1
|
Amosu MM, Jankowski AM, McCright JC, Yang BE, Grano de Oro Fernandez J, Moore KA, Gadde HS, Donthi M, Kaluzienski ML, Maisel K. Plasmacytoid Dendritic Cells Mediate CpG-ODN-induced Increase in Survival in a Mouse Model of Lymphangioleiomyomatosis. Am J Respir Cell Mol Biol 2024; 71:519-533. [PMID: 38990702 PMCID: PMC11568470 DOI: 10.1165/rcmb.2023-0410oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/11/2024] [Indexed: 07/13/2024] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a devastating disease primarily found in women of reproductive age that leads to cystic destruction of the lungs. Recent work has shown that LAM causes immunosuppression and that checkpoint inhibitors can be used as LAM treatment. Toll-like receptor (TLR) agonists can also reactivate immunity, and the TLR9 agonist CpG oligodeoxynucleotide (CpG-ODN) has been effective in treating lung cancer in animal models. In this study, we investigated the use of TLR9 agonist CpG-ODN as LAM immunotherapy in combination with checkpoint inhibitor anti-PD1 and standard of care rapamycin, and determined the immune mechanisms underlying therapeutic efficacy. We used survival studies, flow cytometry, ELISA, and histology to assess immune response and survival after intranasal treatment with CpG-ODN in combination with rapamycin or anti-PD1 therapy in a mouse model of metastatic LAM. We found that local administration of CpG-ODN enhances survival in a mouse model of LAM. We found that a lower dose led to longer survival, likely because of fewer local side effects, but increased LAM nodule count and size compared with the higher dose. CpG-ODN treatment also reduced regulatory T cells and increased the number of T-helper type 17 cells as well as cytotoxic T cells. These effects appear to be mediated in part by plasmacytoid dendritic cells because depletion of plasmacytoid dendritic cells reduces survival and abrogates T-helper type 17 cell response. Finally, we found that CpG-ODN treatment is effective in early-stage and progressive disease and is additive with anti-PD1 therapy and rapamycin. In summary, we have found that TLR9 agonist CpG-ODN can be used as LAM immunotherapy and effectively synergizes with rapamycin and anti-PD1 therapy in LAM.
Collapse
Affiliation(s)
- Mayowa M Amosu
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Ashleigh M Jankowski
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Jacob C McCright
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Bennett E Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | | | - Kaitlyn A Moore
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Havish S Gadde
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Mehul Donthi
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Michele L Kaluzienski
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Katharina Maisel
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
2
|
Amosu MM, Jankowski AM, McCright JC, Yang BE, de Oro Fernandez JG, Moore KA, Gadde HS, Donthi M, Kaluzienski ML, Sriram V, Maisel K. Plasmacytoid dendritic cells mediate CpG-ODN induced increase in survival in a mouse model of lymphangioleiomyomatosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.06.527331. [PMID: 36798234 PMCID: PMC9934559 DOI: 10.1101/2023.02.06.527331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Lymphangioleiomyomatosis (LAM) is a devastating disease primarily found in women of reproductive age that leads to cystic destruction of the lungs. Recent work has shown that LAM causes immunosuppression and that checkpoint inhibitors can be used as LAM treatment. Toll-like receptor (TLR) agonists can also re-activate immunity and the TLR9 agonist, CpG-ODN, has been effective in treating lung cancer in animal models. Here we investigate the use of TLR9 agonist CpG-ODN as LAM immunotherapy in combination with checkpoint inhibitor, anti-PD1, standard of care rapamycin and determine the immune mechanisms underlying therapeutic efficacy. We used survival studies, flow cytometry, ELISA, and histology to assess immune response and survival after intranasal treatment with CpG-ODN in combination with rapamycin or anti-PD1 therapy in a mouse model of metastatic LAM. We found that local administration of CpG-ODN enhances survival in a mouse model of LAM. We found that a lower dose led to longer survival likely due to fewer local side effects but increased LAM nodule count and size compared to the higher dose. CpG-ODN treatment also reduced regulatory T cells and increased the number of Th17 helper T cells as well as cytotoxic T cells. These effects appear to be mediated in part by plasmacytoid dendritic cells (pDCs), as depletion of pDCs reduces survival and abrogates Th17 T cell response. Finally, we found that CpG-ODN treatment is effective in early stage and progressive disease and is additive with anti-PD1 therapy and rapamycin. In summary, we have found that TLR9 agonist CpG-ODN can be used as LAM immunotherapy and effectively synergizes with rapamycin and anti-PD1 therapy in LAM.
Collapse
Affiliation(s)
- Mayowa M Amosu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Ashleigh M Jankowski
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Jacob C McCright
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Bennett E Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | | | - Kaitlyn A Moore
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Havish S Gadde
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Mehul Donthi
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Michele L Kaluzienski
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Vedanth Sriram
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Katharina Maisel
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| |
Collapse
|
3
|
Olatoke T, Wagner A, Astrinidis A, Zhang EY, Guo M, Zhang AG, Mattam U, Kopras EJ, Gupta N, Smith EP, Karbowniczek M, Markiewski MM, Wikenheiser-Brokamp KA, Whitsett JA, McCormack FX, Xu Y, Yu JJ. Single-cell multiomic analysis identifies a HOX-PBX gene network regulating the survival of lymphangioleiomyomatosis cells. SCIENCE ADVANCES 2023; 9:eadf8549. [PMID: 37163604 PMCID: PMC10171823 DOI: 10.1126/sciadv.adf8549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/07/2023] [Indexed: 05/12/2023]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare, progressive lung disease that predominantly affects women. LAM cells carry TSC1/TSC2 mutations, causing mTORC1 hyperactivation and uncontrolled cell growth. mTORC1 inhibitors stabilize lung function; however, sustained efficacy requires long-term administration, and some patients fail to tolerate or respond to therapy. Although the genetic basis of LAM is known, mechanisms underlying LAM pathogenesis remain elusive. We integrated single-cell RNA sequencing and single-nuclei ATAC-seq of LAM lungs to construct a gene regulatory network controlling the transcriptional program of LAM cells. We identified activation of uterine-specific HOX-PBX transcriptional programs in pulmonary LAMCORE cells as regulators of cell survival depending upon HOXD11-PBX1 dimerization. Accordingly, blockage of HOXD11-PBX1 dimerization by HXR9 suppressed LAM cell survival in vitro and in vivo. PBX1 regulated STAT1/3, increased the expression of antiapoptotic genes, and promoted LAM cell survival in vitro. The HOX-PBX gene network provides promising targets for treatment of LAM/TSC mTORC1-hyperactive cancers.
Collapse
Affiliation(s)
- Tasnim Olatoke
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Andrew Wagner
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Aristotelis Astrinidis
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Erik Y. Zhang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Minzhe Guo
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Alan G. Zhang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Ushodaya Mattam
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Elizabeth J. Kopras
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Nishant Gupta
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Eric P. Smith
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Magdalena Karbowniczek
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Maciej M. Markiewski
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Kathryn A. Wikenheiser-Brokamp
- Division of Pathology and Laboratory Medicine, Perinatal Institute, Division of Pulmonary Biology, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jeffrey A. Whitsett
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Francis X. McCormack
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yan Xu
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jane J. Yu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
4
|
Muhammad Firdaus FI, Nashihah AK, Mohd Fauzi MB, Manira M, Aminuddin S, Lokanathan Y. Application of Conditioned Medium for In Vitro Modeling and Repair of Respiratory Tissue. APPLIED SCIENCES 2023; 13:5862. [DOI: 10.3390/app13105862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Background: The idea of exploring respiratory therapy in vitro predominantly guided by cell-secreted substances has gained ground in recent years. A conditioned medium (CM) consists of protein milieu that contains a diverse spectrum of cytokines, chemokines, angiogenic agents, and growth factors. This review evaluated the efficacy of using CM collected in an in vitro respiratory epithelial model. Methods: Twenty-six papers were included in this review: twenty-one cellular response studies on respiratory secretome application and five studies involving animal research. Results: The CM produced by differentiated cells from respiratory and non-respiratory systems, such as mesenchymal stem cells (MSC), exhibited the similar overall effect of improving proliferation and regeneration. Not only could differentiated cells from respiratory tissues increase proliferation, migration, and attachment, but the CM was also able to protect the respiratory epithelium against cytotoxicity. Most non-respiratory tissue CM was used as a treatment model to determine the effects of the therapy, while only one study used particle-based CM and reported decreased epithelial cell tight junctions, which harmed the epithelial barrier. Conclusion: As it resolves the challenges related to cell development and wound healing while simultaneously generally reducing the danger of immunological compatibility and tumorigenicity, CM might be a potential regenerative therapy in numerous respiratory illnesses. However, additional research is required to justify using CM in respiratory epithelium clinical practice.
Collapse
Affiliation(s)
- Fairuz Izan Muhammad Firdaus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ab. Karim Nashihah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh. Busra Mohd Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Maarof Manira
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Saim Aminuddin
- Graduate School of Medicine, KPJ Healthcare University College, Kota Seriemas, Nilai 71800, Malaysia
- KPJ Ampang Puteri Specialist Hospital, Ampang 68000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
5
|
Kundu N, Holz MK. Lymphangioleiomyomatosis: a metastatic lung disease. Am J Physiol Cell Physiol 2023; 324:C320-C326. [PMID: 36571446 PMCID: PMC9886342 DOI: 10.1152/ajpcell.00202.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare disease affecting women, caused by somatic mutations in the TSC1 or TSC2 genes, and driven by estrogen. Similar to many cancers, it is metastatic, primarily to the lung. Despite its monogenetic nature, like many cancers, LAM is a heterogeneous disease. The cellular constituents of LAM are very diverse, including mesenchymal, epithelial, endothelial, and immune cells. LAM is characterized by dysregulation of many cell signaling pathways, distinct populations of LAM cells, and a rich microenvironment, in which the immune system appears to play an important role. This review delineates the heterogeneity of LAM and focuses on the metastatic features of LAM, the deregulated signaling mechanisms and the tumor microenvironment. Understanding the tumor-host interaction in LAM may provide insights into the development of new therapeutic strategies, which could be combinatorial or superlative to Sirolimus, the current U.S. Food and Drug Administration-approved treatment.
Collapse
Affiliation(s)
- Nandini Kundu
- Department of Cell Biology and Anatomy, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, New York
| | - Marina K Holz
- Department of Cell Biology and Anatomy, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, New York
- Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, New York
| |
Collapse
|
6
|
LAM Cells as Potential Drivers of Senescence in Lymphangioleiomyomatosis Microenvironment. Int J Mol Sci 2022; 23:ijms23137040. [PMID: 35806041 PMCID: PMC9266844 DOI: 10.3390/ijms23137040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/10/2023] Open
Abstract
Senescence is a stress-response process characterized by the irreversible inhibition of cell proliferation, associated to the acquisition of a senescence-associated secretory phenotype (SASP), that may drive pathological conditions. Lymphangioleiomyomatosis (LAM) is a rare disease in which LAM cells, featuring the hyperactivation of the mammalian Target of Rapamycin Complex 1 (mTORC1) for the absence of tuberin expression, cause the disruption of the lung parenchyma. Considering that LAM cells secrete SASP factors and that mTOR is also a driver of senescence, we deepened the contribution of senescence in LAM cell phenotype. We firstly demonstrated that human primary tuberin-deficient LAM cells (LAM/TSC cells) have senescent features depending on mTOR hyperactivation, since their high positivity to SA-β galactosidase and to phospho-histone H2A.X are reduced by inducing tuberin expression and by inhibiting mTOR with rapamycin. Then, we demonstrated the capability of LAM/TSC cells to induce senescence. Indeed, primary lung fibroblasts (PLFs) grown in LAM/TSC conditioned medium increased the positivity to SA-β galactosidase and to phospho-histone H2A.X, as well as p21WAF1/CIP1 expression, and enhanced the mRNA expression and the secretion of the SASP component IL-8. Taken together, these data make senescence a novel field of study to understand LAM development and progression.
Collapse
|
7
|
Aschner Y, Downey GP. Proteinases in the pathogenesis of lymphangioleiomyomatosis lung disease: nibbling or chewing up the lung? Eur Respir J 2022; 59:2200405. [PMID: 35422429 DOI: 10.1183/13993003.00405-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/17/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Yael Aschner
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gregory P Downey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Departments of Medicine, Pediatrics and Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| |
Collapse
|