1
|
Bara Z, Gozar H, Nagy N, Gurzu S, Derzsi Z, Forró T, Kovács E, Jung I. Fetoscopic Endoluminal Tracheal Occlusion-Synergic Therapies in the Prenatal Treatment of Congenital Diaphragmatic Hernia. Int J Mol Sci 2025; 26:1639. [PMID: 40004103 PMCID: PMC11855672 DOI: 10.3390/ijms26041639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a relatively rare and severe developmental disease. Even with the most recent multidisciplinary therapies, the risk for neonatal mortality and morbidity remains high. Recent advancements in prenatal treatments, alongside experimental and clinical data, suggest that fetoscopic endoluminal tracheal occlusion (FETO) promotes lung development and offers a promising strategy against lung hypoplasia and pulmonary hypertension. It is the only existing direct mechanical therapy that intervenes in the regulation of pulmonary pressure. Its influence on lung development also interferes with tissue homeostasis and cell differentiation; it also enhances inflammation and apoptosis. Its physiopathology on cellular and molecular levels is still poorly understood. Unfortunately, the procedure also carries significant pregnancy-, maternal-, and fetus-related risks. Assessing a multifaceted intervention requires a collective view of all aspects. This scoping review uncovers potential materno-fetal procedure-related risks and highlights innovative solutions. Future research on lung development therapies in CDH may focus on the "dual hit" mechanism, combining molecular-targeting drugs and regenerative medicine with the mechanical nature of FETO for synergistic effects.
Collapse
Affiliation(s)
- Zsolt Bara
- Department of Pediatric Surgery and Orthopedics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (Z.B.); (Z.D.)
- Clinic of Pediatric Surgery and Orthopedics, Targu Mures, County Emergency Clinical Hospital, 540136 Targu Mures, Romania;
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Horea Gozar
- Department of Pediatric Surgery and Orthopedics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (Z.B.); (Z.D.)
- Clinic of Pediatric Surgery and Orthopedics, Targu Mures, County Emergency Clinical Hospital, 540136 Targu Mures, Romania;
| | - Nándor Nagy
- Department of Anatomy, Histology and Embryology Semmelweis University, Tűzoltó Street 58, H-1094 Budapest, Hungary;
| | - Simona Gurzu
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (S.G.); (I.J.)
- Romanian Academy of Medical Sciences, 030173 Bucharest, Romania
| | - Zoltán Derzsi
- Department of Pediatric Surgery and Orthopedics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (Z.B.); (Z.D.)
- Clinic of Pediatric Surgery and Orthopedics, Targu Mures, County Emergency Clinical Hospital, 540136 Targu Mures, Romania;
| | - Timea Forró
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Evelyn Kovács
- Clinic of Pediatric Surgery and Orthopedics, Targu Mures, County Emergency Clinical Hospital, 540136 Targu Mures, Romania;
| | - Ioan Jung
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania; (S.G.); (I.J.)
- Romanian Academy of Medical Sciences, 030173 Bucharest, Romania
| |
Collapse
|
2
|
Zheng X, Tan Z, Zhu D, Zhao D, Liu C, Wang S, Wang X, Zhang Y. Eclipta prostrata improves alveolar development of bronchopulmonary dysplasia via suppressing the NLRP3 inflammasome in a DLD-dependent manner. Pediatr Pulmonol 2024; 59:3371-3382. [PMID: 39115441 DOI: 10.1002/ppul.27209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/03/2024] [Accepted: 07/29/2024] [Indexed: 11/28/2024]
Abstract
OBJECTIVES Bronchopulmonary dysplasia (BPD), the most common late morbidity in preterm infants, is characterized by impaired alveolar development caused by persistent lung inflammation. Studies have shown that NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome-mediated inflammation is critically involved in the development of BPD. As a traditional Chinese medicinal herb, Eclipta prostrata (EAP) exhibits potent anti-inflammatory properties. Our study aims to investigate whether EAP could improve the lung development of BPD by suppressing the lung inflammatory response. METHODS The BPD rat model was established by intra-amniotic injection of lipopolysaccharide (LPS) and postnatal exposure to hyperoxia. Changes in the NLRP3 inflammasome and pyroptosis were assessed by treatment with EAP. The effect of EAP on the NLRP3 inflammasome was tested in vitro using the THP-1 cell line and primary alveolar macrophages. Proteomics analysis was used to elucidate the mechanism of action of EAP. RESULTS Histopathological and immunofluorescence results of lung tissues revealed that LPS and hyperoxia induced lung injury and triggered NLRP3 inflammasome activation and pyroptosis in alveolar macrophages. EAP ameliorated BPD lung injury, inhibited NLRP3 inflammasome activation and reduced gasdermin D (GSDMD) expression in alveolar macrophages. EAP downregulated the expression of NLRP3 inflammasome pathway molecules (NLRP3, caspase-1, and IL-1β) and GSDMD in LPS-stimulated THP-1 macrophages and primary alveolar macrophages. In addition, proteomics analysis identified that dihydrolipoamide dehydrogenase (DLD) interacted with EAP. Inhibition of DLD activity abolished the protective effects of EAP. CONCLUSIONS Our study suggested that EAP could attenuate arrest of alveolar development via inhibiting NLRP3 inflammasome in a DLD-dependent way, and could be a potential therapeutic method for BPD.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- Department of Pediatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Tan
- Department of Pediatric Hematology-Oncology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danying Zhu
- Department of Respiratory, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongying Zhao
- Department of Pediatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengbo Liu
- Department of Pediatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xingyun Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongjun Zhang
- Department of Pediatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Yu H, Li D, Zhao X, Fu J. Fetal origin of bronchopulmonary dysplasia: contribution of intrauterine inflammation. Mol Med 2024; 30:135. [PMID: 39227783 PMCID: PMC11373297 DOI: 10.1186/s10020-024-00909-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in infants and the most frequent adverse outcome of premature birth, despite major efforts to minimize injury. It is thought to result from aberrant repair response triggered by either prenatal or recurrent postnatal injury to the lungs during development. Intrauterine inflammation is an important risk factor for prenatal lung injury, which is also increasingly linked to BPD. However, the specific mechanisms remain unclear. This review summarizes clinical and animal research linking intrauterine inflammation to BPD. We assess how intrauterine inflammation affects lung alveolarization and vascular development. In addition, we discuss prenatal therapeutic strategies targeting intrauterine inflammation to prevent or treat BPD.
Collapse
Affiliation(s)
- Haoting Yu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Danni Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Xinyi Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
4
|
Liu C, Fu C, Sun Y, You Y, Wang T, Zhang Y, Xia H, Wang X. Itaconic acid regulation of TFEB-mediated autophagy flux alleviates hyperoxia-induced bronchopulmonary dysplasia. Redox Biol 2024; 72:103115. [PMID: 38554522 PMCID: PMC10998238 DOI: 10.1016/j.redox.2024.103115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Premature infants often require oxygen supplementation, which can elicit bronchopulmonary dysplasia (BPD) and lead to mitochondrial dysfunction. Mitochondria play important roles in lung development, in both normal metabolism and apoptosis. Enhancing our comprehension of the underlying mechanisms in BPD development can facilitate the effective treatments. METHODS Plasma samples from BPD and non-BPD infants were collected at 36 weeks post-menstrual age and used for metabolomic analysis. Based on hyperoxia-induced animal and cell models, changes in mitophagy and apoptosis were evaluated following treatment with itaconic acid (ITA). Finally, the mechanism of action of ITA in lung development was comprehensively demonstrated through rescue strategies and administration of corresponding inhibitors. RESULTS An imbalance in the tricarboxylic acid (TCA) cycle significantly affected lung development, with ITA serving as a significant metabolic marker for the outcomes of lung development. ITA improved the morphological changes in BPD rats, promoted SP-C expression, and inhibited the degree of alveolar type II epithelial cells (AEC II) apoptosis. Mechanistically, ITA mainly promotes the nuclear translocation of transcription factor EB (TFEB) to facilitate dysfunctional mitochondrial clearance and reduces apoptosis in AEC II cells by regulating autophagic flux. CONCLUSION The metabolic imbalance in the TCA cycle is closely related to lung development. ITA can improve lung development by regulating autophagic flux and promote the nuclear translocation of TFEB, implying its potential therapeutic utility in the treatment of BPD.
Collapse
Affiliation(s)
- Chengbo Liu
- Department of Pediatrics, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200093, China
| | - Changchang Fu
- Department of Pediatrics, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200093, China; Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Yazhou Sun
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, China
| | - You You
- Department of Pediatrics, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200093, China
| | - Tengfei Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Yongjun Zhang
- Department of Pediatrics, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200093, China.
| | - Hongping Xia
- Department of Pediatrics, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200093, China.
| | - Xingyun Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
5
|
Li J, Cao J, Yan C, Gong X. TGF-α/EGFR signaling promotes lipopolysaccharide-induced abnormal elastin deposition and alveolar simplification. Exp Cell Res 2024; 437:113997. [PMID: 38508328 DOI: 10.1016/j.yexcr.2024.113997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Bronchopulmonary dysplasia (BPD) is characterized by shortened secondary septa and fewer, larger alveoli. Elastin deposition to the distal tips of the secondary septa is critical for elongation of the secondary septa. Alveolar myofibroblasts, which are thought to migrate to the septal tips during alveolarization, are mainly responsible for elastin production and deposition. Antenatal exposure to inflammation induces abnormal elastin deposition, thereby increasing the risk of developing BPD. Here, we found that lipopolysaccharide (LPS) significantly increased the expression of transforming growth factor-α (TGF-α) in an LPS-induced rat model of BPD and in LPS-treated human pulmonary epithelial cells (BEAS-2B). In addition, in vitro experiments suggested that LPS upregulated TGF-α expression via toll-like receptor 4 (TLR4)/tumor necrosis factor α-converting enzyme (TACE) signaling. Increased TGF-α levels via its receptor epidermal growth factor receptor (EGFR)-induced lysyl oxidase (LOX) overactivation and cell division cycle 42 (Cdc42) activity inhibition of myofibroblasts. Similarly, in vivo LOX overactivation and inhibition of Cdc42 activity were observed in the lungs of LPS-exposed pups. LOX overactivation led to abnormal elastin deposition, and inhibition of Cdc42 activity disturbed the directional migration of myofibroblasts and disrupted elastin localization. Most importantly, the EGFR inhibitor erlotinib partially rescued LOX overactivation and Cdc42 activity inhibition, and improved elastin deposition and alveolar development in antenatal LPS-treated rats. Taken together, our data suggest that TGF-α/EGFR signaling is critically involved in the regulation of elastin deposition and represents a novel therapeutic target.
Collapse
Affiliation(s)
- Jianhui Li
- Department of Neonatology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, 355 Lu Ding Road, 200062, Shanghai, China.
| | - Jian Cao
- Department of Respiratory Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, 355 Lu Ding Road, 200062, Shanghai, China
| | - Chongbing Yan
- Department of Neonatology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, 355 Lu Ding Road, 200062, Shanghai, China
| | - Xiaohui Gong
- Department of Neonatology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, 355 Lu Ding Road, 200062, Shanghai, China.
| |
Collapse
|
6
|
Liu H, Li Z, Xu B, Li Z, Yang X, Luo J. Curcumin suppresses metastasis, invasion, and proliferation in osteosarcoma cells by regulating the EGFR/Src signaling axis. Int J Immunopathol Pharmacol 2024; 38:3946320241308082. [PMID: 39707861 DOI: 10.1177/03946320241308082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024] Open
Abstract
We explored the biological mechanisms by which curcumin (Cur) confronts osteosarcoma (OS) tumorigenesis and potential drug gene targets based on network pharmacology and in vitro cell experiments. Cur has been recognized for its significant role in combating various types of tumors. However, the intrinsic molecular mechanisms through which it affects OS remain uncharted. In this study, we performed network pharmacology methods including protein-protein interaction (PPI) and core target screening, Functional Enrichment Analysis and Network Construction, Molecular Docking, which obtained the potential target of Cur. Meanwhile, cell experiments (wound healing assay, Transwell assay, Western blots, immunofluorescence, et al.) in vitro were performed to verify the targets, and reveal the biological mechanisms. A total of 18 hub genes were identified through our network pharmacological analysis. In vitro studies show that Cur inhibits the proliferation, migration, invasion capabilities of MG63 and U2OS cells. Western blot reveals a down-regulation of p-PI3K, PI3K, p-Akt, Akt, EGFR, Src, p-Src (Tyr416) and STAT3 expression when treated with Cur. Additionally, Cur upregulated epithelial proteins (E-cadherin and Occludin) while decreasing the expression of the mesenchymal protein (N-cadherin). In addition, Cur treatment decreases the EGFR/Src signaling pathway in the presence of active Src overexpression. Cur inhibits the proliferation, migration, invasion, epithelial-mesenchymal transition (EMT) by down-regulating EGFR/Src signaling axis, also resulting in coordinated weakening of its downstream regulatory genes, including Akt, STAT3, Bcl2, ERK1/2, among others signal axis (PI3K/Akt signaling pathway).
Collapse
Affiliation(s)
- Huiying Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P. R. China
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Zhiqiang Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Binwu Xu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Zhipeng Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Xili Yang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P. R. China
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P. R. China
| |
Collapse
|
7
|
Maldonado H, Leyton L. CSK-mediated signalling by integrins in cancer. Front Cell Dev Biol 2023; 11:1214787. [PMID: 37519303 PMCID: PMC10382208 DOI: 10.3389/fcell.2023.1214787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Cancer progression and metastasis are processes heavily controlled by the integrin receptor family. Integrins are cell adhesion molecules that constitute the central components of mechanosensing complexes called focal adhesions, which connect the extracellular environment with the cell interior. Focal adhesions act as key players in cancer progression by regulating biological processes, such as cell migration, invasion, proliferation, and survival. Src family kinases (SFKs) can interplay with integrins and their downstream effectors. SFKs also integrate extracellular cues sensed by integrins and growth factor receptors (GFR), transducing them to coordinate metastasis and cell survival in cancer. The non-receptor tyrosine kinase CSK is a well-known SFK member that suppresses SFK activity by phosphorylating its specific negative regulatory loop (C-terminal Y527 residue). Consequently, CSK may play a pivotal role in tumour progression and suppression by inhibiting SFK oncogenic effects in several cancer types. Remarkably, CSK can localise near focal adhesions when SFKs are activated and even interact with focal adhesion components, such as phosphorylated FAK and Paxillin, among others, suggesting that CSK may regulate focal adhesion dynamics and structure. Even though SFK oncogenic signalling has been extensively described before, the specific role of CSK and its crosstalk with integrins in cancer progression, for example, in mechanosensing, remain veiled. Here, we review how CSK, by regulating SFKs, can regulate integrin signalling, and focus on recent discoveries of mechanotransduction. We additionally examine the cross talk of integrins and GFR as well as the membrane availability of these receptors in cancer. We also explore new pharmaceutical approaches to these signalling pathways and analyse them as future therapeutic targets.
Collapse
Affiliation(s)
- Horacio Maldonado
- Receptor Dynamics in Cancer Laboratory, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
8
|
Tanshinone IIA Inhibits Osteosarcoma Growth through a Src Kinase-Dependent Mechanism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5563691. [PMID: 34422073 PMCID: PMC8376467 DOI: 10.1155/2021/5563691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 01/01/2023]
Abstract
Introduction Osteosarcoma is a malignant tumor associated with high mortality rates due to the toxic side effects of current therapeutic methods. Tanshinone IIA can inhibit cell proliferation and promote apoptosis in vitro, but the exact mechanism is still unknown. The aims of this study are to explore the antiosteosarcoma effect of tanshinone IIA via Src kinase and demonstrate the mechanism of this effect. Materials and Methods Osteosarcoma MG-63 and U2-OS cell lines were stable transfections with Src-shRNA. Then, the antiosteosarcoma effect of tanshinone IIA was tested in vitro. The protein expression levels of Src, p-Src, p-ERK1/2, and p-AKt were detected by Western blot and RT-PCR. CCK-8 assay and BrdU immunofluorescence assay were used to detect cell proliferation. Transwell assay, cell scratch assay, and flow cytometry were used to detect cell invasion, migration, and cell cycle. Tumor-bearing nude mice with osteosarcoma were constructed. The effect of tanshinone IIA was detected by tumor HE staining, tumor inhibition rate, incidence of lung metastasis, and X-ray. Results The oncogene role of Src kinase in osteosarcoma is reflected in promoting cell proliferation, invasion, and migration and in inhibiting apoptosis. However, Src has different effects on cell proliferation, apoptosis, and cell cycle regulation among cell lines. At a cellular level, the antiosteosarcoma effect of tanshinone IIA is mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. At the animal level, tanshinone IIA played a role in resisting osteosarcoma formation by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. Conclusion Tanshinone IIA plays an antiosteosarcoma role in vitro and in vivo and inhibits the progression of osteosarcoma mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways.
Collapse
|
9
|
Chen Z, Xie X, Jiang N, Li J, Shen L, Zhang Y. CCR5 signaling promotes lipopolysaccharide-induced macrophage recruitment and alveolar developmental arrest. Cell Death Dis 2021; 12:184. [PMID: 33589608 PMCID: PMC7883330 DOI: 10.1038/s41419-021-03464-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
The pathogenesis of bronchopulmonary dysplasia (BPD), involves inflammatory, mechanisms that are not fully characterized. Here we report that overexpression of C-C chemokine receptor 5 (CCR5) and its ligands is associated with BPD development. Lipopolysaccharide-induced BPD rats have increased CCR5 and interleukin-1β (IL-1β) levels, and decreased alveolarization, while CCR5 or IL-1β receptor antagonist treatments decreased inflammation and increased alveolarization. CCR5 enhances macrophage migration, macrophage infiltration in the lungs, IL-1β levels, lysyl oxidase activity, and alveolar development arrest. CCR5 expression on monocytes, and its ligands in blood samples from BPD infants, are elevated. Furthermore, batyl alcohol supplementation reduced CCR5 expression and IL-1β production in lipopolysaccharide-exposed rat lungs. Moreover, receptor-interacting kinase 3 (RIP3) upstream regulator of CCR5-cultured RIP3−/− macrophages exhibited partly blocked lipopolysaccharide-induced CCR5 expression. We conclude that increased CCR5 expression is a key mechanism in BPD development and represents a novel therapeutic target for treatment.
Collapse
Affiliation(s)
- Ze Chen
- Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, 200092, Shanghai, China
| | - Xiaohua Xie
- Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, 200092, Shanghai, China
| | - Na Jiang
- Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, 200092, Shanghai, China
| | - Jianhui Li
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, 355 Lu Ding Road, 200062, Shanghai, China
| | - Lei Shen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Building No. 5(West Area), No. 280 South Chongqing Road, 200025, Shanghai, China.
| | - Yongjun Zhang
- Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, 200092, Shanghai, China.
| |
Collapse
|
10
|
Lai YT, Chao HW, Lai ACY, Lin SH, Chang YJ, Huang YS. CPEB2-activated PDGFRα mRNA translation contributes to myofibroblast proliferation and pulmonary alveologenesis. J Biomed Sci 2020; 27:52. [PMID: 32295602 PMCID: PMC7160907 DOI: 10.1186/s12929-020-00643-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/26/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Alveologenesis is the final stage of lung development to form air-exchanging units between alveoli and blood vessels. Genetic susceptibility or hyperoxic stress to perturb this complicated process can cause abnormal enlargement of alveoli and lead to bronchopulmonary dysplasia (BPD)-associated emphysema. Platelet-derived growth factor receptor α (PDGFRα) signaling is crucial for alveolar myofibroblast (MYF) proliferation and its deficiency is associated with risk of BPD, but posttranscriptional mechanisms regulating PDGFRα synthesis during lung development remain largely unexplored. Cytoplasmic polyadenylation element-binding protein 2 (CPEB2) is a sequence-specific RNA-binding protein and translational regulator. Because CPEB2-knockout (KO) mice showed emphysematous phenotypes, we investigated how CPEB2-controlled translation affects pulmonary development and function. METHODS Respiratory and pulmonary functions were measured by whole-body and invasive plethysmography. Histological staining and immunohistochemistry were used to analyze morphology, proliferation, apoptosis and cell densities from postnatal to adult lungs. Western blotting, RNA-immunoprecipitation, reporter assay, primary MYF culture and ectopic expression rescue were performed to demonstrate the role of CPEB2 in PDGFRα mRNA translation and MYF proliferation. RESULTS Adult CPEB2-KO mice showed emphysema-like dysfunction. The alveolar structure in CPEB2-deficient lungs appeared normal at birth but became simplified through the alveolar stage of lung development. In CPEB2-null mice, we found reduced proliferation of MYF progenitors during alveolarization, abnormal deposition of elastin and failure of alveolar septum formation, thereby leading to enlarged pulmonary alveoli. We identified that CPEB2 promoted PDGFRα mRNA translation in MYF progenitors and this positive regulation could be disrupted by H2O2, a hyperoxia-mimetic treatment. Moreover, decreased proliferating ability in KO MYFs due to insufficient PDGFRα expression was rescued by ectopic expression of CPEB2, suggesting an important role of CPEB2 in upregulating PDGFRα signaling for pulmonary alveologenesis. CONCLUSIONS CPEB2-controlled translation, in part through promoting PDGFRα expression, is indispensable for lung development and function. Since defective pulmonary PDGFR signaling is a key feature of human BPD, CPEB2 may be a risk factor for BPD.
Collapse
Affiliation(s)
- Yen-Ting Lai
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd, Taipei, 11529, Taiwan
| | - Hsu-Wen Chao
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Alan Chuan-Ying Lai
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd, Taipei, 11529, Taiwan
| | - Shu-Hui Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd, Taipei, 11529, Taiwan.
| | - Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd, Taipei, 11529, Taiwan.
| |
Collapse
|
11
|
Zhao S, Luo G, Wu H, Zhang L. Placental growth factor gene silencing mitigates the epithelial‑to‑mesenchymal transition via the p38 MAPK pathway in rats with hyperoxia‑induced lung injury. Mol Med Rep 2019; 20:4867-4874. [PMID: 31702808 PMCID: PMC6854522 DOI: 10.3892/mmr.2019.10785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023] Open
Abstract
Hyperoxia may cause pulmonary fibrosis in neonates and is characterized by the epithelial-to-mesenchymal transition (EMT) of alveolar epithelial cells. The placental growth factor (PLGF) gene is a member of the vascular endothelial growth factor family and is highly expressed in lung tissues that have been exposed to hyperoxia. The aim of the present study was to assess the role of PLGF in the EMT of lung tissue. Lung tissue exhibiting low PLGF expression was obtained by injecting rats exposed to hyperoxia with a PLGF-silencing lentiviral plasmid. Western blot analysis and immunohistochemistry revealed that expression levels of the EMT-related protein epithelial-cadherin were increased, whereas its inhibitor protein zinc-finger E-box binding homeobox 2 was decreased in these rats. These data demonstrated that PLGF silencing may significantly mitigate hyperoxia-induced EMT in rat lung tissue. Additionally, an increase in phosphorylated-p38 MAPK protein expression indicated that PLGF may be able to regulate hyperoxia-induced lung injury in rats via the p38 MAPK pathway.
Collapse
Affiliation(s)
- Shuang Zhao
- Department of Pediatrics, The Fourth People's Hospital of Shenyang, Shenyang, Liaoning 110003, P.R. China
| | - Gang Luo
- Department of Pediatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hongmin Wu
- Department of Neonatology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Liang Zhang
- Department of Neonatology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
12
|
Hamvas A, Feng R, Bi Y, Wang F, Bhattacharya S, Mereness J, Kaushal M, Cotten CM, Ballard PL, Mariani TJ. Exome sequencing identifies gene variants and networks associated with extreme respiratory outcomes following preterm birth. BMC Genet 2018; 19:94. [PMID: 30342483 PMCID: PMC6195962 DOI: 10.1186/s12863-018-0679-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 10/01/2018] [Indexed: 12/28/2022] Open
Abstract
Background Previous studies have identified genetic variants associated with bronchopulmonary dysplasia (BPD) in extremely preterm infants. However, findings with genome-wide significance have been rare, and not replicated. We hypothesized that whole exome sequencing (WES) of premature subjects with extremely divergent phenotypic outcomes could facilitate the identification of genetic variants or gene networks contributing disease risk. Results The Prematurity and Respiratory Outcomes Program (PROP) recruited a cohort of > 765 extremely preterm infants for the identification of markers of respiratory morbidity. We completed WES on 146 PROP subjects (85 affected, 61 unaffected) representing extreme phenotypes of early respiratory morbidity. We tested for association between disease status and individual common variants, screened for rare variants exclusive to either affected or unaffected subjects, and tested the combined association of variants across gene loci. Pathway analysis was performed and disease-related expression patterns were assessed. Marginal association with BPD was observed for numerous common and rare variants. We identified 345 genes with variants unique to BPD-affected preterm subjects, and 292 genes with variants unique to our unaffected preterm subjects. Of these unique variants, 28 (19 in the affected cohort and 9 in unaffected cohort) replicate a prior WES study of BPD-associated variants. Pathway analysis of sets of variants, informed by disease-related gene expression, implicated protein kinase A, MAPK and Neuregulin/epidermal growth factor receptor signaling. Conclusions We identified novel genes and associated pathways that may play an important role in susceptibility/resilience for the development of lung disease in preterm infants. Electronic supplementary material The online version of this article (10.1186/s12863-018-0679-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aaron Hamvas
- Department of Pediatrics, Northwestern University, Chicago, IL, USA. .,Ann and Robert H. Lurie Children's Hospital of Chicago and Northwestern University, Chicago, IL, USA.
| | - Rui Feng
- Department of Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - Yingtao Bi
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Fan Wang
- Department of Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jared Mereness
- Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Madhurima Kaushal
- Center for Biomedical Informatics, Washington University, St. Louis, MO, USA
| | | | - Philip L Ballard
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Thomas J Mariani
- Department of Pediatrics, University of Rochester, Rochester, NY, USA. .,Division of Neonatology and Pediatric Molecular and Personalized Medicine Program University of Rochester Medical Center, 601 Elmwood Ave, Box 850, Rochester, NY, 14642, USA.
| | | |
Collapse
|
13
|
Liu C, Chen Z, Li W, Huang L, Zhang Y. Vitamin D Enhances Alveolar Development in Antenatal Lipopolysaccharide-Treated Rats through the Suppression of Interferon-γ Production. Front Immunol 2018; 8:1923. [PMID: 29354129 PMCID: PMC5760506 DOI: 10.3389/fimmu.2017.01923] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is characterized by the premature arrest of alveolar development. Antenatal exposure to inflammation inhibits lung morphogenesis, thereby increasing the risk for the development of BPD. Here, we investigated whether vitamin D (VitD) enhances alveolar development in antenatal lipopolysaccharide (LPS)-treated rats, which is a model for BPD. We used an established animal model of BPD, and random assignment to the control group, LPS group, or LPS with VitD group. Levels of interferon (IFN)-γ and interleukin-4 were detected by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay. IFN-γ producing CD8+ T cells were assessed by flow cytometry, and the methylation status of the VitD-response element (VDRE) was analyzed by bisulfite sequencing PCR. 25-hydroxyvitamin D levels were measured by liquid chromatography tandem mass spectrometry in maternal serum samples collected from 86 pregnant women in a prospective birth cohort enrolled from 2012 to 2013. Our results showed that VitD effectively alleviated the simplification of the lung alveolar structure in BPD rats and suppressed LPS-induced IFN-γ expression in the lung and spleen tissues. Further investigation revealed that VitD suppressed IFN-γ production in CD8+ T cells. Specifically, VitD increased the methylation percentage of the VDRE in the IFN-γ-promoter region and suppressed LPS-induced expression of IFN-γ. Additionally, we observed an association between maternal VitD exposure during pregnancy and neonatal IFN-γ levels in a prospective birth cohort, with a trend similar to that observed in the animal model. Our data suggested that supplementation of VitD could suppress IFN-γ production, resulting in improved alveolar development in an LPS-induced BPD rat model.
Collapse
Affiliation(s)
- Chengbo Liu
- Department of Neonatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ze Chen
- Department of Neonatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wen Li
- Department of Neonatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lisu Huang
- Department of Neonatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,MOE and Shanghai Key Laboratory of Children's Environmental Health, Shanghai, China
| | - Yongjun Zhang
- Department of Neonatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,MOE and Shanghai Key Laboratory of Children's Environmental Health, Shanghai, China
| |
Collapse
|
14
|
Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1101-L1153. [PMID: 28971976 DOI: 10.1152/ajplung.00343.2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023] Open
Abstract
The objective of lung development is to generate an organ of gas exchange that provides both a thin gas diffusion barrier and a large gas diffusion surface area, which concomitantly generates a steep gas diffusion concentration gradient. As such, the lung is perfectly structured to undertake the function of gas exchange: a large number of small alveoli provide extensive surface area within the limited volume of the lung, and a delicate alveolo-capillary barrier brings circulating blood into close proximity to the inspired air. Efficient movement of inspired air and circulating blood through the conducting airways and conducting vessels, respectively, generates steep oxygen and carbon dioxide concentration gradients across the alveolo-capillary barrier, providing ideal conditions for effective diffusion of both gases during breathing. The development of the gas exchange apparatus of the lung occurs during the second phase of lung development-namely, late lung development-which includes the canalicular, saccular, and alveolar stages of lung development. It is during these stages of lung development that preterm-born infants are delivered, when the lung is not yet competent for effective gas exchange. These infants may develop bronchopulmonary dysplasia (BPD), a syndrome complicated by disturbances to the development of the alveoli and the pulmonary vasculature. It is the objective of this review to update the reader about recent developments that further our understanding of the mechanisms of lung alveolarization and vascularization and the pathogenesis of BPD and other neonatal lung diseases that feature lung hypoplasia.
Collapse
Affiliation(s)
- David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - José Alberto Rodríguez-Castillo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
15
|
McGowan S. Understanding the developmental pathways pulmonary fibroblasts may follow during alveolar regeneration. Cell Tissue Res 2017; 367:707-719. [PMID: 28062913 DOI: 10.1007/s00441-016-2542-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/19/2016] [Indexed: 10/20/2022]
Abstract
Although pulmonary alveolar interstitial fibroblasts are less specialized than their epithelial and endothelial neighbors, they play essential roles during development and in response to lung injury. At birth, they must adapt to the sudden mechanical changes imposed by the onset of respiration and to a higher ambient oxygen concentration. In diseases such as bronchopulmonary dysplasia and interstitial fibrosis, their adaptive responses are overwhelmed leading to compromised gas-exchange function. Thus, although fibroblasts do not directly participate in gas-exchange, they are essential for creating and maintaining an optimal environment at the alveolar epithelial-endothelial interface. This review summarizes new information and concepts about the ontogeny differentiation, and function of alveolar fibroblasts. Alveolar development will be emphasized, because the development of strategies to evoke alveolar repair and regeneration hinges on thoroughly understanding the way that resident fibroblasts populate specific locations in which extracellular matrix must be produced and remodeled. Other recent reviews have described the disruption that diseases cause to the fibroblast niche and so my objective is to illustrate how the unique developmental origins and differentiation pathways could be harnessed favorably to augment certain fibroblast subpopulations and to optimize the conditions for alveolar regeneration.
Collapse
Affiliation(s)
- Stephen McGowan
- Department of Veterans Affairs Research Service and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA. .,Division of Pulmonary, Critical Care, and Occupational Medicine, C33B GH, Department of Internal Medicine, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| |
Collapse
|
16
|
Sucre JMS, Vijayaraj P, Aros CJ, Wilkinson D, Paul M, Dunn B, Guttentag SH, Gomperts BN. Posttranslational modification of β-catenin is associated with pathogenic fibroblastic changes in bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2016; 312:L186-L195. [PMID: 27941077 DOI: 10.1152/ajplung.00477.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 11/22/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common complication of premature birth. The histopathology of BPD is characterized by an arrest of alveolarization with fibroblast activation. The Wnt/β-catenin signaling pathway is important in early lung development. When Wnt signaling is active, phosphorylation of β-catenin by tyrosine kinases at activating sites, specifically at tyrosine 489 (Y489), correlates with nuclear localization of β-catenin. We examined fetal lung tissue, lung tissue from term newborns, and lung tissue from infants who died with BPD; we found nuclear β-catenin phosphorylation at Y489 in epithelial and mesenchymal cells in fetal tissue and BPD tissue, but not in the lungs of term infants. Using a 3D human organoid model, we found increased nuclear localization of β-catenin phosphorylated at Y489 (p-β-cateninY489) after exposure to alternating hypoxia and hyperoxia compared with organoids cultured in normoxia. Exogenous stimulation of the canonical Wnt pathway in organoids was sufficient to cause nuclear localization of p-β-cateninY489 in normoxia and mimicked the pattern of α-smooth muscle actin (α-SMA) expression seen with fibroblastic activation from oxidative stress. Treatment of organoids with a tyrosine kinase inhibitor prior to cyclic hypoxia-hyperoxia inhibited nuclear localization of p-β-cateninY489 and prevented α-SMA expression by fibroblasts. Posttranslational phosphorylation of β-catenin is a transient feature of normal lung development. Moreover, the persistence of p-β-cateninY489 is a durable marker of fibroblast activation in BPD and may play an important role in BPD disease pathobiology.
Collapse
Affiliation(s)
- Jennifer M S Sucre
- Mildred Stahlman Division of Neonatology, Department of Pediatrics, Vanderbilt University, Nashville, Tennessee;
| | - Preethi Vijayaraj
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Cody J Aros
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California.,UCLA Department of Molecular Biology Interdepartmental Program, UCLA, Los Angeles, California
| | - Dan Wilkinson
- UCLA Department of Materials Science and Engineering, UCLA, Los Angeles, California
| | - Manash Paul
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Bruce Dunn
- UCLA Department of Materials Science and Engineering, UCLA, Los Angeles, California
| | - Susan H Guttentag
- Mildred Stahlman Division of Neonatology, Department of Pediatrics, Vanderbilt University, Nashville, Tennessee
| | - Brigitte N Gomperts
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California.,Pulmonary Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California; and.,Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, California
| |
Collapse
|
17
|
Ge Z, Li B, Zhou X, Yang Y, Zhang J. Basic fibroblast growth factor activates β-catenin/RhoA signaling in pulmonary fibroblasts with chronic obstructive pulmonary disease in rats. Mol Cell Biochem 2016; 423:165-174. [DOI: 10.1007/s11010-016-2834-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/23/2016] [Indexed: 12/23/2022]
|
18
|
Varisco BM, Sbragia L, Chen J, Scorletti F, Joshi R, Wong HR, Lopes-Figueira R, Oria M, Peiro J. Excessive Reversal of Epidermal Growth Factor Receptor and Ephrin Signaling Following Tracheal Occlusion in Rabbit Model of Congenital Diaphragmatic Hernia. Mol Med 2016; 22:398-411. [PMID: 27452320 DOI: 10.2119/molmed.2016.00121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/11/2016] [Indexed: 12/29/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) causes severe pulmonary hypoplasia from herniation of abdominal contents into the thorax. Tracheal occlusion (TO) for human CDH improves survival, but morbidity and mortality remain high, and we do not fully understand the cellular pathways and processes most severely impacted by CDH and TO. We created a left diaphragmatic hernia (DH) in rabbit fetuses with subsequent TO and collected left lung sections for NextGen mRNA sequencing. DH, TO, and DHTO fetuses had comparable body and organ growth to control except for lower lung weights in DH (p<0.05). Of 13,687 expressed genes, DHTO had 687 differentially expressed genes compared to DH, but no other group-group comparison had more than 10. Considering genes in combination, many of the genes reduced in DH were more highly expressed in DHTO than in control. Benchmarking fetal rabbit lung gene expression to published lung development data, both DH and DHTO lungs were more highly correlated with the gene expression of immature lung. DNA synthesis was upregulated in DHTO compared to DH and ribosome and protein synthesis pathways were downregulated. DH reduced total and epithelial cell proliferation by half and two-thirds respectively, and DHTO increased proliferation by 2.5 and 3.4-fold respectively. Signaling pathways downregulated by DH and upregulated in DHTO were epidermal growth factor receptor signaling, ephrin signaling, and cell migration; however, levels of ephrin and EGFR signaling in DHTO exceeded that of control. Identification and inhibition of the ligands responsible for this dysregulated signaling could improve lung development in CDH.
Collapse
Affiliation(s)
- Brian M Varisco
- Cincinnati Children's Hospital Medical Center (CCHMC) Division of Critical Care Medicine
| | - Lourenco Sbragia
- CCHMC Division of Pediatric General and Thoracic Surgery.,The Center for Fetal, Cellular, and Molecular Therapy (CCHMC)
| | - Jing Chen
- CCHMC Division of Biomedical Informatics
| | - Federico Scorletti
- CCHMC Division of Pediatric General and Thoracic Surgery.,The Center for Fetal, Cellular, and Molecular Therapy (CCHMC)
| | - Rashika Joshi
- Cincinnati Children's Hospital Medical Center (CCHMC) Division of Critical Care Medicine
| | - Hector R Wong
- Cincinnati Children's Hospital Medical Center (CCHMC) Division of Critical Care Medicine
| | - Rebecca Lopes-Figueira
- CCHMC Division of Pediatric General and Thoracic Surgery.,The Center for Fetal, Cellular, and Molecular Therapy (CCHMC)
| | - Marc Oria
- CCHMC Division of Pediatric General and Thoracic Surgery.,The Center for Fetal, Cellular, and Molecular Therapy (CCHMC)
| | - Jose Peiro
- CCHMC Division of Pediatric General and Thoracic Surgery.,The Center for Fetal, Cellular, and Molecular Therapy (CCHMC)
| |
Collapse
|
19
|
Shahzad T, Radajewski S, Chao CM, Bellusci S, Ehrhardt H. Pathogenesis of bronchopulmonary dysplasia: when inflammation meets organ development. Mol Cell Pediatr 2016; 3:23. [PMID: 27357257 PMCID: PMC4927524 DOI: 10.1186/s40348-016-0051-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/20/2016] [Indexed: 01/12/2023] Open
Abstract
Bronchopulmonary dysplasia is a chronic lung disease of preterm infants. It is caused by the disturbance of physiologic lung development mainly in the saccular stage with lifelong restrictions of pulmonary function and an increased risk of abnormal somatic and psychomotor development. The contributors to this disease’s entity are multifactorial with pre- and postnatal origin. Central to the pathogenesis of bronchopulmonary is the induction of a massive pulmonary inflammatory response due to mechanical ventilation and oxygen toxicity. The extent of the pro-inflammatory reaction and the disturbance of further alveolar growth and vasculogenesis vary largely and can be modified by prenatal infections, antenatal steroids, and surfactant application. This minireview summarizes the important recent research findings on the pulmonary inflammatory reaction obtained in patient cohorts and in experimental models. Unfortunately, recent changes in clinical practice based on these findings had only limited impact on the incidence of bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Tayyab Shahzad
- 1Department of General Pediatrics and Neonatology, Center for Pediatrics and Youth Medicine, Justus-Liebig-University, Feulgenstrasse 12, D-35392 Gießen, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Giessen, Germany.,University of Giessen Lung Center, Excellence Cluster Cardio-Pulmonary Systems, Member of the German Lung Center, Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany
| | - Sarah Radajewski
- 1Department of General Pediatrics and Neonatology, Center for Pediatrics and Youth Medicine, Justus-Liebig-University, Feulgenstrasse 12, D-35392 Gießen, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Giessen, Germany.,University of Giessen Lung Center, Excellence Cluster Cardio-Pulmonary Systems, Member of the German Lung Center, Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany
| | - Cho-Ming Chao
- 1Department of General Pediatrics and Neonatology, Center for Pediatrics and Youth Medicine, Justus-Liebig-University, Feulgenstrasse 12, D-35392 Gießen, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Giessen, Germany.,University of Giessen Lung Center, Excellence Cluster Cardio-Pulmonary Systems, Member of the German Lung Center, Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany
| | - Saverio Bellusci
- University of Giessen Lung Center, Excellence Cluster Cardio-Pulmonary Systems, Member of the German Lung Center, Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany
| | - Harald Ehrhardt
- 1Department of General Pediatrics and Neonatology, Center for Pediatrics and Youth Medicine, Justus-Liebig-University, Feulgenstrasse 12, D-35392 Gießen, Universities of Gießen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Giessen, Germany. .,University of Giessen Lung Center, Excellence Cluster Cardio-Pulmonary Systems, Member of the German Lung Center, Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany.
| |
Collapse
|
20
|
Sucre JMS, Wilkinson D, Vijayaraj P, Paul M, Dunn B, Alva-Ornelas JA, Gomperts BN. A three-dimensional human model of the fibroblast activation that accompanies bronchopulmonary dysplasia identifies Notch-mediated pathophysiology. Am J Physiol Lung Cell Mol Physiol 2016; 310:L889-98. [PMID: 26968771 DOI: 10.1152/ajplung.00446.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/07/2016] [Indexed: 12/13/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a leading complication of premature birth and occurs primarily in infants delivered during the saccular stage of lung development. Histopathology shows decreased alveolarization and a pattern of fibroblast proliferation and differentiation to the myofibroblast phenotype. Little is known about the molecular pathways and cellular mechanisms that define BPD pathophysiology and progression. We have developed a novel three-dimensional human model of the fibroblast activation associated with BPD, and using this model we have identified the Notch pathway as a key driver of fibroblast activation and proliferation in response to changes in oxygen. Fetal lung fibroblasts were cultured on sodium alginate beads to generate lung organoids. After exposure to alternating hypoxia and hyperoxia, the organoids developed a phenotypic response characterized by increased α-smooth muscle actin (α-SMA) expression and other genes known to be upregulated in BPD and also demonstrated increased expression of downstream effectors of the Notch pathway. Inhibition of Notch with a γ-secretase inhibitor prevented the development of the pattern of cellular proliferation and α-SMA expression in our model. Analysis of human autopsy tissue from the lungs of infants who expired with BPD demonstrated evidence of Notch activation within fibrotic areas of the alveolar septae, suggesting that Notch may be a key driver of BPD pathophysiology.
Collapse
Affiliation(s)
- Jennifer M S Sucre
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Dan Wilkinson
- UCLA Department of Materials Science and Engineering, UCLA, Los Angeles, California
| | - Preethi Vijayaraj
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California; and
| | - Manash Paul
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Bruce Dunn
- UCLA Department of Materials Science and Engineering, UCLA, Los Angeles, California
| | - Jackelyn A Alva-Ornelas
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Brigitte N Gomperts
- UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California; Pulmonary Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California; and Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, California
| |
Collapse
|