1
|
Dietz RM, Wright CJ. Oxidative stress diseases unique to the perinatal period: A window into the developing innate immune response. Am J Reprod Immunol 2017; 79:e12787. [PMID: 29194835 DOI: 10.1111/aji.12787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/31/2017] [Indexed: 12/15/2022] Open
Abstract
The innate immune system has evolved to play an integral role in the normally developing lung and brain. However, in response to oxidative stress, innate immunity, mediated by specific cellular and molecular programs and signaling, contributes to pathology in these same organ systems. Despite opposing drivers of oxidative stress, namely hyperoxia in neonatal lung injury and hypoxia/ischemia in neonatal brain injury, similar pathways-including toll-like receptors, NFκB and MAPK cascades-have been implicated in tissue damage. In this review, we consider recent insights into the innate immune response to oxidative stress in both neonatal and adult models to better understand hyperoxic lung injury and hypoxic-ischemic brain injury across development and aging. These insights support the development of targeted immunotherapeutic strategies to address the challenge of harnessing the innate immune system in oxidative stress diseases of the neonate.
Collapse
Affiliation(s)
- Robert M Dietz
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
2
|
Abstract
Hypoxic episodes are troublesome components of bronchopulmonary dysplasia (BPD) in preterm infants. Immature respiratory control seems to be the major contributor, superimposed on abnormal respiratory function. Relatively short respiratory pauses may precipitate desaturation and bradycardia. This population is predisposed to pulmonary hypertension; it is likely that pulmonary vasoconstriction also plays a role. The natural history has been well-characterized in the preterm population at risk for BPD; however, the consequences are less clear. Proposed associations of intermittent hypoxia include retinopathy of prematurity, sleep disordered breathing, and neurodevelopmental delay. Future study should address whether these associations are causal relationships.
Collapse
Affiliation(s)
- Richard J. Martin
- Case Western Reserve University School of Medicine, Rainbow Babies & Children’s Hospital, 11100 Euclid Avenue, Suite RBC 3100, Cleveland, Ohio 44106-6010, Ph: 216-844-3387/Fax: 216-844-3380
| | - Juliann M. Di Fiore
- Case Western Reserve University, Rainbow Babies & Children’s Hospital, 11100 Euclid Avenue, Suite RBC 3100, Cleveland, Ohio 44106-6010, Ph: 216-368-1245/Fax: 216-844-3380
| | - Michele C. Walsh
- Case Western Reserve University School of Medicine, Rainbow Babies & Children’s Hospital, 11100 Euclid Avenue, Suite RBC 3100, Cleveland, Ohio 44106-6010, Ph: 216-844-3759/Fax: 216-844-3380
| |
Collapse
|
3
|
Masood A, Yi M, Belcastro R, Li J, Lopez L, Kantores C, Jankov RP, Tanswell AK. Neutrophil elastase-induced elastin degradation mediates macrophage influx and lung injury in 60% O2-exposed neonatal rats. Am J Physiol Lung Cell Mol Physiol 2015; 309:L53-62. [DOI: 10.1152/ajplung.00298.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 04/30/2015] [Indexed: 12/20/2022] Open
Abstract
Neutrophil (PMNL) influx precedes lung macrophage (LM) influx into the lung following exposure of newborn pups to 60% O2. We hypothesized that PMNL were responsible for the signals leading to LM influx. This was confirmed when inhibition of PMNL influx with a CXC chemokine receptor-2 antagonist, SB-265610, also prevented the 60% O2-dependent LM influx, LM-derived nitrotyrosine formation, and pruning of small arterioles. Exposure to 60% O2was associated with increased lung contents of neutrophil elastase and α-elastin, a marker of denatured elastin, and a decrease in elastin fiber density. This led us to speculate that neutrophil elastase-induced elastin fragments were the chemokines that led to a LM influx into the 60% O2-exposed lung. Inhibition of neutrophil elastase with sivelestat or elafin attenuated the LM influx. Sivelestat also attenuated the 60% O2-induced decrease in elastin fiber density. Daily injections of pups with an antibody to α-elastin prevented the 60% O2-dependent LM influx, impaired alveologenesis, and impaired small vessel formation. This suggests that neutrophil elastase inhibitors may protect against neonatal lung injury not only by preventing structural elastin degradation, but also by blocking elastin fragment-induced LM influx, thus preventing tissue injury from LM-derived peroxynitrite formation.
Collapse
Affiliation(s)
- Azhar Masood
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; and
| | - Man Yi
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rosetta Belcastro
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Jun Li
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Lianet Lopez
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Crystal Kantores
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Robert P. Jankov
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; and
- Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
| | - A. Keith Tanswell
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; and
| |
Collapse
|
4
|
Belcastro R, Lopez L, Li J, Masood A, Tanswell AK. Chronic lung injury in the neonatal rat: up-regulation of TGFβ1 and nitration of IGF-R1 by peroxynitrite as likely contributors to impaired alveologenesis. Free Radic Biol Med 2015; 80:1-11. [PMID: 25514442 DOI: 10.1016/j.freeradbiomed.2014.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/22/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
Abstract
Postnatal alveolarization is regulated by a number of growth factors, including insulin-like growth factor-I (IGF-I) acting through the insulin-like growth factor receptor-1 (IGF-R1). Exposure of the neonatal rat lung to 60% O2 for 14 days results in impairments of lung cell proliferation, secondary crest formation, and alveologenesis. This lung injury is mediated by peroxynitrite and is prevented by treatment with a peroxynitrite decomposition catalyst. We hypothesized that one of the mechanisms by which peroxynitrite induces lung injury in 60% O2 is through nitration and inactivation of critical growth factors or their receptors. Increased nitration of both IGF-I and IGF-R1 was evident in 60% O2-exposed lungs, which was reversible by concurrent treatment with a peroxynitrite decomposition catalyst. Increased nitration of the IGF-R1 was associated with its reduced activation, as assessed by IGF-R1 phosphotyrosine content. IGF-I displacement binding plots were conducted in vitro using rat fetal lung distal epithelial cells which respond to IGF-I by an increase in DNA synthesis. When IGF-I was nitrated to a degree similar to that observed in vivo there was minimal, if any, effect on IGF-I displacement binding. In contrast, nitrating cell IGF-R1 to a similar degree to that observed in vivo completely prevented specific binding of IGF-I to the IGF-R1, and attenuated an IGF-I-mediated increase in DNA synthesis. Additionally, we hypothesized that peroxynitrite also impairs alveologenesis by being an upstream regulator of the growth inhibitor, TGFβ1. That 60% O2-induced impairment of alveologenesis was mediated in part by TGFβ1 was confirmed by demonstrating an improvement in secondary crest formation when 60% O2-exposed pups received concurrent treatment with the TGFß1 activin receptor-like kinase, SB 431542. That the increased TGFβ1 content in lungs of pups exposed to 60% O2 was regulated by peroxynitrite was confirmed by its attenuation by concurrent treatment with a peroxynitrite decomposition catalyst. We conclude that peroxynitrite contributes to the impaired alveologenesis observed following the exposure of neonatal rats to 60% O2 both by preventing binding of IGF-I to the IGF-R1, secondary to nitration of the IGF-R1, and by causing an up-regulation of the growth inhibitor, TGFβ1.
Collapse
Affiliation(s)
- Rosetta Belcastro
- Lung Biology Programme, Physiology & Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 1X8
| | - Lianet Lopez
- Lung Biology Programme, Physiology & Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 1X8
| | - Jun Li
- Lung Biology Programme, Physiology & Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 1X8
| | - Azhar Masood
- Lung Biology Programme, Physiology & Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 1X8; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8
| | - A Keith Tanswell
- Lung Biology Programme, Physiology & Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 1X8; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8; Department of Paediatrics, University of Toronto, Toronto, Ontario M5G 1X8.
| |
Collapse
|
5
|
Onugha H, MacFarlane PM, Mayer CA, Abrah A, Jafri A, Martin RJ. Airway Hyperreactivity Is Delayed after Mild Neonatal Hyperoxic Exposure. Neonatology 2015; 108:65-72. [PMID: 26021677 PMCID: PMC4475446 DOI: 10.1159/000380758] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/06/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Wheezing disorders are prominent in former preterm infants beyond the neonatal period. OBJECTIVES We used a neonatal mouse model to investigate the time course of airway hyperreactivity in response to mild (40% oxygen) or severe (70% oxygen) neonatal hyperoxia. METHODS After hyperoxic exposure during the first week of postnatal life, we measured changes in airway reactivity using the in vitro living lung slice preparation at the end of exposure [postnatal day 8 (P8)] and 2 weeks later (P21). This was accompanied by measures of smooth muscle actin, myosin light chain (MLC) and alveolar morphology. RESULTS Neither mild nor severe hyperoxia exposure affected airway reactivity to methacholine at P8 compared to normoxic controls. In contrast, airway reactivity was enhanced at P21 in mice exposed to mild (but not severe) hyperoxia, 2 weeks after exposure ended. This was associated with increased airway α-smooth muscle actin expression at P21 after 40% oxygen exposure without a significant increase in MLC. Alveolar morphology via radial alveolar counts was comparably diminished by both 40 and 70% oxygen at both P8 and P21. CONCLUSIONS These data demonstrate that early mild hyperoxia exposure causes a delayed augmentation of airway reactivity, suggesting a long-term alteration in the trajectory of airway smooth muscle development and consistent with resultant symptomatology.
Collapse
Affiliation(s)
- Harris Onugha
- Division of Neonatology, Rainbow Babies and Children's Hospital, and Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | |
Collapse
|
6
|
Wang H, Jafri A, Martin RJ, Nnanabu J, Farver C, Prakash YS, MacFarlane PM. Severity of neonatal hyperoxia determines structural and functional changes in developing mouse airway. Am J Physiol Lung Cell Mol Physiol 2014; 307:L295-301. [PMID: 24951774 DOI: 10.1152/ajplung.00208.2013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Wheezing is a major long-term respiratory morbidity in preterm infants with and without bronchopulmonary dysplasia. We hypothesized that mild vs. severe hyperoxic exposure in neonatal mice differentially affects airway smooth muscle hypertrophy and resultant airway reactivity. Newborn mice were exposed to 7 days of mild (40% oxygen) or severe (70% oxygen) hyperoxia vs. room air controls. Respiratory system resistance (Rrs), compliance (Crs), and airway reactivity were measured 14 days after oxygen exposure ended under ketamine/xylazine anesthesia. Baseline Rrs increased and Crs decreased in both treatment groups. Methacholine challenge dose dependently increased Rrs and decreased Crs in 40% oxygen-exposed mice, whereas Rrs and Crs responses were similar between 70% oxygen-exposed and normoxic controls. Airway smooth muscle thickness was increased in 40%- but not 70%-exposed mice, whereas collagen increased and both alveolar number and radial alveolar counts decreased after 40% and 70% oxygen. These data indicate that severity of hyperoxia may differentially affect structural and functional changes in the developing mouse airway that contribute to longer-term hyperreactivity. These findings may be important to our understanding of the complex role of neonatal supplemental oxygen therapy in postnatal development of airway responsiveness.
Collapse
Affiliation(s)
- Hua Wang
- Division of Neonatology, Rainbow Babies & Children's Hospital and Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Anjum Jafri
- Division of Neonatology, Rainbow Babies & Children's Hospital and Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Richard J Martin
- Division of Neonatology, Rainbow Babies & Children's Hospital and Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio;
| | - Jerry Nnanabu
- Division of Neonatology, Rainbow Babies & Children's Hospital and Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Carol Farver
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, Ohio; and
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Peter M MacFarlane
- Division of Neonatology, Rainbow Babies & Children's Hospital and Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
7
|
Vyas-Read S, Wang W, Kato S, Colvocoresses-Dodds J, Fifadara NH, Gauthier TW, Helms MN, Carlton DP, Brown LAS. Hyperoxia induces alveolar epithelial-to-mesenchymal cell transition. Am J Physiol Lung Cell Mol Physiol 2013; 306:L326-40. [PMID: 24375795 DOI: 10.1152/ajplung.00074.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myofibroblast accumulation is a pathological feature of lung diseases requiring oxygen therapy. One possible source for myofibroblasts is through the epithelial-to-mesenchymal transition (EMT) of alveolar epithelial cells (AEC). To study the effects of oxygen on alveolar EMT, we used RLE-6TN and ex vivo lung slices and found that hyperoxia (85% O2, H85) decreased epithelial proteins, presurfactant protein B (pre-SpB), pro-SpC, and lamellar protein by 50% and increased myofibroblast proteins, α-smooth muscle actin (α-SMA), and vimentin by over 200% (P < 0.05). In AEC freshly isolated from H85-treated rats, mRNA for pre-SpB and pro-SpC was diminished by ∼50% and α-SMA was increased by 100% (P < 0.05). Additionally, H85 increased H2O2 content, and H2O2 (25-50 μM) activated endogenous transforming growth factor-β1 (TGF-β1), as evident by H2DCFDA immunofluorescence and ELISA (P < 0.05). Both hyperoxia and H2O2 increased SMAD3 phosphorylation (260% of control, P < 0.05). Treating cultured cells with TGF-β1 inhibitors did not prevent H85-induced H2O2 production but did prevent H85-mediated α-SMA increases and E-cadherin downregulation. Finally, to determine the role of TGF-β1 in hyperoxia-induced EMT in vivo, we evaluated AEC from H85-treated rats and found that vimentin increased ∼10-fold (P < 0.05) and that this effect was prevented by intraperitoneal TGF-β1 inhibitor SB-431542. Additionally, SB-431542 treatment attenuated changes in alveolar histology caused by hyperoxia. Our studies indicate that hyperoxia promotes alveolar EMT through a mechanism that is dependent on activation of TGF-β1 signaling.
Collapse
|
8
|
Madurga A, Mizíková I, Ruiz-Camp J, Morty RE. Recent advances in late lung development and the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2013; 305:L893-905. [PMID: 24213917 DOI: 10.1152/ajplung.00267.2013] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In contrast to early lung development, a process exemplified by the branching of the developing airways, the later development of the immature lung remains very poorly understood. A key event in late lung development is secondary septation, in which secondary septa arise from primary septa, creating a greater number of alveoli of a smaller size, which dramatically expands the surface area over which gas exchange can take place. Secondary septation, together with architectural changes to the vascular structure of the lung that minimize the distance between the inspired air and the blood, are the objectives of late lung development. The process of late lung development is disturbed in bronchopulmonary dysplasia (BPD), a disease of prematurely born infants in which the structural development of the alveoli is blunted as a consequence of inflammation, volutrauma, and oxygen toxicity. This review aims to highlight notable recent developments in our understanding of late lung development and the pathogenesis of BPD.
Collapse
Affiliation(s)
- Alicia Madurga
- Dept. of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, D-61231 Bad Nauheim, Germany.
| | | | | | | |
Collapse
|
9
|
Grisafi D, Pozzobon M, Dedja A, Vanzo V, Tomanin R, Porzionato A, Macchi V, Salmaso R, Scarpa M, Cozzi E, Fassina A, Navaglia F, Maran C, Onisto M, Caenazzo L, De Coppi P, De Caro R, Chiandetti L, Zaramella P. Human amniotic fluid stem cells protect rat lungs exposed to moderate hyperoxia. Pediatr Pulmonol 2013; 48:1070-80. [PMID: 23533160 DOI: 10.1002/ppul.22791] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 02/17/2013] [Indexed: 01/24/2023]
Abstract
BACKGROUND Treatment of bronchopulmonary dysplasia (BPD) remains as yet an unmet clinical need and recently stem cells have been proposed as a therapeutic tool in animal models. We investigated the role of amniotic fluid stem cells (AFS) in an adult rat model of hyperoxia lung injury. METHODS Fifty Sprague-Dawley rats were, at birth, randomly exposed to moderate hyperoxia or room air for 14 days and a single dose of human amniotic fluid stem (hAFS) or human Fibroblasts (hF), cells was delivered intratracheally (P21). At P42 animals were euthanized and lung tissue examined using histology, immunohistochemistry, PCR, and ELISA. hAFS cells characterization and homing were studied by immunofluorescence. RESULTS In rats treated with hAFS and hF cells 16S human rRNA fragment was detected. Despite a low level of pulmonary hAFS cell retention (1.43 ± 0.2% anti-human-mitochondria-positive cells), the lungs of the treated animals revealed higher secondary crest numbers and lower mean linear intercept and alveolar size, than those exposed to hyperoxia, those left untreated or treated with hF cells. Except for those treated with hAFS cells, moderate hyperoxia induced an increase in protein content of IL-6, IL-1β, as well as IF-γ and TGF-1β in lung tissues. High VEGF expression and arrangement of capillary architecture in hAFS cell group were also detected. CONCLUSIONS Treatment with hAFS cells has a reparative potential through active involvement of cells in alveolarization and angiogenesis. A downstream paracrine action was also taken into account, in order to understand the immunodulatory response.
Collapse
Affiliation(s)
- Davide Grisafi
- Neonatal Intensive Care Unit, Women's and Children's Health Department, University Padova Hospital, Padova, Italy; Gene Therapy Laboratory, Women's and Children's Health Department, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Herold S, Gabrielli NM, Vadász I. Novel concepts of acute lung injury and alveolar-capillary barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2013; 305:L665-81. [PMID: 24039257 DOI: 10.1152/ajplung.00232.2013] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review we summarize recent major advances in our understanding on the molecular mechanisms, mediators, and biomarkers of acute lung injury (ALI) and alveolar-capillary barrier dysfunction, highlighting the role of immune cells, inflammatory and noninflammatory signaling events, mechanical noxae, and the affected cellular and molecular entities and functions. Furthermore, we address novel aspects of resolution and repair of ALI, as well as putative candidates for treatment of ALI, including pharmacological and cellular therapeutic means.
Collapse
Affiliation(s)
- Susanne Herold
- Dept. of Internal Medicine, Justus Liebig Univ., Universities of Giessen and Marburg Lung Center, Klinikstrasse 33, 35392 Giessen, Germany.
| | | | | |
Collapse
|
11
|
Jamal M, Masood A, Belcastro R, Lopez L, Li J, Belik J, Jankov RP, Keith Tanswell A. Lipid hydroperoxide formation regulates postnatal rat lung cell apoptosis and alveologenesis. Free Radic Biol Med 2013. [PMID: 23195685 DOI: 10.1016/j.freeradbiomed.2012.11.012] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An acute increase in oxygen tension after birth imposes an oxidative stress upon the lung. We hypothesized that the resultant increase in reactive oxygen species, specifically lipid hydroperoxides, would trigger postnatal alveologenesis and physiological lung cell apoptosis in the neonatal rat. Neonatal rats were either untreated or treated daily with subcutaneous vehicle or diphenyl phenyl diamine, a scavenger of lipid hydroperoxides and inhibitor of lipid peroxidation, from day 1 to 6 of life. Alveolar formation and physiological lung cell apoptosis were assessed by morphometry, immunohistochemistry, and Western blot analyses on day 7 samples. Substitution experiments were conducted using the prototypic lipid hydroperoxide t-butylhydroperoxide. At a minimum effective dose of 15μg/g body wt, treatment with diphenyl phenyl diamine resulted in a significant increase in tissue fraction and mean linear intercept and significant reductions in small peripheral blood vessels, secondary crest formation, lung and secondary crest cell DNA synthesis, and estimated alveolar number. Decreased numbers of apoptotic type II pneumocytes and mesenchymal cells, and decreased contents of proapoptotic cleaved caspase-3 and -7 and cytoplasmic cytochrome c, and an increase in antiapoptotic Bcl-xL were found in lungs treated with diphenyl phenyl diamine. A prevention of selected changes induced by diphenyl phenyl diamine was observed with concurrent treatment with intraperitoneal t-butylhydroperoxide, at a minimally effective dose of 187μg/g body wt. We conclude that oxidative stress after birth induces lipid hydroperoxide formation, which, in turn, triggers postnatal alveologenesis and physiological lung cell apoptosis in the neonatal rat.
Collapse
Affiliation(s)
- Mobin Jamal
- Lung Biology Programme, Physiology & Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 1X8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Spasojević I, Obradović B, Spasić S. Bench-to-bedside review: Neonatal sepsis-redox processes in pathogenesis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:221. [PMID: 22574892 PMCID: PMC3580597 DOI: 10.1186/cc11183] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The present review is aimed at elucidating the neonatal 'sepsis redox cycle' - the cascade of inflammatory and redox events involved in the pathogenesis of sepsis in neonates. While adult and neonatal sepses share some common features, there are some substantial differences: higher mortality rates occur in adult sepsis and worse long-term effects are evident in neonatal sepsis survivors. Such epidemiological data may be explained by the lower ability of IL6 and IL8 to activate NF-κB-regulated transcription in neonatal sepsis in comparison to TNF-α, which is involved in the mechanisms of adult sepsis. The activation of NF-κB in neonatal sepsis is further promoted by hydrogen peroxide and results in mitochondrial dysfunction and energy failure as septic neonates experience decreased O2 consumption as well as lower heat production and body temperature in comparison to healthy peers. In neonates, specific organs that are still under development are vulnerable to sepsis-provoked stress, which may lead to brain, lung, and heart injury, as well as vision and hearing impairments. In the light of the processes integrated here, it is clear that therapeutic approaches should also target specific steps in the neonatal 'sepsis redox cycle' in addition to the current therapeutic approach that is mainly focused on pathogen eradication.
Collapse
|
13
|
Current World Literature. Curr Opin Anaesthesiol 2012; 25:260-9. [DOI: 10.1097/aco.0b013e3283521230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|