1
|
Eaton DC, Romero MJ, Matthay MA, Hamacher J, Advani A, Wolf A, Abu Mraheil M, Chakraborty T, Stepp DW, Belin de Chantemèle EJ, Kutlar A, Kraft F, Zeitlinger M, Kranke P, Frank S, Su Y, Verin AD, Fulton DJR, Ushio-Fukai M, Fukai T, Lucas R. Endothelial ENaC as a repressor of oxidative stress and a guardian of lung capillary barrier function in bacterial and viral pneumonia. Front Physiol 2025; 16:1562626. [PMID: 40260205 PMCID: PMC12009727 DOI: 10.3389/fphys.2025.1562626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/26/2025] [Indexed: 04/23/2025] Open
Abstract
The endothelium represents a crucial regulator of vascular homeostasis. Since endothelial cells mainly rely on glycolysis rather than on oxidative phosphorylation for their ATP generation, this allows capillaries to transport the maximum amount of oxygen to oxygen-starved tissues, where it can be used for energy generation. However, the occasionally high levels of oxygen and of reactive oxygen species (ROS) in the blood vessels requires a balancing act between pro- and anti-oxidative mechanisms in the endothelium. When this balance is disturbed by excessive oxidative stress, as can occur in bacterial and viral pneumonia, endothelial barrier function can be compromised. This review will discuss some of the recently discovered barrier-protective mechanisms during bacterial and viral pneumonia, mediated through the reduction of oxidative stress in lung capillaries by the epithelial sodium channel (ENaC).
Collapse
Affiliation(s)
- D. C. Eaton
- Department of Medicine, Emory School of Medicine, Atlanta, GA, United States
| | - M. J. Romero
- Vascular Biology Center, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Augusta, GA, United States
| | - M. A. Matthay
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA, United States
| | - J. Hamacher
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital, Bern, Switzerland
- Lungen-und Atmungsstiftung, Bern, Switzerland
- Medical Clinic V-Pneumology, Allergology, Intensive Care Medicine, and Environmental Medicine, Faculty of Medicine, Saarland University, University Medical Centre of the Saarland, Homburg, Germany
| | - A. Advani
- Department.of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - A. Wolf
- Department.of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - M. Abu Mraheil
- Institute for Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Faculty of Medicine, Justus-Liebig University, Giessen, Germany
| | - T. Chakraborty
- Institute for Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Faculty of Medicine, Justus-Liebig University, Giessen, Germany
| | - D. W. Stepp
- Vascular Biology Center, Augusta, GA, United States
| | | | - A. Kutlar
- Department.of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - F. Kraft
- Medical University of Vienna, Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Clinical Division of General Anaesthesia and Intensive Care Medicine, Vienna, Austria
| | - M. Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - P. Kranke
- Department of Anesthesiology, Critical Care, Emergency and Pain Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - S. Frank
- Department of Anaesthesiology, LMU University Hospital, LMU, Munich, Germany
| | - Y. Su
- Department of Pharmacology and Toxicology, Augusta, GA, United States
- Department.of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, United States
| | - A. D. Verin
- Vascular Biology Center, Augusta, GA, United States
- Department.of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - D. J. R. Fulton
- Vascular Biology Center, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Augusta, GA, United States
| | - M. Ushio-Fukai
- Vascular Biology Center, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Augusta, GA, United States
| | - T. Fukai
- Vascular Biology Center, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Augusta, GA, United States
| | - R. Lucas
- Vascular Biology Center, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Augusta, GA, United States
- Department.of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
2
|
Taenaka H, Matthay MA. Mechanisms of impaired alveolar fluid clearance. Anat Rec (Hoboken) 2025; 308:1026-1039. [PMID: 36688689 PMCID: PMC10564110 DOI: 10.1002/ar.25166] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/09/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023]
Abstract
Impaired alveolar fluid clearance (AFC) is an important cause of alveolar edema fluid accumulation in patients with acute respiratory distress syndrome (ARDS). Alveolar edema leads to insufficient gas exchange and worse clinical outcomes. Thus, it is important to understand the pathophysiology of impaired AFC in order to develop new therapies for ARDS. Over the last few decades, multiple experimental studies have been done to understand the molecular, cellular, and physiological mechanisms that regulate AFC in the normal and the injured lung. This review provides a review of AFC in the normal lung, focuses on the mechanisms of impaired AFC, and then outlines the regulation of AFC. Finally, we summarize ongoing challenges and possible future research that may offer promising therapies for ARDS.
Collapse
Affiliation(s)
- Hiroki Taenaka
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California, USA
- Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California, USA
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Michael A. Matthay
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California, USA
- Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California, USA
| |
Collapse
|
3
|
Tan YY, Zhang DW, Yang C, Huang Y, Kang JY, Xu ZH, Wei YY, Ding ZX, Fei GH. ASIC1a regulates airway epithelial cell pyroptosis in acute lung injury by NLRP3-Caspase1-GSDMD pathway. Int Immunopharmacol 2024; 143:113623. [PMID: 39549550 DOI: 10.1016/j.intimp.2024.113623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/30/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Acidosis is the most common complication that seriously affects the prognosis of acute respiratory distress syndrome (ARDS). Acid-sensitive ion channel 1a (ASIC1a) is activated in acidic environments to regulate inflammatory process. However, the role of ASIC1a in ARDS is unclear. METHODS In this study, we examined the expression of ASIC1a in airway epithelial cells in an acidic environment. We then investigated whether blocking ASIC1a could inhibit pyroptosis of airway epithelial cells and the molecular mechanism. In the mouse acute lung injury (ALI) model, we observed the changes of lung histopathology, arterial blood gas and pyroptosis related indexes after ASIC1a inhibition. Bronchoalveolar lavage fluid (BALF) from patients with ARDS were collected to explore the expression level of ASIC1a in ARDS patients. RESULTS Inhibiting ASIC1a can reduce the airway epithelial cell pyroptosis induced by an extracellular acidic environment. ASIC1a can bind to PRKACA, and silencing ASIC1a and PRKACA can inhibit the occurrence of pyroptosis in airway epithelial cells. Compared with control group, arterial blood pH and PaO2 in ALI group were significantly reduced. The inflammation in the lungs is more intense, and the mRNA and protein of NLRP3, Caspase1 and GSDMD were increased, while ASIC1a specific blocker psalmotoxin-1 alleviated this phenomenon. The expression of ASIC1a in BALF of ARDS patients was significantly increased, especially in non-survival group. CONCLUSION Acidic micro-environment can induce the increased expression of ASIC1a, and inhibition of ASIC1a can alleviate the inflammation and airway epithelial cell pyroptosis in ARDS. ASIC1a may be a new target for the treatment of ARDS.
Collapse
Affiliation(s)
- Yuan-Yuan Tan
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China; Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei 230022, Anhui Province, China
| | - Da-Wei Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China; Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei 230022, Anhui Province, China
| | - Chun Yang
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei 230022, Anhui Province, China; Department of Emergency Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yan Huang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jia-Ying Kang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China; Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei 230022, Anhui Province, China
| | - Zhong-Hua Xu
- Center for Scientific Research, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuan-Yuan Wei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China; Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei 230022, Anhui Province, China
| | - Zhen-Xing Ding
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei 230022, Anhui Province, China; Department of Emergency Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Guang-He Fei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China; Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei 230022, Anhui Province, China.
| |
Collapse
|
4
|
Liu G, Dong BB, Devanarayana S, Chen RC, Liu Q. Emerging roles of mechanosensitive ion channels in ventilator induced lung injury: a systematic review. Front Immunol 2024; 15:1479230. [PMID: 39664395 PMCID: PMC11631737 DOI: 10.3389/fimmu.2024.1479230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024] Open
Abstract
Background The pathogenetic mechanisms of ventilator-induced lung injury (VILI) still need to be elucidated. The mechanical forces during mechanical ventilation are continually sensed and transmitted by mechanosensitive ion channels (MSICs) in pulmonary endothelial, epithelial, and immune cells. In recent years, MSICs have been shown to be involved in VILI. Methods A systematic search across PubMed, the Cochrane Library, Web of Science, and ScienceDirect was performed from inception to March 2024, and the review was conducted in accordance with PRISMA guidelines. The potential eligible studies were evaluated by two authors independently. Study characteristics, quality assessment, and potential mechanisms were analyzed. Results We included 23 eligible studies, most of which were performed with murine animals in vivo. At the in vitro level, 52% and 48% of the experiments were conducted with human or animal cells, respectively. No clinical studies were found. The most reported MSICs include Piezo channels, transient receptor potential channels, potassium channels, and stretch-activated sodium channels. Piezo1 has been the most concerned channel in the recent five years. This study found that signal pathways, such as RhoA/ROCK1, could be enhanced by cyclic stretch-activated MSICs, which contribute to VILI through dysregulated inflammation and immune responses mediated by ion transport. The review indicates the emerging role of MSICs in the pathogenesis of VILI, especially as a signal-transmitting link between mechanical stretch and pathogenesis such as inflammation, disruption of cell junctions, and edema formation. Conclusions Mechanical stretch stimulates MSICs to increase transcellular ion exchange and subsequently generates VILI through inflammation and other pathogeneses mediated by MSICs signal-transmitting pathways. These findings make it possible to identify potential therapeutic targets for the prevention of lung injury through further exploration and more studies. Systematic review registration https://inplasy.com/inplasy-2024-10-0115/, identifier INPLASY2024100115.
Collapse
Affiliation(s)
- Gang Liu
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin-bin Dong
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shalika Devanarayana
- School of International Education, Zhengzhou University, Zhengzhou, Henan, China
| | - Rong-Chang Chen
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Qi Liu
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Kashlan OB, Wang XP, Sheng S, Kleyman TR. Epithelial Na + Channels Function as Extracellular Sensors. Compr Physiol 2024; 14:1-41. [PMID: 39109974 PMCID: PMC11309579 DOI: 10.1002/cphy.c230015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The epithelial Na + channel (ENaC) resides on the apical surfaces of specific epithelia in vertebrates and plays a critical role in extracellular fluid homeostasis. Evidence that ENaC senses the external environment emerged well before the molecular identity of the channel was reported three decades ago. This article discusses progress toward elucidating the mechanisms through which specific external factors regulate ENaC function, highlighting insights gained from structural studies of ENaC and related family members. It also reviews our understanding of the role of ENaC regulation by the extracellular environment in physiology and disease. After familiarizing the reader with the channel's physiological roles and structure, we describe the central role protein allostery plays in ENaC's sensitivity to the external environment. We then discuss each of the extracellular factors that directly regulate the channel: proteases, cations and anions, shear stress, and other regulators specific to particular extracellular compartments. For each regulator, we discuss the initial observations that led to discovery, studies investigating molecular mechanism, and the physiological and pathophysiological implications of regulation. © 2024 American Physiological Society. Compr Physiol 14:5407-5447, 2024.
Collapse
Affiliation(s)
- Ossama B. Kashlan
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Computational and Systems Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xue-Ping Wang
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaohu Sheng
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas R. Kleyman
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh,
Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Nickerson AJ, Mutchler SM, Sheng S, Cox NA, Ray EC, Kashlan OB, Carattino MD, Marciszyn AL, Winfrey A, Gingras S, Kirabo A, Hughey RP, Kleyman TR. Mice lacking γENaC palmitoylation sites maintain benzamil-sensitive Na+ transport despite reduced channel activity. JCI Insight 2023; 8:e172051. [PMID: 37707951 PMCID: PMC10721255 DOI: 10.1172/jci.insight.172051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Epithelial Na+ channels (ENaCs) control extracellular fluid volume by facilitating Na+ absorption across transporting epithelia. In vitro studies showed that Cys-palmitoylation of the γENaC subunit is a major regulator of channel activity. We tested whether γ subunit palmitoylation sites are necessary for channel function in vivo by generating mice lacking the palmitoylated cysteines (γC33A,C41A) using CRISPR/Cas9 technology. ENaCs in dissected kidney tubules from γC33A,C41A mice had reduced open probability compared with wild-type (WT) littermates maintained on either standard or Na+-deficient diets. Male mutant mice also had higher aldosterone levels than WT littermates following Na+ restriction. However, γC33A,C41A mice did not have reduced amiloride-sensitive Na+ currents in the distal colon or benzamil-induced natriuresis compared to WT mice. We identified a second, larger conductance cation channel in the distal nephron with biophysical properties distinct from ENaC. The activity of this channel was higher in Na+-restricted γC33A,C41A versus WT mice and was blocked by benzamil, providing a possible compensatory mechanism for reduced prototypic ENaC function. We conclude that γ subunit palmitoylation sites are required for prototypic ENaC activity in vivo but are not necessary for amiloride/benzamil-sensitive Na+ transport in the distal nephron or colon.
Collapse
Affiliation(s)
| | | | | | | | | | - Ossama B. Kashlan
- Department of Medicine
- Department of Computational and Systems Biology
| | | | | | | | - Sebastien Gingras
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Thomas R. Kleyman
- Department of Medicine
- Department of Cell Biology, and
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Lyukmanova EN, Zaigraev MM, Kulbatskii DS, Isaev AB, Kukushkin ID, Bychkov ML, Shulepko MA, Chugunov AO, Kirpichnikov MP. Molecular Basis for Mambalgin-2 Interaction with Heterotrimeric α-ENaC/ASIC1a/γ-ENaC Channels in Cancer Cells. Toxins (Basel) 2023; 15:612. [PMID: 37888643 PMCID: PMC10610865 DOI: 10.3390/toxins15100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/30/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Cancer progression is characterized by microenvironmental acidification. Tumor cells adapt to low environmental pH by activating acid-sensing trimeric ion channels of the DEG/ENaC family. The α-ENaC/ASIC1a/γ-ENaC heterotrimeric channel is a tumor-specific acid-sensing channel, and its targeting can be considered a new strategy for cancer therapy. Mambalgin-2 from the Dendroaspis polylepis venom inhibits the α-ENaC/ASIC1a/γ-ENaC heterotrimer more effectively than the homotrimeric ASIC1a channel, initially proposed as the target of mambalgin-2. Although the molecular basis of such mambalgin selectivity remained unclear. Here, we built the models of the complexes of mambalgin-2 with the α-ENaC/ASIC1a/γ-ENaC and ASIC1a channels, performed MD and predicted the difference in the binding modes. The importance of the 'head' loop region of mambalgin-2 for the interaction with the hetero-, but not with the homotrimeric channel was confirmed by site-directed mutagenesis and electrophysiology. A new mode of allosteric regulation of the ENaC channels by linking the thumb domain of the ASIC1a subunit with the palm domain of the γ-ENaC subunit was proposed. The data obtained provide new insights into the regulation of various types of acid-sensing ion channels and the development of new strategies for cancer treatment.
Collapse
Affiliation(s)
- Ekaterina N. Lyukmanova
- Faculty of Biology, MSU-BIT Shenzhen University, Shenzhen 518172, China;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow 141701, Russia
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119234, Russia
| | - Maxim M. Zaigraev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow 141701, Russia
| | - Dmitrii S. Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
| | - Aizek B. Isaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow 141701, Russia
| | - Ilya D. Kukushkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow 141701, Russia
| | - Maxim L. Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
| | | | - Anton O. Chugunov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane 9, Dolgoprudny, Moscow 141701, Russia
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (M.M.Z.); (D.S.K.); (A.B.I.); (I.D.K.); (M.L.B.); (A.O.C.); (M.P.K.)
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119234, Russia
| |
Collapse
|
8
|
Yan Y, Zhang Y, Zhang J, Ying L. SCNN1B regulates the proliferation, migration, and collagen deposition of human lung fibroblasts. In Vitro Cell Dev Biol Anim 2023; 59:479-485. [PMID: 37477776 DOI: 10.1007/s11626-023-00787-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023]
Abstract
The aim of this study was to investigate the role of amiloride-sensitive sodium channel protein 1B (SCNN1B) on the proliferation and migration of human lung fibroblasts and the possible mechanism that promote the development of acute respiratory distress syndrome (ARDS). Cultivate human embryonic lung fibroblasts (MRC-5) in vitro and screen out the most effective small interfering RNA to silence the expression of SCNN1B. Then, quantitative real-time PCR (qRT-PCR), CCK-8, Transwell, and Western blot detections were performed separately. The results of qRT-PCR showed that all three SCNN1B siRNAs were able to significantly decrease the mRNA expression level of SCNN1B compared with the si-NC group (P < 0.01), with the most significant decrease in the SCNN1B siRNA-83 group. Additionally, compared with the si-NC group, the proliferation ability of MRC-5 cells in the si-SCNN1B group was significantly enhanced, and the migration rate was significantly decreased (P < 0.01). Western blot results showed that low expression of SCNN1B significantly inhibited the protein expression levels of collagen deposition related proteins Collagen I and Heat shock proteins 47 (P < 0.01). In summary, SCNN1B can inhibit cell proliferation and promote cell migration and extracellular matrix deposition of human lung fibroblasts, and may be involved in the occurrence and development of ARDS.
Collapse
Affiliation(s)
- Yihe Yan
- Department of Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Yiting Zhang
- Department of Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Juanqi Zhang
- Department of Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Lijun Ying
- Department of Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China.
| |
Collapse
|
9
|
Loffing J, Pech V, Loffing-Cueni D, Abood DC, Kim YH, Chen C, Pham TD, Verlander JW, Wall SM. Pendrin abundance, subcellular distribution, and function are unaffected by either αENaC gene ablation or by increasing ENaC channel activity. Pflugers Arch 2023; 475:607-620. [PMID: 36977894 PMCID: PMC10105674 DOI: 10.1007/s00424-023-02797-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 03/30/2023]
Abstract
The intercalated cell Cl-/HCO3- exchanger, pendrin, modulates ENaC subunit abundance and function. Whether ENaC modulates pendrin abundance and function is however unknown. Because αENaC mRNA has been detected in pendrin-positive intercalated cells, we hypothesized that ENaC, or more specifically the αENaC subunit, modulates intercalated cell function. The purpose of this study was therefore to determine if αENaC is expressed at the protein level in pendrin-positive intercalated cells and to determine if αENaC gene ablation or constitutively upregulating ENaC activity changes pendrin abundance, subcellular distribution, and/or function. We observed diffuse, cytoplasmic αENaC label in pendrin-positive intercalated cells from both mice and rats, with much lower label intensity in pendrin-negative, type A intercalated cells. However, while αENaC gene ablation within principal and intercalated cells of the CCD reduced Cl- absorption, it did not change pendrin abundance or subcellular distribution in aldosterone-treated mice. Further experiments used a mouse model of Liddle's syndrome to explore the effect of increasing ENaC channel activity on pendrin abundance and function. The Liddle's variant did not increase either total or apical plasma membrane pendrin abundance in aldosterone-treated or in NaCl-restricted mice. Similarly, while the Liddle's mutation increased total Cl- absorption in CCDs from aldosterone-treated mice, it did not significantly affect the change in Cl- absorption seen with pendrin gene ablation. We conclude that in rats and mice, αENaC localizes to pendrin-positive ICs where its physiological role remains to be determined. While pendrin modulates ENaC abundance, subcellular distribution, and function, ENaC does not have a similar effect on pendrin.
Collapse
Affiliation(s)
- Johannes Loffing
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.
| | - Vladimir Pech
- Division of Renal Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | | | - Delaney C Abood
- Division of Renal Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Young Hee Kim
- Division of Renal Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Chao Chen
- The Division of Nephrology, Hypertension and Renal Transplantation, The University of Florida College of Medicine, Gainesville, FL, USA
| | - Truyen D Pham
- Division of Renal Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jill W Verlander
- The Division of Nephrology, Hypertension and Renal Transplantation, The University of Florida College of Medicine, Gainesville, FL, USA
| | - Susan M Wall
- Division of Renal Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
10
|
Lemmens-Gruber R, Tzotzos S. The Epithelial Sodium Channel-An Underestimated Drug Target. Int J Mol Sci 2023; 24:ijms24097775. [PMID: 37175488 PMCID: PMC10178586 DOI: 10.3390/ijms24097775] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023] Open
Abstract
Epithelial sodium channels (ENaC) are part of a complex network of interacting biochemical pathways and as such are involved in several disease states. Dependent on site and type of mutation, gain- or loss-of-function generated symptoms occur which span from asymptomatic to life-threatening disorders such as Liddle syndrome, cystic fibrosis or generalized pseudohypoaldosteronism type 1. Variants of ENaC which are implicated in disease assist further understanding of their molecular mechanisms in order to create models for specific pharmacological targeting. Identification and characterization of ENaC modifiers not only furthers our basic understanding of how these regulatory processes interact, but also enables discovery of new therapeutic targets for the disease conditions caused by ENaC dysfunction. Numerous test compounds have revealed encouraging results in vitro and in animal models but less in clinical settings. The EMA- and FDA-designated orphan drug solnatide is currently being tested in phase 2 clinical trials in the setting of acute respiratory distress syndrome, and the NOX1/ NOX4 inhibitor setanaxib is undergoing clinical phase 2 and 3 trials for therapy of primary biliary cholangitis, liver stiffness, and carcinoma. The established ENaC blocker amiloride is mainly used as an add-on drug in the therapy of resistant hypertension and is being studied in ongoing clinical phase 3 and 4 trials for special applications. This review focuses on discussing some recent developments in the search for novel therapeutic agents.
Collapse
Affiliation(s)
- Rosa Lemmens-Gruber
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, A-1090 Vienna, Austria
| | | |
Collapse
|
11
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
12
|
Liu J, Dean DA. Gene Therapy for Acute Respiratory Distress Syndrome. Front Physiol 2022; 12:786255. [PMID: 35111077 PMCID: PMC8801611 DOI: 10.3389/fphys.2021.786255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating clinical syndrome that leads to acute respiratory failure and accounts for over 70,000 deaths per year in the United States alone, even prior to the COVID-19 pandemic. While its molecular details have been teased apart and its pathophysiology largely established over the past 30 years, relatively few pharmacological advances in treatment have been made based on this knowledge. Indeed, mortality remains very close to what it was 30 years ago. As an alternative to traditional pharmacological approaches, gene therapy offers a highly controlled and targeted strategy to treat the disease at the molecular level. Although there is no single gene or combination of genes responsible for ARDS, there are a number of genes that can be targeted for upregulation or downregulation that could alleviate many of the symptoms and address the underlying mechanisms of this syndrome. This review will focus on the pathophysiology of ARDS and how gene therapy has been used for prevention and treatment. Strategies for gene delivery to the lung, such as barriers encountered during gene transfer, specific classes of genes that have been targeted, and the outcomes of these approaches on ARDS pathogenesis and resolution will be discussed.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| | - David A. Dean
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
13
|
Jia Q, Yang Y, Chen X, Yao S, Hu Z. Emerging roles of mechanosensitive ion channels in acute lung injury/acute respiratory distress syndrome. Respir Res 2022; 23:366. [PMID: 36539808 PMCID: PMC9764320 DOI: 10.1186/s12931-022-02303-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a devastating respiratory disorder with high rates of mortality and morbidity, but the detailed underlying mechanisms of ALI/ARDS remain largely unknown. Mechanosensitive ion channels (MSCs), including epithelial sodium channel (ENaC), Piezo channels, transient receptor potential channels (TRPs), and two-pore domain potassium ion (K2P) channels, are highly expressed in lung tissues, and the activity of these MSCs can be modulated by mechanical forces (e.g., mechanical ventilation) and other stimuli (e.g., LPS, hyperoxia). Dysfunction of MSCs has been found in various types of ALI/ARDS, and MSCs play a key role in regulating alveolar fluid clearance, alveolar epithelial/endothelial barrier function, the inflammatory response and surfactant secretion in ALI/ARDS lungs. Targeting MSCs exerts therapeutic effects in the treatment of ALI/ARDS. In this review, we summarize the structure and functions of several well-recognized MSCs, the role of MSCs in the pathogenesis of ALI/ARDS and recent advances in the pharmacological and molecular modulation of MSCs in the treatment of ALI/ARDS. According to the current literature, targeting MSCs might be a very promising therapeutic approach against ALI/ARDS.
Collapse
Affiliation(s)
- Qi Jia
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiyi Yang
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Chen
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanglong Yao
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Hu
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Mutchler SM, Hasan M, Kohan DE, Kleyman TR, Tan RJ. Deletion of the Gamma Subunit of ENaC in Endothelial Cells Does Not Protect against Renal Ischemia Reperfusion Injury. Int J Mol Sci 2021; 22:ijms222010914. [PMID: 34681576 PMCID: PMC8535410 DOI: 10.3390/ijms222010914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
Acute kidney injury due to renal ischemia-reperfusion injury (IRI) may lead to chronic or end stage kidney disease. A greater understanding of the cellular mechanisms underlying IRI are required to develop therapeutic options aimed at limiting or reversing damage from IRI. Prior work has shown that deletion of the α subunit of the epithelial Na+ channel (ENaC) in endothelial cells protects from IRI by increasing the availability of nitric oxide. While canonical ENaCs consist of an α, β, and γ subunit, there is evidence of non-canonical ENaC expression in endothelial cells involving the α subunit. We therefore tested whether the deletion of the γ subunit of ENaC also protects mice from IRI to differentiate between these channel configurations. Mice with endothelial-specific deletion of the γ subunit and control littermates were subjected to unilateral renal artery occlusion followed by 48 h of reperfusion. No significant difference was noted in injury between the two groups as assessed by serum creatinine and blood urea nitrogen, levels of specific kidney injury markers, and histological examination. While deletion of the γ subunit did not alter infiltration of immune cells or cytokine message, it was associated with an increase in levels of total and phosphorylated endothelial nitric oxide synthase (eNOS) in the injured kidneys. Our studies demonstrate that even though deletion of the γ subunit of ENaC may allow for greater activation of eNOS, this is not sufficient to prevent IRI, suggesting the protective effects of α subunit deletion may be due, in part, to other mechanisms.
Collapse
Affiliation(s)
- Stephanie M. Mutchler
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.M.M.); (R.J.T.)
| | - Mahpara Hasan
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Donald E. Kohan
- Department of Medicine, University of Utah, Salt Lake City, UT 84112, USA;
| | - Thomas R. Kleyman
- Departments of Medicine, Cell Biology, and Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence:
| | - Roderick J. Tan
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.M.M.); (R.J.T.)
| |
Collapse
|
15
|
Brookes O, Boland S, Lai Kuen R, Miremont D, Movassat J, Baeza-Squiban A. Co-culture of type I and type II pneumocytes as a model of alveolar epithelium. PLoS One 2021; 16:e0248798. [PMID: 34570783 PMCID: PMC8475999 DOI: 10.1371/journal.pone.0248798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/13/2021] [Indexed: 11/18/2022] Open
Abstract
The epithelial tissues of the distal lung are continuously exposed to inhaled air, and are of research interest in studying respiratory exposure to both hazardous and therapeutic materials. Pharmaco-toxicological research depends on the development of sophisticated models of the alveolar epithelium, which better represent the different cell types present in the native lung and interactions between them. We developed an air-liquid interface (ALI) model of the alveolar epithelium which incorporates cell lines which bear features of type I (hAELVi) and type II (NCI-H441) epithelial cells. We compared morphology of single cells and the structure of cell layers of the two lines using light and electron microscopy. Working both in monotypic cultures and cocultures, we measured barrier function by trans-epithelial electrical resistance (TEER), and demonstrated that barrier properties can be maintained for 30 days. We created a mathematical model of TEER development over time based on these data in order to make inferences about the interactions occurring in these culture systems. We assessed expression of a panel of relevant genes that play important roles in barrier function and differentiation. The coculture model was observed to form a stable barrier akin to that seen in hAELVi, while expressing surfactant protein C, and having a profile of expression of claudins and aquaporins appropriate for the distal lung. We described cavities which arise within stratified cell layers in NCI-H441 and cocultured cells, and present evidence that these cavities represent an aberrant apical surface. In summary, our results support the coculture of these two cell lines to produce a model which better represents the breadth of functions seen in native alveolar epithelium.
Collapse
Affiliation(s)
- Oliver Brookes
- Unité de Biologie Fonctionnelle et Adaptative UMR 8251, CNRS, Université de Paris, Paris, France
| | - Sonja Boland
- Unité de Biologie Fonctionnelle et Adaptative UMR 8251, CNRS, Université de Paris, Paris, France
| | - René Lai Kuen
- Cellular and Molecular Imaging Facility, US25 Inserm—3612 CNRS, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - Dorian Miremont
- Unité de Biologie Fonctionnelle et Adaptative UMR 8251, CNRS, Université de Paris, Paris, France
| | - Jamileh Movassat
- Unité de Biologie Fonctionnelle et Adaptative UMR 8251, CNRS, Université de Paris, Paris, France
| | - Armelle Baeza-Squiban
- Unité de Biologie Fonctionnelle et Adaptative UMR 8251, CNRS, Université de Paris, Paris, France
- * E-mail:
| |
Collapse
|
16
|
Laube M, Pietsch S, Pannicke T, Thome UH, Fabian C. Development and Functional Characterization of Fetal Lung Organoids. Front Med (Lausanne) 2021; 8:678438. [PMID: 34552939 PMCID: PMC8450364 DOI: 10.3389/fmed.2021.678438] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/16/2021] [Indexed: 11/21/2022] Open
Abstract
Preterm infants frequently suffer from pulmonary complications due to a physiological and structural lung immaturity resulting in significant morbidity and mortality. Novel in vitro and in vivo models are required to study the underlying mechanisms of late lung maturation and to facilitate the development of new therapeutic strategies. Organoids recapitulate essential aspects of structural organization and possibly organ function, and can be used to model developmental and disease processes. We aimed at generating fetal lung organoids (LOs) and to functionally characterize this in vitro model in comparison to primary lung epithelial cells and lung explants ex vivo. LOs were generated with alveolar and endothelial cells from fetal rat lung tissue, using a Matrigel-gradient and air-liquid-interface culture conditions. Immunocytochemical analysis showed that the LOs consisted of polarized epithelial cell adhesion molecule (EpCAM)-positive cells with the apical membrane compartment facing the organoid lumen. Expression of the alveolar type 2 cell marker, RT2-70, and the Club cell marker, CC-10, were observed. Na+ transporter and surfactant protein mRNA expression were detected in the LOs. First time patch clamp analyses demonstrated the presence of several ion channels with specific electrophysiological properties, comparable to vital lung slices. Furthermore, the responsiveness of LOs to glucocorticoids was demonstrated. Finally, maturation of LOs induced by mesenchymal stem cells confirmed the convenience of the model to test and establish novel therapeutic strategies. The results showed that fetal LOs replicate key biological lung functions essential for lung maturation and therefore constitute a suitable in vitro model system to study lung development and related diseases.
Collapse
Affiliation(s)
- Mandy Laube
- Division of Neonatology, Department of Paediatrics, Center for Paediatric Research Leipzig, University of Leipzig, Leipzig, Germany
| | - Soeren Pietsch
- Division of Neonatology, Department of Paediatrics, Center for Paediatric Research Leipzig, University of Leipzig, Leipzig, Germany
| | - Thomas Pannicke
- Division of Neonatology, Department of Paediatrics, Center for Paediatric Research Leipzig, University of Leipzig, Leipzig, Germany
| | - Ulrich H Thome
- Division of Neonatology, Department of Paediatrics, Center for Paediatric Research Leipzig, University of Leipzig, Leipzig, Germany
| | - Claire Fabian
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
17
|
Aubin Vega M, Chupin C, Massé C, Dagenais A, Berthiaume Y, Brochiero E. Impact of ENaC downregulation in transgenic mice on the outcomes of acute lung injury induced by bleomycin. Exp Physiol 2021; 106:1110-1119. [PMID: 33502034 DOI: 10.1113/ep089060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/22/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? How does the downregulation of ENaC, the major driving force for alveolar fluid clearance, impact acute lung injury outcomes induced by bleomycin, featuring alveolar damage, as observed during ARDS exudative phase? What is the main finding and its importance? ENaC downregulation in αENaC(-/-)Tg+ mice did not elicit a substantial worsening impact on the main bleomycin outcomes. In ARDS patients, both ENaC alteration and alveolar damage are observed. Thus, novel therapeutic avenues, favouring alveolar integrity restauration, in addition to lung oedema resolution capacity, mainly driven by ENaC, would be essential. ABSTRACT The exudative phase of acute respiratory distress syndrome (ARDS) is characterized by extended alveolar damage, resulting in accumulation of protein-rich inflammatory oedematous fluid in the alveolar space. Na+ reabsorption through ENaC channels is a major driving force for alveolar fluid clearance (AFC) in physiological and pathological conditions. It has previously been shown that partial αENaC impairment in transgenic (αENaC(-/-)Tg+) mice results in reduced AFC in basal conditions and increased wet/dry ratio after thiourea-induced lung oedema, a model in which the integrity of the alveolar epithelium is preserved. The goal of this study was to further investigate the impact of αENaC downregulation in αENaC(-/-)Tg+ mice using an experimental model of acute lung injury induced by bleomycin. A non-significant trend in enhanced weight loss and mortality rates was observed after the bleomycin challenge in αENaC(-/-)Tg+ compared to wild-type (WT) mice. Bronchoalveolar lavage analyses revealed increased TNFα levels and protein concentrations, as indexes of lung inflammation and alveolar damage, in αENaC(-/-)Tg+ mice, compared to WT, at day 3 post-bleomycin, although a statistical difference was no longer measured at day 7. Differential immune cell counts were similar in WT and αENaC(-/-)Tg+ mice challenged with bleomycin. Moreover, lung weight measurements indicated similar oedema levels in WT mice and in transgenic mice with impaired ENaC channels. Altogether, our data indicated that change in ENaC expression does not elicit a significant impact on lung oedema level/resolution in the bleomycin model, featuring alveolar damage.
Collapse
Affiliation(s)
- Mélissa Aubin Vega
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Cécile Chupin
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Chantal Massé
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - André Dagenais
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Yves Berthiaume
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada.,Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Emmanuelle Brochiero
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
18
|
Weidenfeld S, Chupin C, Langner DI, Zetoun T, Rozowsky S, Kuebler WM. Sodium-coupled neutral amino acid transporter SNAT2 counteracts cardiogenic pulmonary edema by driving alveolar fluid clearance. Am J Physiol Lung Cell Mol Physiol 2021; 320:L486-L497. [PMID: 33439101 DOI: 10.1152/ajplung.00461.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The constant transport of ions across the alveolar epithelial barrier regulates alveolar fluid homeostasis. Dysregulation or inhibition of Na+ transport causes fluid accumulation in the distal airspaces resulting in impaired gas exchange and respiratory failure. Previous studies have primarily focused on the critical role of amiloride-sensitive epithelial sodium channel (ENaC) in alveolar fluid clearance (AFC), yet activation of ENaC failed to attenuate pulmonary edema in clinical trials. Since 40% of AFC is amiloride-insensitive, Na+ channels/transporters other than ENaC such as Na+-coupled neutral amino acid transporters (SNATs) may provide novel therapeutic targets. Here, we identified a key role for SNAT2 (SLC38A2) in AFC and pulmonary edema resolution. In isolated perfused mouse and rat lungs, pharmacological inhibition of SNATs by HgCl2 and α-methylaminoisobutyric acid (MeAIB) impaired AFC. Quantitative RT-PCR identified SNAT2 as the highest expressed System A transporter in pulmonary epithelial cells. Pharmacological inhibition or siRNA-mediated knockdown of SNAT2 reduced transport of l-alanine across pulmonary epithelial cells. Homozygous Slc38a2-/- mice were subviable and died shortly after birth with severe cyanosis. Isolated lungs of Slc38a2+/- mice developed higher wet-to-dry weight ratios (W/D) as compared to wild type (WT) in response to hydrostatic stress. Similarly, W/D ratios were increased in Slc38a2+/- mice as compared to controls in an acid-induced lung injury model. Our results identify SNAT2 as a functional transporter for Na+ and neutral amino acids in pulmonary epithelial cells with a relevant role in AFC and the resolution of lung edema. Activation of SNAT2 may provide a new therapeutic strategy to counteract and/or reverse pulmonary edema.
Collapse
Affiliation(s)
- Sarah Weidenfeld
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cécile Chupin
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | | | - Tamador Zetoun
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simon Rozowsky
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Wolfgang M Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
19
|
Mukherjee A, MacDonald KD, Kim J, Henderson MI, Eygeris Y, Sahay G. Engineered mutant α-ENaC subunit mRNA delivered by lipid nanoparticles reduces amiloride currents in cystic fibrosis-based cell and mice models. SCIENCE ADVANCES 2020; 6:6/47/eabc5911. [PMID: 33208364 PMCID: PMC7673816 DOI: 10.1126/sciadv.abc5911] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/05/2020] [Indexed: 05/02/2023]
Abstract
Cystic fibrosis (CF) results from mutations in the chloride-conducting CF transmembrane conductance regulator (CFTR) gene. Airway dehydration and impaired mucociliary clearance in CF is proposed to result in tonic epithelial sodium channel (ENaC) activity, which drives amiloride-sensitive electrogenic sodium absorption. Decreasing sodium absorption by inhibiting ENaC can reverse airway surface liquid dehydration. Here, we inhibit endogenous heterotrimeric ENaC channels by introducing inactivating mutant ENaC α mRNA (αmutENaC). Lipid nanoparticles carrying αmutENaC were transfected in CF-based airway cells in vitro and in vivo. We observed a significant decrease in macroscopic as well as amiloride-sensitive ENaC currents and an increase in airway surface liquid height in CF airway cells. Similarly, intranasal transfection of αmutENaC mRNA decreased amiloride-sensitive nasal potential difference in CFTRKO mice. These data suggest that mRNA-based ENaC inhibition is a powerful strategy for reducing mucus dehydration and has therapeutic potential for treating CF in all patients, independent of genotype.
Collapse
Affiliation(s)
- Anindit Mukherjee
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
| | - Kelvin D MacDonald
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
- Department of Pediatrics, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jeonghwan Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
| | - Michael I Henderson
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Yulia Eygeris
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA.
- Department of Biomedical Engineering, Robertson Life Sciences Building, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
20
|
Hoevenaar M, Goossens D, Roorda J. Angiotensin-converting enzyme 2, the complement system, the kallikrein-kinin system, type-2 diabetes, interleukin-6, and their interactions regarding the complex COVID-19 pathophysiological crossroads. J Renin Angiotensin Aldosterone Syst 2020; 21:1470320320979097. [PMID: 33283602 PMCID: PMC7724427 DOI: 10.1177/1470320320979097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Because of the current COVID-19-pandemic, the world is currently being held hostage in various lockdowns. ACE2 facilitates SARS-CoV-2 cell-entry, and is at the very center of several pathophysiological pathways regarding the RAAS, CS, KKS, T2DM, and IL-6. Their interactions with severe COVID-19 complications (e.g. ARDS and thrombosis), and potential therapeutic targets for pharmacological intervention, will be reviewed.
Collapse
Affiliation(s)
| | | | - Janne Roorda
- Medical Doctor, General Practice
van Dijk, Oisterwijk, The Netherlands
| |
Collapse
|
21
|
Baldin JP, Barth D, Fronius M. Epithelial Na + Channel (ENaC) Formed by One or Two Subunits Forms Functional Channels That Respond to Shear Force. Front Physiol 2020; 11:141. [PMID: 32256376 PMCID: PMC7090232 DOI: 10.3389/fphys.2020.00141] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/11/2020] [Indexed: 12/19/2022] Open
Abstract
Canonical epithelial sodium channels (ENaCs) are heterotrimers formed by α, β, and γ ENaC subunits in vertebrates and belong to the Degenerin/ENaC family of proteins. Proteins from this family form mechanosensitive channels throughout the animal kingdom. Activity of canonical ENaC is regulated by shear force (SF) mediating Na+ absorption in the kidney and vascular tone of arteries. Expression analysis suggests that non-canonical ENaC, formed by single or only two subunits, exist in certain tissues, but it is unknown if these channels respond to SF. α, β, γ, and δ ENaC subunits were expressed either alone or in combinations of two subunits in Xenopus oocytes. Amiloride-sensitive currents and the responses to SF were assessed using two-electrode voltage clamp recordings. With the exception of γ ENaC, all homomeric channels provided amiloride-sensitive currents and responded to SF applied via a fluid stream directed onto the oocytes. Channels containing two subunits were also activated by SF. Here, the presence of the γ ENaC subunit when co-expressed with α or δ augmented the SF response in comparison to the αβγ/δβγ ENaC. Overall, we provide evidence that non-canonical ENaC can form channels that respond to SF. This supports a potential function of non-canonical ENaC as mechanosensors in epithelial, vascular, and sensory cells.
Collapse
Affiliation(s)
- Jan-Peter Baldin
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Daniel Barth
- Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Martin Fronius
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
22
|
Zhang X, Chen J, Xue M, Tang Y, Xu J, Liu L, Huang Y, Yang Y, Qiu H, Guo F. Overexpressing p130/E2F4 in mesenchymal stem cells facilitates the repair of injured alveolar epithelial cells in LPS-induced ARDS mice. Stem Cell Res Ther 2019; 10:74. [PMID: 30841904 PMCID: PMC6404316 DOI: 10.1186/s13287-019-1169-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/30/2019] [Accepted: 02/08/2019] [Indexed: 01/18/2023] Open
Abstract
Background Low differentiation rates of mesenchymal stem cells (MSCs) limit their therapeutic effects on patients in clinical studies. Our previous study demonstrated that overexpressing p130 or E2F4 affected the multipotential differentiation of MSCs, and the underlying mechanism was attributed to the regulation of the G1 phase. Improving the efficiency of MSC differentiation into epithelial cells is considered to be a new method. Therefore, this study was conducted to evaluate the effects of overexpressing p130 or E2F4 in MSCs on improving re-epithelization in lipopolysaccharide (LPS)-induced ARDS animals. Methods Mouse MSCs (mMSCs) stably transfected with p130 and E2F4 were transplanted intratracheally into LPS-induced ARDS mice. After 7 and 14 days, the mice were sacrificed, and the histopathology of the lungs was assessed by haematoxylin-eosin staining and lung injury scoring. Homing and differentiation of mMSCs were analysed by labelling and tracking mMSCs with NIR815 dye and immunofluorescent staining. Surfactant proteins A and C and occludin in the lungs were assessed by western blot. Permeability was evaluated by analysing the protein concentration of BALF using ELISA. Alveolar fluid clearance was assessed by absorbance measurements of BALF. Lung fibrosis was assessed by Masson’s trichrome staining and Ashcroft scoring. Results The engraftment of mMSCs overexpressing p130 or E2F4 led to attenuated histopathological impairment of the lung tissue, and the lung injury scores of the LPS+mBM-MSC-p130 and LPS+mBM-MSC-E2F4 groups were also decreased (p < 0.05). Overexpression of p130 or E2F4 also increased the retention of mMSCs in the lung (p < 0.05), increased differentiation into type II alveolar epithelial cells (p < 0.05), and improved alveolar epithelial permeability (p < 0.05). Additionally, mMSCs overexpressing p130 or E2F4 inhibited lung fibrosis according to the deposition of collagen and the fibrosis score in the lungs (p < 0.05). Conclusion Overexpressing p130 or E2F4 in mMSCs could further improve the injured structure and function of epithelial cells in the lungs of ARDS mice as a result of improved differentiation of mMSCs into epithelial cells. Electronic supplementary material The online version of this article (10.1186/s13287-019-1169-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiwen Zhang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87 Dingjiaqiao Road, Gulou District, Nanjing, 210009, People's Republic of China
| | - Jianxiao Chen
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87 Dingjiaqiao Road, Gulou District, Nanjing, 210009, People's Republic of China
| | - Ming Xue
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87 Dingjiaqiao Road, Gulou District, Nanjing, 210009, People's Republic of China
| | - Yuying Tang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87 Dingjiaqiao Road, Gulou District, Nanjing, 210009, People's Republic of China
| | - Jingyuan Xu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87 Dingjiaqiao Road, Gulou District, Nanjing, 210009, People's Republic of China
| | - Ling Liu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87 Dingjiaqiao Road, Gulou District, Nanjing, 210009, People's Republic of China
| | - Yingzi Huang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87 Dingjiaqiao Road, Gulou District, Nanjing, 210009, People's Republic of China
| | - Yi Yang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87 Dingjiaqiao Road, Gulou District, Nanjing, 210009, People's Republic of China
| | - Haibo Qiu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87 Dingjiaqiao Road, Gulou District, Nanjing, 210009, People's Republic of China
| | - Fengmei Guo
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87 Dingjiaqiao Road, Gulou District, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
23
|
Kandel C, Schmidt P, Perniss A, Keshavarz M, Scholz P, Osterloh S, Althaus M, Kummer W, Deckmann K. ENaC in Cholinergic Brush Cells. Front Cell Dev Biol 2018; 6:89. [PMID: 30159312 PMCID: PMC6103785 DOI: 10.3389/fcell.2018.00089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/25/2018] [Indexed: 12/17/2022] Open
Abstract
Cholinergic polymodal chemosensory cells in the mammalian urethra (urethral brush cells = UBC) functionally express the canonical bitter and umami taste transduction signaling cascade. Here, we aimed to determine whether UBC are functionally equipped for the perception of salt through ENaC (epithelial sodium channel). Cholinergic UBC were isolated from ChAT-eGFP reporter mice (ChAT = choline acetyltransferase). RT-PCR showed mRNA expression of ENaC subunits Scnn1a, Scnn1b, and Scnn1g in urethral epithelium and isolated UBC. Scnn1a could also be detected by next generation sequencing in 4/6 (66%) single UBC, two of them also expressed the bitter receptor Tas2R108. Strong expression of Scnn1a was seen in some urothelial umbrella cells and in 65% of UBC (30/46 cells) in a Scnn1a reporter mouse strain. Intracellular [Ca2+] was recorded in isolated UBC stimulated with the bitter substance denatonium benzoate (25 mM), ATP (0.5 mM) and NaCl (50 mM, on top of 145 mM Na+ and 153 mM Cl− baseline in buffer); mannitol (150 mM) served as osmolarity control. NaCl, but not mannitol, evoked an increase in intracellular [Ca2+] in 70% of the tested UBC. The NaCl-induced effect was blocked by the ENaC inhibitor amiloride (IC50 = 0.47 μM). When responses to both NaCl and denatonium were tested, all three possible positive response patterns occurred in a balanced distribution: 42% NaCl only, 33% denatonium only, 25% to both stimuli. A similar reaction pattern was observed with ATP and NaCl as test stimuli. About 22% of the UBC reacted to all three stimuli. Thus, NaCl evokes calcium responses in several UBC, likely involving an amiloride-sensitive channel containing α-ENaC. This feature does not define a new subpopulation of UBC, but rather emphasizes their polymodal character. The actual function of α-ENaC in cholinergic UBC—salt perception, homeostatic ion transport, mechanoreception—remains to be determined.
Collapse
Affiliation(s)
- Chrissy Kandel
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Patricia Schmidt
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Alexander Perniss
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Maryam Keshavarz
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Paul Scholz
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Sabrina Osterloh
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Mike Althaus
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Wolfgang Kummer
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Klaus Deckmann
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
24
|
Flores‐Delgado G, Quinton PM. ACID SENSING ION CHANNEL‐2 LOCALIZES WITH α‐ AND γ‐, BUT NOT β‐ENAC SUBUNITS IN CILIATED AIRWAYS. FASEB J 2018. [DOI: 10.1096/fasebj.2018.32.1_supplement.747.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Yang G, Pillich H, White R, Czikora I, Pochic I, Yue Q, Hudel M, Gorshkov B, Verin A, Sridhar S, Isales CM, Eaton DC, Hamacher J, Chakraborty T, Lucas R. Listeriolysin O Causes ENaC Dysfunction in Human Airway Epithelial Cells. Toxins (Basel) 2018; 10:toxins10020079. [PMID: 29439494 PMCID: PMC5848180 DOI: 10.3390/toxins10020079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/01/2018] [Accepted: 02/07/2018] [Indexed: 01/22/2023] Open
Abstract
Pulmonary permeability edema is characterized by reduced alveolar Na⁺ uptake capacity and capillary barrier dysfunction and is a potentially lethal complication of listeriosis. Apical Na⁺ uptake is mainly mediated by the epithelial sodium channel (ENaC) and initiates alveolar liquid clearance. Here we examine how listeriolysin O (LLO), the pore-forming toxin of Listeria monocytogenes, impairs the expression and activity of ENaC. To that purpose, we studied how sub-lytic concentrations of LLO affect negative and positive regulators of ENaC expression in the H441 airway epithelial cell line. LLO reduced expression of the crucial ENaC-α subunit in H441 cells within 2 h and this was preceded by activation of PKC-α, a negative regulator of the channel's expression. At later time points, LLO caused a significant reduction in the phosphorylation of Sgk-1 at residue T256 and of Akt-1 at residue S473, both of which are required for full activation of ENaC. The TNF-derived TIP peptide prevented LLO-mediated PKC-α activation and restored phospho-Sgk-1-T256. The TIP peptide also counteracted the observed LLO-induced decrease in amiloride-sensitive Na⁺ current and ENaC-α expression in H441 cells. Intratracheally instilled LLO caused profound pulmonary edema formation in mice, an effect that was prevented by the TIP peptide; thus indicating the therapeutic potential of the peptide for the treatment of pore-forming toxin-associated permeability edema.
Collapse
Affiliation(s)
- Guang Yang
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
| | - Helena Pillich
- Institute of Medical Microbiology, Justus-Liebig University Giessen, 35392 Gießen, Germany.
| | - Richard White
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
- Department of Biomedical Sciences, Georgia Campus-Philadelphia College of Osteopathic Medicine, Atlanta, GA 30224, USA.
| | - Istvan Czikora
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
| | - Isabelle Pochic
- Biochemical Pharmacology, University of Konstanz, 78464 Konstanz, Germany.
- Sandoz Inc., 83607 Holzkirchen, Germany.
| | - Qiang Yue
- Department of Physiology, Emory School of Medicine, Atlanta, GA 30307, USA.
| | - Martina Hudel
- Institute of Medical Microbiology, Justus-Liebig University Giessen, 35392 Gießen, Germany.
| | - Boris Gorshkov
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
| | - Alexander Verin
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
| | - Supriya Sridhar
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
| | - Carlos M Isales
- Department of Medicine, Medical College of Georgia, Augusta, GA 30901, USA.
| | - Douglas C Eaton
- Department of Physiology, Emory School of Medicine, Atlanta, GA 30307, USA.
| | - Jürg Hamacher
- Biochemical Pharmacology, University of Konstanz, 78464 Konstanz, Germany.
- Department of Pneumology, Lindenhofspital, 3001 Bern, Switzerland.
- Internal, Pulmonary and Critical Care Medicine, Saarland University, 66424 Homburg/Saar, Germany.
- Lungen-und Atmungsstifung, 3001 Bern, Switzerland.
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig University Giessen, 35392 Gießen, Germany.
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Room CB-3213B, Augusta, GA 30912-2500, USA.
- Department of Medicine, Medical College of Georgia, Augusta, GA 30901, USA.
| |
Collapse
|
26
|
Blobner BM, Wang XP, Kashlan OB. Conserved cysteines in the finger domain of the epithelial Na + channel α and γ subunits are proximal to the dynamic finger-thumb domain interface. J Biol Chem 2018; 293:4928-4939. [PMID: 29425099 DOI: 10.1074/jbc.m117.819367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/26/2018] [Indexed: 11/06/2022] Open
Abstract
The epithelial Na+ channel (ENaC) is a member of the ENaC/degenerin family of ion channels. In the structure of a related family member, the "thumb" domain's base interacts with the pore, and its tip interacts with the divergent "finger" domain. Between the base and tip, the thumb domain is characterized by a conserved five-rung disulfide ladder holding together two anti-parallel α helices. The ENaC α and γ subunits' finger domains harbor autoinhibitory tracts that can be proteolytically liberated to activate the channel and also host an ENaC-specific pair of cysteines. Using a crosslinking approach, we show that one of the finger domain cysteines in the α subunit (αCys-263) and both of the finger domain cysteines in the γ subunit (γCys-213 and γCys-220) lie near the dynamic finger-thumb domain interface. Our data suggest that the αCys-256/αCys-263 pair is not disulfide-bonded. In contrast, we found that the γCys-213/γCys-220 pair is disulfide-bonded. Our data also suggest that the γ subunit lacks the terminal rung in the thumb domain disulfide ladder, suggesting asymmetry between the subunits. We also observed functional asymmetry between the α and γ subunit finger-thumb domain interfaces; crosslinks bridging the α subunit finger-thumb interface only inhibited ENaC currents, whereas crosslinks bridging the γ subunit finger-thumb interface activated or inhibited currents dependent on the length of the crosslinker. Our data suggest that reactive cysteines lie at the dynamic finger-thumb interfaces of the α and γ subunits and may play a yet undefined role in channel regulation.
Collapse
Affiliation(s)
- Brandon M Blobner
- Departments of Medicine, Renal-Electrolyte Division, Pittsburgh, Pennsylvania 15261
| | - Xue-Ping Wang
- Departments of Medicine, Renal-Electrolyte Division, Pittsburgh, Pennsylvania 15261
| | - Ossama B Kashlan
- Departments of Medicine, Renal-Electrolyte Division, Pittsburgh, Pennsylvania 15261; Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.
| |
Collapse
|
27
|
He M, Liu S, Gallolu Kankanamalage S, Borromeo MD, Girard L, Gazdar AF, Minna JD, Johnson JE, Cobb MH. The Epithelial Sodium Channel (αENaC) Is a Downstream Therapeutic Target of ASCL1 in Pulmonary Neuroendocrine Tumors. Transl Oncol 2018; 11:292-299. [PMID: 29413762 PMCID: PMC5884185 DOI: 10.1016/j.tranon.2018.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 12/16/2022] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine carcinoma, designated as a recalcitrant cancer by the National Cancer Institute, in urgent need of new rational therapeutic targets. Previous studies have determined that the basic helix-loop-helix transcription factor achaete-scute homolog 1 (ASCL1) is essential for the survival and progression of a fraction of pulmonary neuroendocrine cancer cells, which include both SCLC and a subset of non-SCLC. Previously, to understand how ASCL1 initiates tumorigenesis in pulmonary neuroendocrine cancer and identify the transcriptional targets of ASCL1, whole-genome RNA-sequencing analysis combined with chromatin immunoprecipitation-sequencing was performed with a series of lung cancer cell lines. From this analysis, we discovered that the gene SCNN1A, which encodes the alpha subunit of the epithelial sodium channel (αENaC), is highly correlated with ASCL1 expression in SCLC. The product of the SCNN1A gene ENaC can be pharmacologically inhibited with amiloride, a drug that has been used clinically for close to 50 years. Amiloride inhibited growth of ASCL1-dependent SCLC more strongly than ASCL1-independent SCLC in vitro and slowed growth of ASCL1-driven SCLC in xenografts. We conclude that SCNN1A/αENaC is a direct transcriptional target of the neuroendocrine lung cancer lineage oncogene ASCL1 that can be pharmacologically targeted with antitumor effects.
Collapse
Affiliation(s)
- Min He
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Shanshan Liu
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Mark D Borromeo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Luc Girard
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas; Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Adi F Gazdar
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John D Minna
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas; Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jane E Johnson
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
28
|
Hamacher J, Hadizamani Y, Borgmann M, Mohaupt M, Männel DN, Moehrlen U, Lucas R, Stammberger U. Cytokine-Ion Channel Interactions in Pulmonary Inflammation. Front Immunol 2018; 8:1644. [PMID: 29354115 PMCID: PMC5758508 DOI: 10.3389/fimmu.2017.01644] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
The lungs conceptually represent a sponge that is interposed in series in the bodies’ systemic circulation to take up oxygen and eliminate carbon dioxide. As such, it matches the huge surface areas of the alveolar epithelium to the pulmonary blood capillaries. The lung’s constant exposure to the exterior necessitates a competent immune system, as evidenced by the association of clinical immunodeficiencies with pulmonary infections. From the in utero to the postnatal and adult situation, there is an inherent vital need to manage alveolar fluid reabsorption, be it postnatally, or in case of hydrostatic or permeability edema. Whereas a wealth of literature exists on the physiological basis of fluid and solute reabsorption by ion channels and water pores, only sparse knowledge is available so far on pathological situations, such as in microbial infection, acute lung injury or acute respiratory distress syndrome, and in the pulmonary reimplantation response in transplanted lungs. The aim of this review is to discuss alveolar liquid clearance in a selection of lung injury models, thereby especially focusing on cytokines and mediators that modulate ion channels. Inflammation is characterized by complex and probably time-dependent co-signaling, interactions between the involved cell types, as well as by cell demise and barrier dysfunction, which may not uniquely determine a clinical picture. This review, therefore, aims to give integrative thoughts and wants to foster the unraveling of unmet needs in future research.
Collapse
Affiliation(s)
- Jürg Hamacher
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Internal Medicine V - Pneumology, Allergology, Respiratory and Environmental Medicine, Faculty of Medicine, Saarland University, Saarbrücken, Germany.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Yalda Hadizamani
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Michèle Borgmann
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Markus Mohaupt
- Internal Medicine, Sonnenhofspital Bern, Bern, Switzerland
| | | | - Ueli Moehrlen
- Paediatric Visceral Surgery, Universitäts-Kinderspital Zürich, Zürich, Switzerland
| | - Rudolf Lucas
- Department of Pharmacology and Toxicology, Vascular Biology Center, Medical College of Georgia, Augusta, GA, United States
| | - Uz Stammberger
- Lungen- und Atmungsstiftung Bern, Bern, Switzerland.,Novartis Institutes for Biomedical Research, Translational Clinical Oncology, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
29
|
Wheatley CM, Baker SE, Taylor BJ, Keller-Ross ML, Chase SC, Carlson AR, Wentz RJ, Snyder EM, Johnson BD. Influence of Inhaled Amiloride on Lung Fluid Clearance in Response to Normobaric Hypoxia in Healthy Individuals. High Alt Med Biol 2017; 18:343-354. [PMID: 28876128 DOI: 10.1089/ham.2017.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Wheatley, Courtney M., Sarah E. Baker, Bryan J. Taylor, Manda L. Keller-Ross, Steven C. Chase, Alex R. Carlson, Robert J. Wentz, Eric M. Snyder, and Bruce D. Johnson. Influence of inhaled amiloride on lung fluid clearance in response to normobaric hypoxia in healthy individuals. High Alt Med Biol 18:343-354, 2017. AIM To investigate the role of epithelial sodium channels (ENaC) on lung fluid clearance in response to normobaric hypoxia, 20 healthy subjects were exposed to 15 hours of hypoxia (fraction of inspired oxygen [FiO2] = 12.5%) on two randomized occasions: (1) inhaled amiloride (A) (1.5 mg/5 mL saline); and (2) inhaled saline placebo (P). Changes in lung fluid were assessed through chest computed tomography (CT) for lung tissue volume (TV), and the diffusion capacity of the lungs for carbon monoxide (DLCO) and nitric oxide (DLNO) for pulmonary capillary blood volume (VC). Extravascular lung water (EVLW) was derived as TV-VC and changes in the CT attenuation distribution histograms were reviewed. RESULTS Normobaric hypoxia caused (1) a reduction in EVLW (change from baseline for A vs. P, -8.5% ± 3.8% vs. -7.9% ± 5.2%, p < 0.05), (2) an increase in VC (53.6% ± 28.9% vs. 53.9% ± 52.3%, p < 0.05), (3) a small increase in DLCO (9.6% ± 29.3% vs. 9.9% ± 23.9%, p > 0.05), and (4) CT attenuation distribution became more negative, leftward skewed, and kurtotic (p < 0.05). CONCLUSION Acute normobaric hypoxia caused a reduction in lung fluid that was unaffected by ENaC inhibition through inhaled amiloride. Although possible amiloride-sensitive ENaC may not be necessary to maintain lung fluid balance in response to hypoxia, it is more probable that normobaric hypoxia promotes lung fluid clearance rather than accumulation for the majority of healthy individuals. The observed reduction in interstitial lung fluid means alveolar fluid clearance may not have been challenged.
Collapse
Affiliation(s)
- Courtney M Wheatley
- 1 Department of Pharmaceutical Science, University of Arizona , Tucson, Arizona
| | - Sarah E Baker
- 1 Department of Pharmaceutical Science, University of Arizona , Tucson, Arizona
| | - Bryan J Taylor
- 2 Division of Cardiovascular Diseases, Mayo Clinic , Rochester, Minnesota
| | | | - Steven C Chase
- 2 Division of Cardiovascular Diseases, Mayo Clinic , Rochester, Minnesota
| | - Alex R Carlson
- 2 Division of Cardiovascular Diseases, Mayo Clinic , Rochester, Minnesota
| | - Robert J Wentz
- 2 Division of Cardiovascular Diseases, Mayo Clinic , Rochester, Minnesota
| | - Eric M Snyder
- 1 Department of Pharmaceutical Science, University of Arizona , Tucson, Arizona
| | - Bruce D Johnson
- 2 Division of Cardiovascular Diseases, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
30
|
Londino JD, Lazrak A, Collawn JF, Bebok Z, Harrod KS, Matalon S. Influenza virus infection alters ion channel function of airway and alveolar cells: mechanisms and physiological sequelae. Am J Physiol Lung Cell Mol Physiol 2017; 313:L845-L858. [PMID: 28775098 DOI: 10.1152/ajplung.00244.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) and the amiloride-sensitive epithelial sodium channels (ENaC) are located in the apical membranes of airway and alveolar epithelial cells. These transporters play an important role in the regulation of lung fluid balance across airway and alveolar epithelia by being the conduits for chloride (Cl-) and bicarbonate ([Formula: see text]) secretion and sodium (Na+) ion absorption, respectively. The functional role of these channels in the respiratory tract is to maintain the optimum volume and ionic composition of the bronchial periciliary fluid (PCL) and alveolar lining fluid (ALF) layers. The PCL is required for proper mucociliary clearance of pathogens and debris, and the ALF is necessary for surfactant homeostasis and optimum gas exchange. Dysregulation of ion transport may lead to mucus accumulation, bacterial infections, inflammation, pulmonary edema, and compromised respiratory function. Influenza (or flu) in mammals is caused by influenza A and B viruses. Symptoms include dry cough, sore throat, and is often followed by secondary bacterial infections, accumulation of fluid in the alveolar spaces and acute lung injury. The underlying mechanisms of flu symptoms are not fully understood. This review summarizes our present knowledge of how influenza virus infections alter airway and alveolar epithelial cell CFTR and ENaC function in vivo and in vitro and the role of these changes in influenza pathogenesis.
Collapse
Affiliation(s)
- James David Londino
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zsuzsanna Bebok
- Department of Cell, Developmental and Integrative Biology School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
31
|
Czikora I, Alli AA, Sridhar S, Matthay MA, Pillich H, Hudel M, Berisha B, Gorshkov B, Romero MJ, Gonzales J, Wu G, Huo Y, Su Y, Verin AD, Fulton D, Chakraborty T, Eaton DC, Lucas R. Epithelial Sodium Channel-α Mediates the Protective Effect of the TNF-Derived TIP Peptide in Pneumolysin-Induced Endothelial Barrier Dysfunction. Front Immunol 2017; 8:842. [PMID: 28785264 PMCID: PMC5519615 DOI: 10.3389/fimmu.2017.00842] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/04/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae is a major etiologic agent of bacterial pneumonia. Autolysis and antibiotic-mediated lysis of pneumococci induce release of the pore-forming toxin, pneumolysin (PLY), their major virulence factor, which is a prominent cause of acute lung injury. PLY inhibits alveolar liquid clearance and severely compromises alveolar-capillary barrier function, leading to permeability edema associated with pneumonia. As a consequence, alveolar flooding occurs, which can precipitate lethal hypoxemia by impairing gas exchange. The α subunit of the epithelial sodium channel (ENaC) is crucial for promoting Na+ reabsorption across Na+-transporting epithelia. However, it is not known if human lung microvascular endothelial cells (HL-MVEC) also express ENaC-α and whether this subunit is involved in the regulation of their barrier function. METHODS The presence of α, β, and γ subunits of ENaC and protein phosphorylation status in HL-MVEC were assessed in western blotting. The role of ENaC-α in monolayer resistance of HL-MVEC was examined by depletion of this subunit by specific siRNA and by employing the TNF-derived TIP peptide, a specific activator that directly binds to ENaC-α. RESULTS HL-MVEC express all three subunits of ENaC, as well as acid-sensing ion channel 1a (ASIC1a), which has the capacity to form hybrid non-selective cation channels with ENaC-α. Both TIP peptide, which specifically binds to ENaC-α, and the specific ASIC1a activator MitTx significantly strengthened barrier function in PLY-treated HL-MVEC. ENaC-α depletion significantly increased sensitivity to PLY-induced hyperpermeability and in addition, blunted the protective effect of both the TIP peptide and MitTx, indicating an important role for ENaC-α and for hybrid NSC channels in barrier function of HL-MVEC. TIP peptide blunted PLY-induced phosphorylation of both calmodulin-dependent kinase II (CaMKII) and of its substrate, the actin-binding protein filamin A (FLN-A), requiring the expression of both ENaC-α and ASIC1a. Since non-phosphorylated FLN-A promotes ENaC channel open probability and blunts stress fiber formation, modulation of this activity represents an attractive target for the protective actions of ENaC-α in both barrier function and liquid clearance. CONCLUSION Our results in cultured endothelial cells demonstrate a previously unrecognized role for ENaC-α in strengthening capillary barrier function that may apply to the human lung. Strategies aiming to activate endothelial NSC channels that contain ENaC-α should be further investigated as a novel approach to improve barrier function in the capillary endothelium during pneumonia.
Collapse
Affiliation(s)
- Istvan Czikora
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Abdel A Alli
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States.,Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Supriya Sridhar
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Michael A Matthay
- Cardiovascular Research Institute, UCSF, San Francisco, CA, United States
| | - Helena Pillich
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Martina Hudel
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Besim Berisha
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Boris Gorshkov
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Maritza J Romero
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Joyce Gonzales
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Alexander D Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Douglas C Eaton
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|