1
|
Van Nynatten LR, Slessarev M, Martin CM, Leligdowicz A, Miller MR, Patel MA, Daley M, Patterson EK, Cepinskas G, Fraser DD. Novel plasma protein biomarkers from critically ill sepsis patients. Clin Proteomics 2022; 19:50. [PMID: 36572854 PMCID: PMC9792322 DOI: 10.1186/s12014-022-09389-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Despite the high morbidity and mortality associated with sepsis, the relationship between the plasma proteome and clinical outcome is poorly understood. In this study, we used targeted plasma proteomics to identify novel biomarkers of sepsis in critically ill patients. METHODS Blood was obtained from 15 critically ill patients with suspected/confirmed sepsis (Sepsis-3.0 criteria) on intensive care unit (ICU) Day-1 and Day-3, as well as age- and sex-matched 15 healthy control subjects. A total of 1161 plasma proteins were measured with proximal extension assays. Promising sepsis biomarkers were narrowed with machine learning and then correlated with relevant clinical and laboratory variables. RESULTS The median age for critically ill sepsis patients was 56 (IQR 51-61) years. The median MODS and SOFA values were 7 (IQR 5.0-8.0) and 7 (IQR 5.0-9.0) on ICU Day-1, and 4 (IQR 3.5-7.0) and 6 (IQR 3.5-7.0) on ICU Day-3, respectively. Targeted proteomics, together with feature selection, identified the leading proteins that distinguished sepsis patients from healthy control subjects with ≥ 90% classification accuracy; 25 proteins on ICU Day-1 and 26 proteins on ICU Day-3 (6 proteins overlapped both ICU days; PRTN3, UPAR, GDF8, NTRK3, WFDC2 and CXCL13). Only 7 of the leading proteins changed significantly between ICU Day-1 and Day-3 (IL10, CCL23, TGFα1, ST2, VSIG4, CNTN5, and ITGAV; P < 0.01). Significant correlations were observed between a variety of patient clinical/laboratory variables and the expression of 15 proteins on ICU Day-1 and 14 proteins on ICU Day-3 (P < 0.05). CONCLUSIONS Targeted proteomics with feature selection identified proteins altered in critically ill sepsis patients relative to healthy control subjects. Correlations between protein expression and clinical/laboratory variables were identified, each providing pathophysiological insight. Our exploratory data provide a rationale for further hypothesis-driven sepsis research.
Collapse
Affiliation(s)
| | - Marat Slessarev
- Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Claudio M Martin
- Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Aleks Leligdowicz
- Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Michael R Miller
- Lawson Health Research Institute, London, ON, Canada
- Pediatrics, Western University, London, ON, Canada
| | - Maitray A Patel
- Computer Science, Western University, London, ON, N6A 3K7, Canada
| | - Mark Daley
- Lawson Health Research Institute, London, ON, Canada
- Computer Science, Western University, London, ON, N6A 3K7, Canada
- The Vector Institute for Artificial Intelligence, Toronto, ON, M5G 1M1, Canada
| | | | - Gediminas Cepinskas
- Lawson Health Research Institute, London, ON, Canada
- Medical Biophysics, Western University, London, ON, N6A 3K7, Canada
| | - Douglas D Fraser
- Lawson Health Research Institute, London, ON, Canada.
- Pediatrics, Western University, London, ON, Canada.
- Clinical Neurological Sciences, Western University, London, ON, Canada.
- Physiology and Pharmacology, Western University, London, ON, Canada.
- London Health Sciences Centre, Room C2-C82, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.
| |
Collapse
|
2
|
Wang Y, Wang G, Liu H. Tenascin-C: A Key Regulator in Angiogenesis during Wound Healing. Biomolecules 2022; 12:1689. [PMID: 36421704 PMCID: PMC9687801 DOI: 10.3390/biom12111689] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 08/27/2023] Open
Abstract
(1) Background: Injury repair is a complex physiological process in which multiple cells and molecules are involved. Tenascin-C (TNC), an extracellular matrix (ECM) glycoprotein, is essential for angiogenesis during wound healing. This study aims to provide a comprehensive review of the dynamic changes and functions of TNC throughout tissue regeneration and to present an up-to-date synthesis of the body of knowledge pointing to multiple mechanisms of TNC at different restoration stages. (2) Methods: A review of the PubMed database was performed to include all studies describing the pathological processes of damage restoration and the role, structure, expression, and function of TNC in post-injury treatment; (3) Results: In this review, we first introduced the construction and expression signature of TNC. Then, the role of TNC during the process of damage restoration was introduced. We highlight the temporal heterogeneity of TNC levels at different restoration stages. Furthermore, we are surprised to find that post-injury angiogenesis is dynamically consistent with changes in TNC. Finally, we discuss the strategies for TNC in post-injury treatment. (4) Conclusions: The dynamic expression of TNC has a significant impact on angiogenesis and healing wounds and counters many negative aspects of poorly healing wounds, such as excessive inflammation, ischemia, scarring, and wound infection.
Collapse
Affiliation(s)
- Yucai Wang
- Department of Orthopaedic Surgery, Tangdu Hospital, AirForce Medical University, Xi’an 710000, China
| | - Guangfu Wang
- Vasculocardiology Department, The Fourth People’s Hospital of Jinan, Jinan 250000, China
| | - Hao Liu
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| |
Collapse
|
3
|
Wang Y, Liu X, Quan X, Qin X, Zhou Y, Liu Z, Chao Z, Jia C, Qin H, Zhang H. Pigment epithelium-derived factor and its role in microvascular-related diseases. Biochimie 2022; 200:153-171. [DOI: 10.1016/j.biochi.2022.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 01/02/2023]
|
4
|
Crowley G, Kim J, Kwon S, Lam R, Prezant DJ, Liu M, Nolan A. PEDF, a pleiotropic WTC-LI biomarker: Machine learning biomarker identification and validation. PLoS Comput Biol 2021; 17:e1009144. [PMID: 34288906 PMCID: PMC8328304 DOI: 10.1371/journal.pcbi.1009144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 08/02/2021] [Accepted: 06/03/2021] [Indexed: 12/01/2022] Open
Abstract
Biomarkers predict World Trade Center-Lung Injury (WTC-LI); however, there remains unaddressed multicollinearity in our serum cytokines, chemokines, and high-throughput platform datasets used to phenotype WTC-disease. To address this concern, we used automated, machine-learning, high-dimensional data pruning, and validated identified biomarkers. The parent cohort consisted of male, never-smoking firefighters with WTC-LI (FEV1, %Pred< lower limit of normal (LLN); n = 100) and controls (n = 127) and had their biomarkers assessed. Cases and controls (n = 15/group) underwent untargeted metabolomics, then feature selection performed on metabolites, cytokines, chemokines, and clinical data. Cytokines, chemokines, and clinical biomarkers were validated in the non-overlapping parent-cohort via binary logistic regression with 5-fold cross validation. Random forests of metabolites (n = 580), clinical biomarkers (n = 5), and previously assayed cytokines, chemokines (n = 106) identified that the top 5% of biomarkers important to class separation included pigment epithelium-derived factor (PEDF), macrophage derived chemokine (MDC), systolic blood pressure, macrophage inflammatory protein-4 (MIP-4), growth-regulated oncogene protein (GRO), monocyte chemoattractant protein-1 (MCP-1), apolipoprotein-AII (Apo-AII), cell membrane metabolites (sphingolipids, phospholipids), and branched-chain amino acids. Validated models via confounder-adjusted (age on 9/11, BMI, exposure, and pre-9/11 FEV1, %Pred) binary logistic regression had AUCROC [0.90(0.84–0.96)]. Decreased PEDF and MIP-4, and increased Apo-AII were associated with increased odds of WTC-LI. Increased GRO, MCP-1, and simultaneously decreased MDC were associated with decreased odds of WTC-LI. In conclusion, automated data pruning identified novel WTC-LI biomarkers; performance was validated in an independent cohort. One biomarker—PEDF, an antiangiogenic agent—is a novel, predictive biomarker of particulate-matter-related lung disease. Other biomarkers—GRO, MCP-1, MDC, MIP-4—reveal immune cell involvement in WTC-LI pathogenesis. Findings of our automated biomarker identification warrant further investigation into these potential pharmacotherapy targets. Disease related to air pollution causes millions of deaths annually. Large swathes of the general population, as well as certain occupations such as 1st responders and military personnel, are exposed to particulate matter (PM)—a major component of air pollution. Our longitudinal cohort of FDNY firefighters exposed to the World Trade Center dust cloud on 9/11 is a unique research opportunity to characterize the impact of a single, intense PM exposure by looking at pre- and post-exposure phenotype; however, PM-related lung disease and PM’s systemic effects are complex and call for a systems biological approach coupled with novel computational modelling techniques to fully understand pathogenesis. In the present study, we integrate clinical and environmental biomarkers with the serum metabolome, cytokines, and chemokines to develop a model for early disease detection and identification of potential signaling cascades of PM-related chronic lung disease.
Collapse
Affiliation(s)
- George Crowley
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - James Kim
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Sophia Kwon
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Rachel Lam
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
| | - David J. Prezant
- Bureau of Health Services, Fire Department of New York, Brooklyn, New York, United States of America
- Department of Medicine, Pulmonary Medicine Division, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Mengling Liu
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, United States of America
- Department of Population Health, Division of Biostatistics, New York University School of Medicine, New York, New York, United States of America
| | - Anna Nolan
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York, United States of America
- Bureau of Health Services, Fire Department of New York, Brooklyn, New York, United States of America
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
5
|
Lee SH, Ahn JR, Go HN, Lee SY, Park MJ, Song KB, Yoon J, Jung S, Cho HJ, Lee E, Yang SI, Hong SJ. Exposure to Polyhexamethylene Guanidine Exacerbates Bronchial Hyperresponsiveness and Lung Inflammation in a Mouse Model of Ovalbumin-Induced Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:655-664. [PMID: 34212551 PMCID: PMC8255342 DOI: 10.4168/aair.2021.13.4.655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 11/20/2022]
Abstract
Humidifier disinfectants (HDs) exposure has now been associated with acute lung injury and pulmonary fibrosis; polyhexamethylene guanidine (PHMG) has been confirmed to cause severe lung inflammation and fibrosis in mice. Recent evidence also indicates that HDs exposure increases the asthma risk in children, but the underlying mechanisms remain unclear. We aimed to investigate the effects of PHMG exposure on asthma in mice and the potential underlying mechanisms. BALB/c mice were intranasally administered PHMG (0.1 mg/kg/day; 5 days per week) during 2 episodes of ovalbumin (OVA) sensitization and were then challenged with 1% OVA by inhalation. Bronchial hyperresponsiveness (BHR), inflammatory cell influx into bronchoalveolar lavage (BAL) fluid, serum total and OVA-specific immunoglobulin (Ig) E levels, and histopathological changes in the lung were analyzed. The levels of asthma-related cytokines and chemokines were assayed in the lung tissues to evaluate possible mechanisms. Exposure to PHMG following OVA sensitization and challenge significantly enhanced BHR, inflammatory cell counts in BAL fluid, airway inflammation, and total serum IgE levels in the asthma mouse model. In addition, the levels of chemokine ligand (CCL) 11 and serpine F1/pigment epithelium-derived factor (SERPINF1) were significantly elevated in the lungs of these mice compared to those in the control and OVA-treated only groups. Our findings suggest that PHMG can enhance the development of allergic responses and lung inflammation via CCL11- and SERPINF1-induced signaling in a mouse model of asthma.
Collapse
Affiliation(s)
- Seung Hwa Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Rin Ahn
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Han Na Go
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - So Yeon Lee
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min Jee Park
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kun Baek Song
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jisun Yoon
- Department of Pediatrics, Mediplex Sejong Hospital, Incheon, Korea
| | - Sungsu Jung
- Department of Pediatrics, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Hyun Ju Cho
- Department of Pediatrics, International St. Mary's hospital, Catholic Kwandong University, Incheon, Korea
| | - Eun Lee
- Department of Pediatrics, Chonnam National University College of Medicine, Gwangju, Korea
| | - Song I Yang
- Department of Pediatrics, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Soo Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
6
|
Brook N, Brook E, Dharmarajan A, Chan A, Dass CR. The role of pigment epithelium-derived factor in protecting against cellular stress. Free Radic Res 2019; 53:1166-1180. [PMID: 31760841 DOI: 10.1080/10715762.2019.1697809] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Since its discovery as a neurotrophic factor in retinal pigmented epithelium cells in the late 1980s, there has been an increase in understanding of the role that pigment epithelium-derived factor (PEDF) plays in cellular functions. PEDF plays an important role in mediating cellular protection during exposure to oxidative stress and inflammation by preventing stress-induced angiogenesis and apoptosis. PEDF acts to reduce oxidative stress by promoting mitochondrial stability and by regulating the expression of enzymes involved in ROS accumulation and clearance. PEDF protects against the negative effects of oxidative stress by regulating cell survival pathways and the expression of inflammatory and proangiogenic mediators. PEDF-mediated cellular protection may be of clinical importance in diseases characterised by oxidative stress, chronic inflammation and pathological neovascularization, indicating that targeting PEDF may be a potential focus for therapeutic interventions in chronic diseases. In this review, we provide a historical perspective on the discoveries of PEDF interactions and functions, and discuss recent in vitro, in vivo and clinical findings to provide a current summary of the important protective effects following cellular exposure to stress stimuli and future clinical potential of PEDF.
Collapse
Affiliation(s)
- Naomi Brook
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| | - Emily Brook
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| | - Arun Dharmarajan
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia.,Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Arlene Chan
- Curtin Medical School, Curtin University, Bentley, Australia.,Hollywood Private Hospital, Breast Clinical Trials Unit, Breast Cancer Research Centre-Western Australia, Nedlands, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| |
Collapse
|
7
|
Farnoodian M, Sorenson CM, Sheibani N. PEDF expression affects the oxidative and inflammatory state of choroidal endothelial cells. Am J Physiol Cell Physiol 2018; 314:C456-C472. [PMID: 29351407 DOI: 10.1152/ajpcell.00259.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss among the elderly population, and is associated with severe macular degeneration and choroidal neovascularization (CNV). Although the pathogenesis of AMD is associated with choroidal dysfunction and CNV, the detailed underlying mechanisms remain unresolved. Altered production of pigment epithelium-derived factor (PEDF), a neuroprotective and antiangiogenic factor, contributes to CNV. Furthermore, exogenous PEDF mitigates angiogenesis in preclinical CNV models. How PEDF expression affects choroidal endothelial cell (ChEC) function is unknown. Here we isolated ChECs from PEDF+/+ and PEDF-deficient (PEDF-/-) mice and determined the impact of PEDF expression on the proangiogenic and pro-inflammatory properties of ChECs. We showed that PEDF expression significantly affects the proliferation, migration, adhesion, and oxidative and inflammatory state of ChECs. The PEDF-/- ChECs were, however, more sensitive to H2O2 challenge and exhibited increased rate of apoptosis and oxidative stress. We also observed a significant increase in production of cytokines with a primary role in inflammation and angiogenesis including vascular endothelial growth factor (VEGF) and osteopontin, and a reprograming of chemokines and cytokines expression profiles in PEDF-/- ChECs. Collectively, our results indicate that PEDF expression has a significant impact on oxidative and inflammatory properties of ChECs, whose alteration could contribute to pathogenesis of chronic inflammatory diseases including exudative AMD.
Collapse
Affiliation(s)
- Mitra Farnoodian
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| | - Christine M Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin.,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| |
Collapse
|
8
|
Falero-Perez J, Park S, Sorenson CM, Sheibani N. PEDF expression affects retinal endothelial cell proangiogenic properties through alterations in cell adhesive mechanisms. Am J Physiol Cell Physiol 2017; 313:C405-C420. [PMID: 28747334 PMCID: PMC5668572 DOI: 10.1152/ajpcell.00004.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 12/17/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is an endogenous inhibitor of angiogenesis. Although various ocular cell types including retinal endothelial cells (EC) produce PEDF, we know very little about cell autonomous effects of PEDF in these cell types. Here we determined how PEDF expression affects retinal EC proangiogenic properties. Retinal EC were prepared from wild-type (PEDF+/+) and PEDF-deficient (PEDF-/-) mice. The identity of EC was confirmed by staining for specific markers including vascular endothelial cadherin, CD31, and B4-lectin. Retinal EC also expressed VEGF receptor 1 and endoglin, as well as ICAM-1, ICAM-2, and VCAM-1. PEDF-/- retinal EC were more proliferative, less apoptotic when challenged with H2O2, less migratory, and less adherent compared with PEDF+/+ EC. These changes could be associated, at least in part, with increased levels of tenascin-C, fibronectin, thrombospondin-1 and collagen IV, and lower amounts of osteopontin. PEDF-/- EC also exhibited alterations in expression of a number of integrins including α2, αv, β1, β8, and αvβ3, and cell-cell adhesion molecules including CD31, zonula occluden-1, and occludin. These observations correlated with attenuation of capillary morphogenesis and increased levels of oxidative stress in PEDF-/- EC. PEDF-/- EC also produced lower levels of VEGF compared with PEDF+/+ cells. Thus, PEDF deficiency has a significant impact on retinal EC adhesion and migration, perhaps through altered production of extracellular matrix and junctional proteins in response to increased oxidative stress affecting their proangiogenic activity.
Collapse
Affiliation(s)
- Juliana Falero-Perez
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - SunYoung Park
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Christine M Sorenson
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin;
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; and
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
9
|
Negative regulators of angiogenesis: important targets for treatment of exudative AMD. Clin Sci (Lond) 2017; 131:1763-1780. [PMID: 28679845 DOI: 10.1042/cs20170066] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/17/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022]
Abstract
Angiogenesis contributes to the pathogenesis of many diseases including exudative age-related macular degeneration (AMD). It is normally kept in check by a tightly balanced production of pro- and anti-angiogenic factors. The up-regulation of the pro-angiogenic factor, vascular endothelial growth factor (VEGF), is intimately linked to the pathogenesis of exudative AMD, and its antagonism has been effectively targeted for treatment. However, very little is known about potential changes in expression of anti-angiogenic factors and the role they play in choroidal vascular homeostasis and neovascularization associated with AMD. Here, we will discuss the important role of thrombospondins and pigment epithelium-derived factor, two major endogenous inhibitors of angiogenesis, in retinal and choroidal vascular homeostasis and their potential alterations during AMD and choroidal neovascularization (CNV). We will review the cell autonomous function of these proteins in retinal and choroidal vascular cells. We will also discuss the potential targeting of these molecules and use of their mimetic peptides for therapeutic development for exudative AMD.
Collapse
|
10
|
Nakamura DS, Hollander JM, Uchimura T, Nielsen HC, Zeng L. Pigment Epithelium-Derived Factor (PEDF) mediates cartilage matrix loss in an age-dependent manner under inflammatory conditions. BMC Musculoskelet Disord 2017; 18:39. [PMID: 28122611 PMCID: PMC5264335 DOI: 10.1186/s12891-017-1410-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 01/16/2017] [Indexed: 02/04/2023] Open
Abstract
Background Inflammation is a major cause of cartilage destruction and leads to the imbalance of metabolic activities in the arthritic joint. Pigment epithelium-derived factor (PEDF) has been reported to have both pro- and anti-inflammatory activities in various cell types and to be upregulated in the arthritic joint, but its role in joint destruction is unclear. Our aim was to investigate the role of PEDF in cartilage degeneration under inflammatory conditions. Methods PEDF was ectopically expressed in primary human articular chondrocytes, and catabolic gene expression and protein secretion in response to the pro-inflammatory cytokine interleukin 1 beta (IL-1β) were evaluated. Metatarsal bones from PEDF-deficient and wild type mice were cultured in the presence or absence of IL-1β. Cartilage matrix integrity and matrix metalloproteinases MMP-1, MMP-3, and MMP-13 were evaluated. PEDF-deficient and wild type mice were evaluated in the monosodium iodoacetate (MIA) inflammatory joint destruction animal model to determine the role of PEDF in inflammatory arthritis in vivo. Student’s t-tests and Mann–Whitney tests were employed where appropriate, for parametric and non-parametric data, respectively. Results We showed that PEDF protein levels were higher in human osteoarthritis samples compared to normal samples. We demonstrated that ectopic PEDF expression in primary human articular chondrocytes exacerbated catabolic gene expression in the presence of IL-1β. In whole bone organ cultures, IL-1β induced MMP-1, MMP-3 and MMP-13 protein production, and caused significant cartilage matrix loss. Interestingly, Toluidine Blue staining showed that PEDF-deficient bones from 29 week old animals, but not 10 week old animals, had reduced matrix loss in response to IL-1β compared to their wild type counterparts. In addition, PEDF-deficiency in 29 week old animals preserved matrix integrity and protected against cell loss in the MIA joint destruction model in vivo. Conclusion We conclude that PEDF exacerbates cartilage degeneration in an age-dependent manner under an inflammatory setting. This is the first study identifying a specific role for PEDF in joint inflammation and highlights the multi-faceted activities of PEDF. Electronic supplementary material The online version of this article (doi:10.1186/s12891-017-1410-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daisy S Nakamura
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Judith M Hollander
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Tomoya Uchimura
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Heber C Nielsen
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA. .,Department of Pediatrics, Tufts Medical Center, Boston, MA, USA.
| | - Li Zeng
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA. .,Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA. .,Department of Orthopaedics, Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
11
|
Belinsky GS, Ward L, Chung C. Pigment epithelium-derived factor (PEDF) normalizes matrix defects in iPSCs derived from Osteogenesis imperfecta Type VI. Rare Dis 2016; 4:e1212150. [PMID: 27579219 PMCID: PMC4986704 DOI: 10.1080/21675511.2016.1212150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/14/2016] [Accepted: 07/06/2016] [Indexed: 01/28/2023] Open
Abstract
Osteogenesis imperfecta (OI) Type VI is characterized by a defect in bone mineralization, which results in multiple fractures early in life. Null mutations in the PEDF gene, Serpinf1, are the cause of OI VI. Whether PEDF restoration in a murine model of OI Type VI could improve bone mass and function was previously unknown. In Belinsky et al, we provided evidence that PEDF delivery enhanced bone mass and improved parameters of bone function in vivo. Further, we demonstrated that PEDF temporally inhibits Wnt signaling to enhance osteoblast differentiation. Here, we demonstrate that generation of induced pluripotent stem cells (iPSCs) from a PEDF null patient provides additional evidence for PEDF's role in regulating extracellular matrix proteins secreted from osteoblasts. PEDF null iPSCs have marked abnormalities in secreted matrix proteins, capturing a key feature of human OI Type VI, which were normalized by exogenous PEDF. Lastly, we place our recent findings within the broader context of PEDF biology and the developmental signaling pathways that are implicated in its actions.
Collapse
Affiliation(s)
- Glenn S Belinsky
- Department of Medicine, Yale University School of Medicine , New Haven, CT, USA
| | - Leanne Ward
- Children's Hospital of Eastern Ontario , Ottawa, Canada
| | - Chuhan Chung
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA; VA CT Healthcare System, West Haven, CT, USA
| |
Collapse
|
12
|
Belkacemi L, Zhang SX. Anti-tumor effects of pigment epithelium-derived factor (PEDF): implication for cancer therapy. A mini-review. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:4. [PMID: 26746675 PMCID: PMC4706649 DOI: 10.1186/s13046-015-0278-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/22/2015] [Indexed: 12/22/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is a secreted glycoprotein and a non-inhibitory member of the serine protease inhibitor (serpin) family. It is widely expressed in human fetal and adult tissues but its expression decreases with age and in malignant tissues. The main anti-cancer activities of PEDF derive from its dual effects, either indirectly on the tumor microenvironment (indirect antitumor action) or directly on the tumor itself (direct antitumor influence). The indirect antitumor activities of PEDF were uncovered from the early findings that it stimulates retinoblastoma cell differentiation and that additionally it possesses anti-angiogenic, anti-tumorigenic and anti-metastatic properties. The mechanisms of its direct antitumor effect, however, have not been fully elucidated. This review highlights recent progress in our understanding of the multifunctional activities of PEDF and, in particular, its anti-cancer signaling mechanisms. Additionally, we discuss the possibility of using novel phosphaplatin compounds that can upregulate PEDF expression as a chemotherapy for cancer treatment.
Collapse
Affiliation(s)
- Louiza Belkacemi
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, 77204, USA.
| | - Shaun Xiaoliu Zhang
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA. .,Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
13
|
Pigment Epithelium-Derived Factor (PEDF) is a Determinant of Stem Cell Fate: Lessons from an Ultra-Rare Disease. J Dev Biol 2015; 3:112-128. [PMID: 27239449 PMCID: PMC4883593 DOI: 10.3390/jdb3040112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PEDF is a secreted glycoprotein that is widely expressed by multiple organs. Numerous functional contributions have been attributed to PEDF with antiangiogenic, antitumor, anti-inflammatory, and neurotrophic properties among the most prominent. The discovery that null mutations in the PEDF gene results in Osteogenesis Imperfecta Type VI, a rare autosomal recessive bone disease characterized by multiple fractures, highlights a critical developmental function for this protein. This ultra-rare orphan disease has provided biological insights into previous studies that noted PEDF’s effects on various stem cell populations. In addition to bone development, PEDF modulates resident stem cell populations in the brain, muscle, and eye. Functional effects on human embryonic stem cells have also been demonstrated. An overview of recent advances in our understanding by which PEDF regulates stem cells and their potential clinical applications will be evaluated in this review.
Collapse
|
14
|
PEDF and its roles in physiological and pathological conditions: implication in diabetic and hypoxia-induced angiogenic diseases. Clin Sci (Lond) 2015; 128:805-23. [PMID: 25881671 PMCID: PMC4557399 DOI: 10.1042/cs20130463] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is a broadly expressed multifunctional member of the serine proteinase inhibitor (serpin) family. This widely studied protein plays critical roles in many physiological and pathophysiological processes, including neuroprotection, angiogenesis, fibrogenesis and inflammation. The present review summarizes the temporal and spatial distribution patterns of PEDF in a variety of developing and adult organs, and discusses its functions in maintaining physiological homoeostasis. The major focus of the present review is to discuss the implication of PEDF in diabetic and hypoxia-induced angiogenesis, and the pathways mediating PEDF's effects under these conditions. Furthermore, the regulatory mechanisms of PEDF expression, function and degradation are also reviewed. Finally, the therapeutic potential of PEDF as an anti-angiogenic drug is briefly summarized.
Collapse
|
15
|
Chetty A, Bennett M, Dang L, Nakamura D, Cao GJ, Mujahid S, Volpe M, Herman I, Becerra SP, Nielsen HC. Pigment epithelium-derived factor mediates impaired lung vascular development in neonatal hyperoxia. Am J Respir Cell Mol Biol 2015; 52:295-303. [PMID: 25054647 DOI: 10.1165/rcmb.2013-0229oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Bronchopulmonary dysplasia is a chronic lung disease of preterm infants characterized by arrested microvascularization and alveolarization. Studies show the importance of proangiogenic factors for alveolarization, but the importance of antiangiogenic factors is unknown. We proposed that hyperoxia increases the potent angiostatin, pigment epithelium-derived factor (PEDF), in neonatal lungs, inhibiting alveolarization and microvascularization. Wild-type (WT) and PEDF(-/-) mice were exposed to room air (RA) or 0.9 fraction of inspired oxygen from Postnatal Day 5 to 13. PEDF protein was increased in hyperoxic lungs compared with RA-exposed lungs (P < 0.05). In situ hybridization and immunofluorescence identified PEDF production primarily in alveolar epithelium. Hyperoxia reduced alveolarization in WT mice (P < 0.05) but not in PEDF(-/-) mice. WT hyperoxic mice had fewer platelet endothelial cell adhesion molecule (PECAM)-positive cells per alveolus (1.4 ± 0.4) than RA-exposed mice (4.3 ± 0.3; P < 0.05); this reduction was absent in hyperoxic PEDF(-/-) mice. The interactive regulation of lung microvascularization by vascular endothelial growth factor and PEDF was studied in vitro using MFLM-91U cells, a fetal mouse lung endothelial cell line. Vascular endothelial growth factor stimulation of proliferation, migration, and capillary tube formation was inhibited by PEDF. MFLM-91U cells exposed to conditioned medium (CM) from E17 fetal mouse lung type II (T2) cells cultured in 0.9 fraction of inspired oxygen formed fewer capillary tubes than CM from T2 cells cultured in RA (hyperoxia CM, 51 ± 10% of RA CM, P < 0.05), an effect abolished by PEDF antibody. We conclude that PEDF mediates reduced vasculogenesis and alveolarization in neonatal hyperoxia. Bronchopulmonary dysplasia likely results from an altered balance between pro- and antiangiogenic factors.
Collapse
Affiliation(s)
- Anne Chetty
- 1 Department of Pediatrics, Tufts Medical Center, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ramchandani D, Weber GF. Interactions between osteopontin and vascular endothelial growth factor: Implications for cancer. Biochim Biophys Acta Rev Cancer 2015; 1855:202-22. [PMID: 25732057 DOI: 10.1016/j.bbcan.2015.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 02/10/2015] [Accepted: 02/22/2015] [Indexed: 12/12/2022]
Abstract
For this comprehensive review, 257 publications with the keywords "osteopontin" or "OPN" and "vascular endothelial growth factor" or "VEGF" in PubMed were screened (time frame from year 1996 to year 2014). 37 articles were excluded because they were not focused on the interactions between these molecules, and papers relevant for transformation-related phenomena were selected. Osteopontin (OPN) and vascular endothelial growth factor (VEGF) are characterized by a convergence in function for regulating cell motility and angiogenesis, the response to hypoxia, and apoptosis. Often, they are co-expressed or one molecule induces the other, however, in some settings OPN-associated pathways and VEGF-associated pathways are distinct. Their relationships affect the pathogenesis in cancer, where they contribute to progression and angiogenesis and serve as markers for poor prognosis. The inhibition of OPN may reduce VEGF levels and suppress tumor progression. In vascular pathologies, these two cytokines mediate remodeling, but may also perpetuate inflammation and narrowing of the arteries. OPN and VEGF are elevated and contribute to vascularization in inflammatory diseases.
Collapse
Affiliation(s)
| | - Georg F Weber
- James L. Winkle College of Pharmacy, University of Cincinnati, USA.
| |
Collapse
|