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus-Liebig-University, 35392 Giessen, Germany
| | - Julia Duerr
- Department of Translational Pulmonology, University of Heidelberg, 69117 Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Marcus A. Mall
- Department of Translational Pulmonology, University of Heidelberg, 69117 Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Andreas Guenther
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, 35392 Giessen, Germany
- European IPF Registry & Biobank (eurIPFreg), 35392 Giessen, Germany
- Agaplesion Evangelisches Krankenhaus Mittelhessen, 35398 Giessen, Germany
| | - Ralph T. Schermuly
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, 35392 Giessen, Germany
| | - Friedrich Grimminger
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, 35392 Giessen, Germany
| | - Werner Seeger
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, 35392 Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), 61231 Bad Nauheim, Germany
| | - Simone Kraut
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, 35392 Giessen, Germany
| | - Natascha Sommer
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, 35392 Giessen, Germany
| | - Norbert Weissmann
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, 35392 Giessen, Germany
| |
Collapse
|
7
|
Differential Modulation of Matrix Metalloproteinases-2 and -7 in LAM/TSC Cells. Biomedicines 2021; 9:biomedicines9121760. [PMID: 34944575 PMCID: PMC8698908 DOI: 10.3390/biomedicines9121760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/24/2022] Open
Abstract
Matrix metalloproteinase (MMP) dysregulation is implicated in several diseases, given their involvement in extracellular matrix degradation and cell motility. In lymphangioleiomyomatosis (LAM), a pulmonary rare disease, MMP-2 and MMP-9 have been detected at high levels in serum and urine. LAM cells, characterized by a mutation in the tuberous sclerosis complex (TSC)1 or TSC2, promote cystic lung destruction. The role of MMPs in invasive and destructive LAM cell capability has not yet been fully understood. We evaluated MMP-2 and MMP-7 expression, secretion, and activity in primary LAM/TSC cells that bear a TSC2 germline mutation and an epigenetic modification and depend on epidermal growth factor (EGF) for survival. 5-azacytidine restored tuberin expression with a reduction of MMP-2 and MMP-7 levels and inhibits motility, similarly to rapamycin and anti-EGFR antibody. Both drugs reduced MMP-2 and MMP-7 secretion and activity during wound healing and decreased their expression in lung nodules of a LAM mouse model. In LAM/TSC cells, MMP-2 and MMP-7 are dependent on tuberin expression, cellular adhesion, and migration. MMPs appears sensitive to rapamycin and anti-EGFR antibody only during cellular migration. Our data indicate a complex and differential modulation of MMP-2 and MMP-7 in LAM/TSC cells, likely critical for lung parenchyma remodeling during LAM progression.
Collapse
|
8
|
Wang F, Hadzic S, Roxlau ET, Fuehler B, Janise-Libawski A, Wimmer T, Lei B, Li SW, Weissmann N, Stieger K. Retinal tissue develops an inflammatory reaction to tobacco smoke and electronic cigarette vapor in mice. J Mol Med (Berl) 2021; 99:1459-1469. [PMID: 34264377 PMCID: PMC8455497 DOI: 10.1007/s00109-021-02108-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 11/29/2022]
Abstract
Cigarette smoke has been identified as a major risk factor for the development of age-related macular degeneration (AMD). As an alternative to conventional cigarettes (C-cigarette), electronic cigarettes (E-cigarette) have been globally promoted and are currently widely used. The increasing usage of E-cigarettes raises concerns with regard to short- (2 weeks), medium- (3 months), and long- (8 months) term consequences related to retinal tissue. In this report, a controlled study in mouse models was conducted to probe the comprehensive effects of E-cigarette vapor on retina, retinal pigmented epithelium (RPE), and choroidal tissues by (1) comparing the effects of C-cigarette smoke and E-cigarette vapor on retina separately and (2) determining the effects of E-cigarette vapor on the RPE and analyzing the changes with regard to inflammatory (IL-1β, TNFα, iNOS) and angiogenic (VEGF, PEDF) mediators in retina/RPE/choroid by ELISA assays. The data showed that C-cigarette smoke exposure promoted an inflammatory reaction in the retina in vivo. Mice exposed to E-cigarette (nicotine-free) vapor developed inflammatory and angiogenic reactions more pronounced in RPE and choroid as compared to retinal tissue, while nicotine-containing E-cigarette vapor caused even a more serious reaction. Both inflammatory and pro-angiogenic reactions increased with the extension of exposure time. These results demonstrate that exposure to C-cigarette smoke is harmful to the retina. Likewise, the exposure to E-cigarette vapor (with or without nicotine) increases the occurrence and progression of inflammatory and angiogenic stimuli in the retina, which might also be related to the onset of wet AMD in humans. KEY MESSAGES: C-cigarette smoke exposure promotes an inflammatory reaction in the retina in vivo. Mice exposed to E-cigarette (nicotine-free) vapor develop inflammatory and angiogenic reactions more pronounced in RPE and choroid compared to retinal tissue, while nicotine-containing E-cigarette vapor causes even a more serious reaction. Both inflammatory and pro-angiogenic reactions increase with the extension of E-cigarette vapor exposure time.
Collapse
Affiliation(s)
- Feng Wang
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
- Department of Ophthalmology, Aier School of Ophthalmology, Central South University, Changsha, China
| | - Stefan Hadzic
- Excellence Cluster Cardiopulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Universities Giessen and Marburg Lung Center (UGMLC), Justus Liebig University, Giessen, Germany
| | - Elsa T Roxlau
- Excellence Cluster Cardiopulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Universities Giessen and Marburg Lung Center (UGMLC), Justus Liebig University, Giessen, Germany
| | - Baerbel Fuehler
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | - Tobias Wimmer
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Bo Lei
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shao-Wei Li
- Department of Ophthalmology, Aier School of Ophthalmology, Central South University, Changsha, China
- Beijing Aier-Intech Eye Hospital, Beijing, China
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Universities Giessen and Marburg Lung Center (UGMLC), Justus Liebig University, Giessen, Germany
| | - Knut Stieger
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|