1
|
Lee-Ferris RE, Okuda K, Galiger JR, Schworer SA, Rogers TD, Dang H, Gilmore R, Edwards C, Crisp G, Nakano S, Cawley AM, Pickles RJ, Gallant SC, Crisci E, Rivier L, Hagood JS, O’Neal WK, Baric RS, Grubb BR, Boucher RC, Randell SH. Prolonged airway explant culture enables study of health, disease, and viral pathogenesis. SCIENCE ADVANCES 2025; 11:eadp0451. [PMID: 40279421 PMCID: PMC12024639 DOI: 10.1126/sciadv.adp0451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 03/21/2025] [Indexed: 04/27/2025]
Abstract
In vitro models play a major role in studying airway physiology and disease. However, the native lung's complex tissue architecture and nonepithelial cell lineages are not preserved in these models. Ex vivo tissue models could overcome in vitro limitations, but methods for long-term maintenance of ex vivo tissue have not been established. Here, we describe methods to culture human large airway explants, small airway explants, and precision-cut lung slices for at least 14 days. Human airway explants recapitulate genotype-specific electrophysiology; characteristic epithelial, endothelial, stromal, and immune cell populations; and model viral infection after 14 days in culture. These methods also maintain mouse, rabbit, and pig tracheal explants. Notably, intact airway tissue can be cryopreserved, thawed, and used to generate viable explants with recovery of function 14 days postthaw. These studies highlight the broad applications of airway tissue explants and their use as translational intermediates between in vitro and in vivo studies.
Collapse
Affiliation(s)
- Rhianna E. Lee-Ferris
- Marsico Lung Institute/CF Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenichi Okuda
- Marsico Lung Institute/CF Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jacob R. Galiger
- Marsico Lung Institute/CF Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen A. Schworer
- Marsico Lung Institute/CF Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Troy D. Rogers
- Marsico Lung Institute/CF Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hong Dang
- Marsico Lung Institute/CF Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rodney Gilmore
- Marsico Lung Institute/CF Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Caitlin Edwards
- Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gillian Crisp
- Marsico Lung Institute/CF Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Satoko Nakano
- Marsico Lung Institute/CF Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anne M. Cawley
- Marsico Lung Institute/CF Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Raymond J. Pickles
- Marsico Lung Institute/CF Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samuel C. Gallant
- Marsico Lung Institute/CF Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elisa Crisci
- College of Veterinary Medicine, Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| | - Lauraine Rivier
- Marsico Lung Institute/CF Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James S. Hagood
- Marsico Lung Institute/CF Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Pediatric Pulmonology and Program for Rare and Interstitial Lung Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wanda K. O’Neal
- Marsico Lung Institute/CF Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ralph S. Baric
- Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Barbara R. Grubb
- Marsico Lung Institute/CF Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard C. Boucher
- Marsico Lung Institute/CF Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott H. Randell
- Marsico Lung Institute/CF Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Lee-Ferris RE, Okuda K, Galiger JR, Schworer SA, Rogers TD, Dang H, Gilmore R, Edwards C, Nakano S, Cawley AM, Pickles RJ, Gallant SC, Crisci E, Rivier L, Hagood JS, O'Neal WK, Baric RS, Grubb BR, Boucher RC, Randell SH. Prolonged airway explant culture enables study of health, disease, and viral pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578756. [PMID: 38370820 PMCID: PMC10871200 DOI: 10.1101/2024.02.03.578756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
In vitro models play a major role in studying airway physiology and disease. However, the native lung's complex tissue architecture and non-epithelial cell lineages are not preserved in these models. Ex vivo tissue models could overcome in vitro limitations, but methods for long-term maintenance of ex vivo tissue has not been established. We describe methods to culture human large airway explants, small airway explants, and precision-cut lung slices for at least 14 days. Human airway explants recapitulate genotype-specific electrophysiology, characteristic epithelial, endothelial, stromal and immune cell populations, and model viral infection after 14 days in culture. These methods also maintain mouse, rabbit, and pig tracheal explants. Notably, intact airway tissue can be cryopreserved, thawed, and used to generate explants with recovery of function 14 days post-thaw. These studies highlight the broad applications of airway tissue explants and their use as translational intermediates between in vitro and in vivo studies.
Collapse
|
3
|
Terlizzi V, Padoan R, Leonetti G, Vitullo P, Tosco A, Taccetti G, Fevola C, Ficili F, Pepe A, Poli P, Claut L, Daccò V, Salvatore D. Cystic fibrosis and CFTR-related disorder with electrolyte imbalance at diagnosis: clinical features and outcome in an Italian cohort. Eur J Pediatr 2023; 182:5275-5283. [PMID: 37725210 DOI: 10.1007/s00431-023-05193-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
There is limited information available on the clinical data, sweat test trends, and outcomes of individuals with cystic fibrosis (CF) who present with an isolated episode of hypoelectrolytemia with metabolic alkalosis (HMA). This study describes a cohort of Italian individuals with HMA as presenting symptom. The study is a retrospective multicenter analysis of individuals who presented with HMA as an initial symptom and was followed at 8 Italian CF Centers, from March 1988 to March 2022. Demographic, clinical, microbiological, biochemical, and genetic data were extracted from local health records. Ninety-three individuals were enrolled in the study. At first evaluation, 82 (88.2%) were diagnosed with CF, and 11 received a CFTR-Related Disorder (CFTR-RD) diagnostic label. Twenty-three (85.1%) out of the 27 subjects who underwent CF neonatal screening (NBS) resulted falsely negative. After a mean observational period of 11.5 years, most of subjects had a mild pulmonary phenotype, pancreatic sufficiency, and rarely CF-related complications. Four CFTR-RD changed to a CF diagnosis during the study period, resulting in 86 (92.4%) subjects classified as CF. CONCLUSIONS Most CF patients presenting with isolated HMA have a mild course of disease and rarely CF-related complications. WHAT IS KNOWN • Isolated episode of hypoelectrolytemia with metabolic alkalosis is a well-known onset symptom of Cystic Fibrosis in infancy. • There is limited information available on the clinical data and outcomes of individuals with Cystic Fibrosis who present with electrolyte imbalance at diagnosis. WHAT IS NEW • Most patients with Cystic Fibrosis presenting with isolated hypoelectrolytemia and metabolic alkalosis have a mild course of disease and rarely CF-related complications. • Electrolyte imbalance at diagnosis of Cystic Fibrosis is a common symptom in children not screened for CF at birth, or in those who received a false negative result from newborn screening.
Collapse
Affiliation(s)
- Vito Terlizzi
- Department of Paediatric Medicine, Meyer Children's Hospital IRCCS, Cystic Fibrosis Regional Reference Center, Florence, Italy.
| | - Rita Padoan
- Scientific Board, Italian Cystic Fibrosis Registry, Rome, Italy
| | - Giuseppina Leonetti
- Pediatric Cystic Fibrosis Centre, Azienda Universitaria Ospedaliera Consorziale Policlinico, Bari, Italy
| | - Pamela Vitullo
- Cystic Fibrosis Support Center, Ospedale G. Tatarella di Cerignola, Cerignola, Italy
| | - Antonella Tosco
- Paediatric Unit, Department of Translational Medical Sciences, Cystic Fibrosis Regional Reference Center, University of Naples Federico II, Naples, Italy
| | - Giovanni Taccetti
- Department of Paediatric Medicine, Meyer Children's Hospital IRCCS, Cystic Fibrosis Regional Reference Center, Florence, Italy
| | - Cristina Fevola
- Department of Paediatric Medicine, Meyer Children's Hospital IRCCS, Cystic Fibrosis Regional Reference Center, Florence, Italy
| | - Francesca Ficili
- Cystic Fibrosis Center, Ospedale Giovanni Di Cristina, Palermo, Italy
| | - Angela Pepe
- Cystic Fibrosis Center, Hospital San Carlo, Potenza, Italy
| | - Piercarlo Poli
- Department of Pediatrics, Cystic Fibrosis Regional Support Center, University of Brescia, ASST Spedali Civili Brescia, Brescia, Italy
| | - Laura Claut
- Department of Pathophysiology and Transplantation, Cystic Fibrosis Regional Reference Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Valeria Daccò
- Department of Pathophysiology and Transplantation, Cystic Fibrosis Regional Reference Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Donatello Salvatore
- Scientific Board, Italian Cystic Fibrosis Registry, Rome, Italy
- Cystic Fibrosis Center, Hospital San Carlo, Potenza, Italy
| |
Collapse
|
4
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
5
|
Okuda K, Shaffer KM, Ehre C. Mucins and CFTR: Their Close Relationship. Int J Mol Sci 2022; 23:10232. [PMID: 36142171 PMCID: PMC9499620 DOI: 10.3390/ijms231810232] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 01/27/2023] Open
Abstract
Mucociliary clearance is a critical defense mechanism for the lungs governed by regionally coordinated epithelial cellular activities, including mucin secretion, cilia beating, and transepithelial ion transport. Cystic fibrosis (CF), an autosomal genetic disorder caused by the dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) channel, is characterized by failed mucociliary clearance due to abnormal mucus biophysical properties. In recent years, with the development of highly effective modulator therapies, the quality of life of a significant number of people living with CF has greatly improved; however, further understanding the cellular biology relevant to CFTR and airway mucus biochemical interactions are necessary to develop novel therapies aimed at restoring CFTR gene expression in the lungs. In this article, we discuss recent advances of transcriptome analysis at single-cell levels that revealed a heretofore unanticipated close relationship between secretory MUC5AC and MUC5B mucins and CFTR in the lungs. In addition, we review recent findings on airway mucus biochemical and biophysical properties, focusing on how mucin secretion and CFTR-mediated ion transport are integrated to maintain airway mucus homeostasis in health and how CFTR dysfunction and restoration of function affect mucus properties.
Collapse
Affiliation(s)
- Kenichi Okuda
- Marsico Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kendall M. Shaffer
- Marsico Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Camille Ehre
- Marsico Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Bicarbonate Effects on Antibacterial Immunity and Mucus Glycobiology in the Cystic Fibrosis Lung: A Review With Selected Experimental Observations. INFECTIOUS MICROBES & DISEASES 2022; 4:103-110. [PMID: 36793929 PMCID: PMC9928163 DOI: 10.1097/im9.0000000000000101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The primary defect in cystic fibrosis (CF) is abnormal chloride and bicarbonate transport in the cystic fibrosis transmembrane conductance regulator (CFTR) epithelial ion channel. The apical surface of the respiratory tract is lined by an airway surface liquid layer (ASL) composed of mucin comprising mainly MUC5A and MUC5B glycoproteins. ASL homeostasis depends on sodium bicarbonate secretion into the airways and secretion deficits alter mucus properties leading to airway obstruction, inflammation, and infections. Downstream effects of abnormal ion transport in the lungs include altered intrinsic immune defenses. We observed that neutrophils killed Pseudomonas aeruginosa more efficiently when it had been exposed to sodium bicarbonate, and formation of neutrophil extracellular traps (NETs) by neutrophils was augmented in the presence of increasing bicarbonate concentrations. Physiological levels of bicarbonate sensitized P. aeruginosa to the antimicrobial peptide cathelicidin LL-37, which is present in both lung ASL and in NETs. Sodium bicarbonate has various uses in clinical medicine and in the care of CF patients, and could be further explored as a therapeutic adjunct against Pseudomonas infections.
Collapse
|
7
|
Terlizzi V, Castellani C, Taccetti G, Ferrari B. Dornase alfa in Cystic Fibrosis: indications, comparative studies and effects on lung clearance index. Ital J Pediatr 2022; 48:141. [PMID: 35927765 PMCID: PMC9351191 DOI: 10.1186/s13052-022-01331-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022] Open
Abstract
Cystic fibrosis (CF) is the most common inherited disease in Caucasian populations, affecting around 50,000 patients in Europe and 30,000 in United States. A mutation in CF trans-membrane conductance regulator (CFTR) gene changes a protein (a regulated chloride channel), which is expressed in many tissues. Defective CFTR results in reduced chloride secretion and an overage absorption of sodium across the epithelia, leading to thickened secretions in organs such as pancreas and lung. Gradually, there have been considerable improvements in the survival of people with CF, thanks to substantial changes in specialized CF care and the discovery of new CFTR modulators drugs. Nevertheless, lung disease remains the most common cause of death. For these reasons improvement of sputum clearance is a major therapeutic aim in CF. So far, symptomatic mucolytic therapy is mainly based on inhalation of dornase alfa, hypertonic saline or mannitol, in combination with physiotherapy. The major component of mucus in CF is pus including viscous material such as polymerized DNA derived from degraded neutrophils. Dornase alfa cleaves the DNA released from the neutrophils and reduces mucous viscosity, and further prevent airway infections and damage to the lung parenchyma. In this review we will summarize the current knowledge on dornase alfa in the treatment of CF lung disease, especially highlighting the positive effect on lung clearance index, a sensitive measure of ventilation inhomogeneity.
Collapse
Affiliation(s)
- Vito Terlizzi
- Department of Paediatric Medicine, Meyer Children's Hospital, Cystic Fibrosis Regional Reference Center, Viale Gaetano Pieraccini 24, 50139, Florence, Italy.
| | | | - Giovanni Taccetti
- Department of Paediatric Medicine, Meyer Children's Hospital, Cystic Fibrosis Regional Reference Center, Viale Gaetano Pieraccini 24, 50139, Florence, Italy
| | | |
Collapse
|
8
|
Saint-Criq V, Guequén A, Philp AR, Villanueva S, Apablaza T, Fernández-Moncada I, Mansilla A, Delpiano L, Ruminot I, Carrasco C, Gray MA, Flores CA. Inhibition of the sodium-dependent HCO 3- transporter SLC4A4, produces a cystic fibrosis-like airway disease phenotype. eLife 2022; 11:e75871. [PMID: 35635440 PMCID: PMC9173743 DOI: 10.7554/elife.75871] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
Bicarbonate secretion is a fundamental process involved in maintaining acid-base homeostasis. Disruption of bicarbonate entry into airway lumen, as has been observed in cystic fibrosis, produces several defects in lung function due to thick mucus accumulation. Bicarbonate is critical for correct mucin deployment and there is increasing interest in understanding its role in airway physiology, particularly in the initiation of lung disease in children affected by cystic fibrosis, in the absence of detectable bacterial infection. The current model of anion secretion in mammalian airways consists of CFTR and TMEM16A as apical anion exit channels, with limited capacity for bicarbonate transport compared to chloride. However, both channels can couple to SLC26A4 anion exchanger to maximise bicarbonate secretion. Nevertheless, current models lack any details about the identity of the basolateral protein(s) responsible for bicarbonate uptake into airway epithelial cells. We report herein that the electrogenic, sodium-dependent, bicarbonate cotransporter, SLC4A4, is expressed in the basolateral membrane of human and mouse airways, and that it's pharmacological inhibition or genetic silencing reduces bicarbonate secretion. In fully differentiated primary human airway cells cultures, SLC4A4 inhibition induced an acidification of the airways surface liquid and markedly reduced the capacity of cells to recover from an acid load. Studies in the Slc4a4-null mice revealed a previously unreported lung phenotype, characterized by mucus accumulation and reduced mucociliary clearance. Collectively, our results demonstrate that the reduction of SLC4A4 function induced a CF-like phenotype, even when chloride secretion remained intact, highlighting the important role SLC4A4 plays in bicarbonate secretion and mammalian airway function.
Collapse
Affiliation(s)
- Vinciane Saint-Criq
- Biosciences Institute, The Medical School, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Anita Guequén
- Centro de Estudios CientíficosValdiviaChile
- Universidad Austral de ChileValdiviaChile
| | - Amber R Philp
- Centro de Estudios CientíficosValdiviaChile
- Universidad Austral de ChileValdiviaChile
| | | | - Tábata Apablaza
- Centro de Estudios CientíficosValdiviaChile
- Universidad Austral de ChileValdiviaChile
| | | | - Agustín Mansilla
- Centro de Estudios CientíficosValdiviaChile
- Universidad Austral de ChileValdiviaChile
| | - Livia Delpiano
- Biosciences Institute, The Medical School, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Iván Ruminot
- Centro de Estudios CientíficosValdiviaChile
- Universidad San SebastiánValdiviaChile
| | - Cristian Carrasco
- Subdepartamento de Anatomía Patológica, Hospital Base de ValdiviaValdiviaChile
| | - Michael A Gray
- Biosciences Institute, The Medical School, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Carlos A Flores
- Centro de Estudios CientíficosValdiviaChile
- Universidad San SebastiánValdiviaChile
| |
Collapse
|
9
|
Models using native tracheobronchial mucus in the context of pulmonary drug delivery research: Composition, structure and barrier properties. Adv Drug Deliv Rev 2022; 183:114141. [PMID: 35149123 DOI: 10.1016/j.addr.2022.114141] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/29/2021] [Accepted: 02/04/2022] [Indexed: 01/15/2023]
Abstract
Mucus covers all wet epithelia and acts as a protective barrier. In the airways of the lungs, the viscoelastic mucus meshwork entraps and clears inhaled materials and efficiently removes them by mucociliary escalation. In addition to physical and chemical interaction mechanisms, the role of macromolecular glycoproteins (mucins) and antimicrobial constituents in innate immune defense are receiving increasing attention. Collectively, mucus displays a major barrier for inhaled aerosols, also including therapeutics. This review discusses the origin and composition of tracheobronchial mucus in relation to its (barrier) function, as well as some pathophysiological changes in the context of pulmonary diseases. Mucus models that contemplate key features such as elastic-dominant rheology, composition, filtering mechanisms and microbial interactions are critically reviewed in the context of health and disease considering different collection methods of native human pulmonary mucus. Finally, the prerequisites towards a standardization of mucus models in a regulatory context and their role in drug delivery research are addressed.
Collapse
|
10
|
Liu L, Yamamoto A, Yamaguchi M, Taniguchi I, Nomura N, Nakakuki M, Kozawa Y, Fukuyasu T, Higuchi M, Niwa E, Tamada T, Ishiguro H. Bicarbonate transport of airway surface epithelia in luminally perfused mice bronchioles. J Physiol Sci 2022; 72:4. [PMID: 35196991 PMCID: PMC10717372 DOI: 10.1186/s12576-022-00828-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/14/2022] [Indexed: 01/06/2023]
Abstract
HCO3- secretion in distal airways is critical for airway mucosal defense. HCO3-/H+ transport across the apical membrane of airway surface epithelial cells was studied by measuring intracellular pH in luminally microperfused freshly dissected mice bronchioles. Functional studies demonstrated that CFTR, ENaC, Cl--HCO3- exchange, Na+-H+ exchange, and Na+-HCO3- cotransport are involved in apical HCO3-/H+ transport. RT-PCR of isolated bronchioles detected fragments from Cftr, α, β, γ subunits of ENaC, Ae2, Ae3, NBCe1, NBCe2, NBCn1, NDCBE, NBCn2, Nhe1, Nhe2, Nhe4, Nhe5, Slc26a4, Slc26a6, and Slc26a9. We assume that continuous decline of intracellular pH following alkaline load demonstrates time course of HCO3- secretion into the lumen which is perfused with a HCO3--free solution. Forskolin-stimulated HCO3- secretion was substantially inhibited by luminal application of CFTRinh-172 (5 μM), H2DIDS (200 μM), and amiloride (1 μM). In bronchioles from a cystic fibrosis mouse model, basal and acetylcholine-stimulated HCO3- secretion was substantially impaired, but forskolin transiently accelerated HCO3- secretion of which the magnitude was comparable to wild-type bronchioles. In conclusion, we have characterized apical HCO3-/H+ transport in native bronchioles. We have demonstrated that cAMP-mediated and Ca2+-mediated pathways are involved in HCO3- secretion and that apical HCO3- secretion is largely mediated by CFTR and H2DIDS-sensitive Cl--HCO3- exchanger, most likely Slc26a9. The impairment of HCO3- secretion in bronchioles from a cystic fibrosis mouse model may be related to the pathogenesis of early lung disease in cystic fibrosis.
Collapse
Affiliation(s)
- Libin Liu
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akiko Yamamoto
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Yamaguchi
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itsuka Taniguchi
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nao Nomura
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miyuki Nakakuki
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuka Kozawa
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoya Fukuyasu
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mayuko Higuchi
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Erina Niwa
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Ishiguro
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Research Center of Health, Physical Fitness, and Sports, Nagoya University, Furo-cho E5-2 (130), Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
11
|
Luan X, Le Y, Jagadeeshan S, Murray B, Carmalt JL, Duke T, Beazley S, Fujiyama M, Swekla K, Gray B, Burmester M, Campanucci VA, Shipley A, Machen TE, Tam JS, Ianowski JP. cAMP triggers Na + absorption by distal airway surface epithelium in cystic fibrosis swine. Cell Rep 2021; 37:109795. [PMID: 34610318 DOI: 10.1016/j.celrep.2021.109795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/05/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022] Open
Abstract
A controversial hypothesis pertaining to cystic fibrosis (CF) lung disease is that the CF transmembrane conductance regulator (CFTR) channel fails to inhibit the epithelial Na+ channel (ENaC), yielding increased Na+ reabsorption and airway dehydration. We use a non-invasive self-referencing Na+-selective microelectrode technique to measure Na+ transport across individual folds of distal airway surface epithelium preparations from CFTR-/- (CF) and wild-type (WT) swine. We show that, under unstimulated control conditions, WT and CF epithelia exhibit similar, low rates of Na+ transport that are unaffected by the ENaC blocker amiloride. However, in the presence of the cyclic AMP (cAMP)-elevating agents forskolin+IBMX (isobutylmethylxanthine), folds of WT tissues secrete large amounts of Na+, while CFTR-/- tissues absorb small, but potentially important, amounts of Na+. In cAMP-stimulated conditions, amiloride inhibits Na+ absorption in CFTR-/- tissues but does not affect secretion in WT tissues. Our results are consistent with the hypothesis that ENaC-mediated Na+ absorption may contribute to dehydration of CF distal airways.
Collapse
Affiliation(s)
- Xiaojie Luan
- Department of Anatomy Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yen Le
- Department of Anatomy Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Santosh Jagadeeshan
- Department of Anatomy Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brendan Murray
- Department of Anatomy Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - James L Carmalt
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tanya Duke
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shannon Beazley
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Masako Fujiyama
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kurtis Swekla
- Animal Care and Research Support, Research Excellence and Innovation, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bridget Gray
- Animal Care and Research Support, Research Excellence and Innovation, University of Saskatchewan, Saskatoon, SK, Canada
| | - Monique Burmester
- Animal Care Unit, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Veronica A Campanucci
- Department of Anatomy Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada; Respiratory Research Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Terry E Machen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Julian S Tam
- Department of Medicine, Division of Respirology, Critical Care, and Sleep Medicine, Royal University Hospital, University of Saskatchewan, Saskatoon, SK, Canada; Respiratory Research Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Juan P Ianowski
- Department of Anatomy Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada; Respiratory Research Centre, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
12
|
The Application of Bicarbonate Recovers the Chemical-Physical Properties of Airway Surface Liquid in Cystic Fibrosis Epithelia Models. BIOLOGY 2021; 10:biology10040278. [PMID: 33805545 PMCID: PMC8065534 DOI: 10.3390/biology10040278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 01/24/2023]
Abstract
Cystic fibrosis (CF) is a genetic disease associated with the defective function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein that causes obstructive disease and chronic bacterial infections in airway epithelia. Deletion of phenylalanine at position 508, p.F508del, the most frequent mutation among CF patients, causes a folding and traffic defect, resulting in a dramatic reduction in the CFTR expression. To investigate whether the direct application of bicarbonate could modify the properties of the airway surface liquid (ASL), we measured the micro-viscosity, fluid transport and pH of human bronchial epithelial cells monolayers. We have demonstrated that the treatment of a CF-epithelia with an iso-osmotic solution containing bicarbonate is capable of reducing both, the ASL viscosity and the apical fluid re-absorption. We suggest the possibility of design a supportive treatment based on topical application of bicarbonate, or any other alkaline buffer.
Collapse
|
13
|
Jain PP, Hosokawa S, Xiong M, Babicheva A, Zhao T, Rodriguez M, Rahimi S, Pourhashemi K, Balistrieri F, Lai N, Malhotra A, Shyy JYJ, Valdez-Jasso D, Thistlethwaite PA, Makino A, Yuan JXJ. Revisiting the mechanism of hypoxic pulmonary vasoconstriction using isolated perfused/ventilated mouse lung. Pulm Circ 2020; 10:2045894020956592. [PMID: 33282184 PMCID: PMC7691930 DOI: 10.1177/2045894020956592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/16/2020] [Indexed: 12/13/2022] Open
Abstract
Hypoxic Pulmonary Vasoconstriction (HPV) is an important physiological mechanism of the lungs that matches perfusion to ventilation thus maximizing O2 saturation of the venous blood within the lungs. This study emphasizes on principal pathways in the initiation and modulation of hypoxic pulmonary vasoconstriction with a primary focus on the role of Ca2+ signaling and Ca2+ influx pathways in hypoxic pulmonary vasoconstriction. We used an ex vivo model, isolated perfused/ventilated mouse lung to evaluate hypoxic pulmonary vasoconstriction. Alveolar hypoxia (utilizing a mini ventilator) rapidly and reversibly increased pulmonary arterial pressure due to hypoxic pulmonary vasoconstriction in the isolated perfused/ventilated lung. By applying specific inhibitors for different membrane receptors and ion channels through intrapulmonary perfusion solution in isolated lung, we were able to define the targeted receptors and channels that regulate hypoxic pulmonary vasoconstriction. We show that extracellular Ca2+ or Ca2+ influx through various Ca2+-permeable channels in the plasma membrane is required for hypoxic pulmonary vasoconstriction. Removal of extracellular Ca2+ abolished hypoxic pulmonary vasoconstriction, while blockade of L-type voltage-dependent Ca2+ channels (with nifedipine), non-selective cation channels (with 30 µM SKF-96365), and TRPC6/TRPV1 channels (with 1 µM SAR-7334 and 30 µM capsazepine, respectively) significantly and reversibly inhibited hypoxic pulmonary vasoconstriction. Furthermore, blockers of Ca2+-sensing receptors (by 30 µM NPS2143, an allosteric Ca2+-sensing receptors inhibitor) and Notch (by 30 µM DAPT, a γ-secretase inhibitor) also attenuated hypoxic pulmonary vasoconstriction. These data indicate that Ca2+ influx in pulmonary arterial smooth muscle cells through voltage-dependent, receptor-operated, and store-operated Ca2+ entry pathways all contribute to initiation of hypoxic pulmonary vasoconstriction. The extracellular Ca2+-mediated activation of Ca2+-sensing receptors and the cell-cell interaction via Notch ligands and receptors contribute to the regulation of hypoxic pulmonary vasoconstriction.
Collapse
Affiliation(s)
- Pritesh P. Jain
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| | - Susumu Hosokawa
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
- Department of Pediatrics, Tokyo Medical
and Dental University, Tokyo, Japan
| | - Mingmei Xiong
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
- Department of Critical Medicine, The
Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Aleksandra Babicheva
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| | - Tengteng Zhao
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| | - Marisela Rodriguez
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| | - Shamin Rahimi
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| | - Kiana Pourhashemi
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| | - Francesca Balistrieri
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| | - Ning Lai
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| | - Atul Malhotra
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| | - John Y.-J. Shyy
- Division of Cardiovascular Medicine,
Department of Medicine, University of California, San Diego, USA
| | | | | | - Ayako Makino
- Division of Endocrinology and
Metabolism, University of California, San Diego, CA, USA
| | - Jason X.-J. Yuan
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| |
Collapse
|
14
|
Tang Y, Yan Z, Engelhardt JF. Viral Vectors, Animal Models, and Cellular Targets for Gene Therapy of Cystic Fibrosis Lung Disease. Hum Gene Ther 2020; 31:524-537. [PMID: 32138545 PMCID: PMC7232698 DOI: 10.1089/hum.2020.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
After more than two decades since clinical trials tested the first use of recombinant adeno-associated virus (rAAV) to treat cystic fibrosis (CF) lung disease, gene therapy for this disorder has undergone a tremendous resurgence. Fueling this enthusiasm has been an enhanced understanding of rAAV transduction biology and cellular processes that limit transduction of airway epithelia, the development of new rAAV serotypes and other vector systems with high-level tropism for airway epithelial cells, an improved understanding of CF lung pathogenesis and the cellular targets for gene therapy, and the development of new animal models that reproduce the human CF disease phenotype. These advances have created a preclinical path for both assessing the efficacy of gene therapies in the CF lung and interrogating the target cell types in the lung required for complementation of the CF disease state. Lessons learned from early gene therapy attempts with rAAV in the CF lung have guided thinking for the testing of next-generation vector systems. Although unknown questions still remain regarding the cellular targets in the lung that are required or sufficient to complement CF lung disease, the field is now well positioned to tackle these challenges. This review will highlight the role that next-generation CF animal models are playing in the preclinical development of gene therapies for CF lung disease and the knowledge gaps in disease pathophysiology that these models are attempting to fill.
Collapse
Affiliation(s)
- Yinghua Tang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ziying Yan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
15
|
Measurement of Multi Ion Transport through Human Bronchial Epithelial Cell Line Provides an Insight into the Mechanism of Defective Water Transport in Cystic Fibrosis. MEMBRANES 2020; 10:membranes10030043. [PMID: 32178452 PMCID: PMC7142439 DOI: 10.3390/membranes10030043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/28/2022]
Abstract
We measured concentration changes of sodium, potassium, chloride ions, pH and the transepithelial potential difference by means of ion-selective electrodes, which were placed on both sides of a human bronchial epithelial 16HBE14σ cell line grown on a porous support in the presence of ion channel blockers. We found that, in the isosmotic transepithelial concentration gradient of either sodium or chloride ions, there is an electroneutral transport of the isosmotic solution of sodium chloride in both directions across the cell monolayer. The transepithelial potential difference is below 3 mV. Potassium and pH change plays a minor role in ion transport. Based on our measurements, we hypothesize that in a healthy bronchial epithelium, there is a dynamic balance between water absorption and secretion. Water absorption is caused by the action of two exchangers, Na/H and Cl/HCO3, secreting weakly dissociated carbonic acid in exchange for well dissociated NaCl and water. The water secretion phase is triggered by an apical low volume-dependent factor opening the Cystic Fibrosis Transmembrane Regulator CFTR channel and secreting anions that are accompanied by paracellular sodium and water transport.
Collapse
|
16
|
Grant GJ, Liou TG, Paine R, Helms MN. High-mobility group box-1 increases epithelial sodium channel activity and inflammation via the receptor for advanced glycation end products. Am J Physiol Cell Physiol 2020; 318:C570-C580. [PMID: 31913693 DOI: 10.1152/ajpcell.00291.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cystic fibrosis (CF) lung disease persists and remains life-limiting for many patients. Elevated high-mobility group box-1 protein (HMGB-1) levels and epithelial sodium channel hyperactivity (ENaC) are hallmark features of the CF lung. The objective of this study was to better understand the pathogenic role of HMGB-1 signaling and ENaC in CF airway cells. We hypothesize that HMGB-1 links airway inflammation [via signaling to the receptor for advanced glycation end products (RAGE)] and airway surface liquid dehydration (via upregulation of ENaC) in the CF lung. We calculated equivalent short-current (Isc) and single-channel ENaC open probability (Po) in normal and CF human small airway epithelial cells (SAEC) in the presence and absence of human HMGB-1 peptide (0.5 μg/mL). In normal SAECs, HMGB-1 increased amiloride-sensitive Isc and elevated ENaC Po from 0.15 ± 0.03 to 0.28 ± 0.04 (P < 0.01). In CF SAECs, ENaC Po increased from 0.45 ± 0.06 to 0.73 ± 0.04 (P < 0.01). Pretreatment with 1 μM FPS-ZM1 (a RAGE inhibitor) attenuated all HMGB-1 effects on ENaC current in normal and CF SAECs. Confocal analysis of SAECs indicates that nuclear size and HMBG-1 localization can be impacted by ENaC dysfunction. Masson's trichrome labeling of mouse lung showed that intraperitoneally injected HMGB-1 significantly increased pulmonary fibrosis. Bronchoalveolar lavage fluid from HMGB-1-treated mice showed significant increases in IL-1β, IL-10, IL-6, IL-27, IL-17A, IFN-β, and granulocyte-macrophage colony-stimulating factor compared with vehicle-injected mice (P < 0.05). These studies put forth a new model in which HMGB-1 signaling to RAGE plays an important role in perpetuating ENaC dysfunction and inflammation in the CF lung.
Collapse
Affiliation(s)
- Garett J Grant
- Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Theodore G Liou
- Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Robert Paine
- Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - My N Helms
- Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| |
Collapse
|
17
|
Pieper M, Schulz-Hildebrandt H, Mall MA, Hüttmann G, König P. Intravital microscopic optical coherence tomography imaging to assess mucus-mobilizing interventions for muco-obstructive lung disease in mice. Am J Physiol Lung Cell Mol Physiol 2020; 318:L518-L524. [PMID: 31994896 PMCID: PMC7093113 DOI: 10.1152/ajplung.00287.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Airway mucus obstruction is a hallmark of chronic lung diseases such as cystic fibrosis, asthma, and COPD, and the development of more effective mucus-mobilizing therapies remains an important unmet need for patients with these muco-obstructive lung diseases. However, methods for sensitive visualization and quantitative assessment of immediate effects of therapeutic interventions on mucus clearance in vivo are lacking. In this study, we determined whether newly developed high-speed microscopic optical coherence tomography (mOCT) is sensitive to detect and compare in vivo effects of inhaled isotonic saline, hypertonic saline, and bicarbonate on mucus mobilization and clearance in Scnn1b-transgenic mice with muco-obstructive lung disease. In vivo mOCT imaging showed that inhaled isotonic saline-induced rapid mobilization of mucus that was mainly transported as chunks from the lower airways of Scnn1b-transgenic mice. Hypertonic saline mobilized a significantly greater amount of mucus that showed a more uniform distribution compared with isotonic saline. The addition of bicarbonate-to-isotonic saline had no effect on mucus mobilization, but also led to a more uniform mucus layer compared with treatment with isotonic saline alone. mOCT can detect differences in response to mucus-mobilizing interventions in vivo, and may thus support the development of more effective therapies for patients with muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Mario Pieper
- Institute of Anatomy, University of Lübeck, Lübeck, Germany.,Airway Research Center North, German Center for Lung Research, Lübeck, Germany
| | - Hinnerk Schulz-Hildebrandt
- Airway Research Center North, German Center for Lung Research, Lübeck, Germany.,Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg, German Center for Lung Research, University of Heidelberg, Heidelberg, Germany.,Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Gereon Hüttmann
- Airway Research Center North, German Center for Lung Research, Lübeck, Germany.,Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
| | - Peter König
- Institute of Anatomy, University of Lübeck, Lübeck, Germany.,Airway Research Center North, German Center for Lung Research, Lübeck, Germany
| |
Collapse
|
18
|
Chen KG, Zhong P, Zheng W, Beekman JM. Pharmacological analysis of CFTR variants of cystic fibrosis using stem cell-derived organoids. Drug Discov Today 2019; 24:2126-2138. [PMID: 31173911 DOI: 10.1016/j.drudis.2019.05.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/09/2019] [Accepted: 05/30/2019] [Indexed: 12/29/2022]
Abstract
Cystic fibrosis (CF) is a life-shortening genetic disease caused by mutations of CFTR, the gene encoding cystic fibrosis transmembrane conductance regulator. Despite considerable progress in CF therapies, targeting specific CFTR genotypes based on small molecules has been hindered because of the substantial genetic heterogeneity of CFTR mutations in patients with CF, which is difficult to assess by animal models in vivo. There are broadly four classes (e.g., II, III, and IV) of CF genotypes that differentially respond to current CF drugs (e.g., VX-770 and VX-809). In this review, we shed light on the pharmacogenomics of diverse CFTR mutations and the emerging role of stem cell-based organoids in predicting the CF drug response. We discuss mechanisms that underlie differential CF drug responses both in organoid-based assays and in CF clinical trials, thereby facilitating the precision design of safer and more effective therapies for individual patients with CF.
Collapse
Affiliation(s)
- Kevin G Chen
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC, 20057, USA.
| | - Pingyu Zhong
- Singapore Immunology Network, Agency for Science, Technology and Research (A⁎STAR), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, Regenerative Medicine Center Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|