1
|
Park KS, Lässer C, Lötvall J. Extracellular vesicles and the lung: from disease pathogenesis to biomarkers and treatments. Physiol Rev 2025; 105:1733-1821. [PMID: 40125970 DOI: 10.1152/physrev.00032.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/14/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
Nanosized extracellular vesicles (EVs) are released by all cells to convey cell-to-cell communication. EVs, including exosomes and microvesicles, carry an array of bioactive molecules, such as proteins and RNAs, encapsulated by a membrane lipid bilayer. Epithelial cells, endothelial cells, and various immune cells in the lung contribute to the pool of EVs in the lung microenvironment and carry molecules reflecting their cellular origin. EVs can maintain lung health by regulating immune responses, inducing tissue repair, and maintaining lung homeostasis. They can be detected in lung tissues and biofluids such as bronchoalveolar lavage fluid and blood, offering information about disease processes, and can function as disease biomarkers. Here, we discuss the role of EVs in lung homeostasis and pulmonary diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, pulmonary fibrosis, and lung injury. The mechanistic involvement of EVs in pathogenesis and their potential as disease biomarkers are discussed. Finally, the pulmonary field benefits from EVs as clinical therapeutics in severe pulmonary inflammatory disease, as EVs from mesenchymal stem cells attenuate severe respiratory inflammation in multiple clinical trials. Further, EVs can be engineered to carry therapeutic molecules for enhanced and broadened therapeutic opportunities, such as the anti-inflammatory molecule CD24. Finally, we discuss the emerging opportunity of using different types of EVs for treating severe respiratory conditions.
Collapse
Affiliation(s)
- Kyong-Su Park
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
2
|
Zhu R, Zhang Y, Wang X, Liu BD, Chowdhury D, Li Z, Pan M, Peng T, Chen J, Huang W, Zhan L, Fan GC. Probiotic bacteria-released extracellular vesicles enhance macrophage phagocytosis in polymicrobial sepsis by activating the FPR1/2 pathway. Mol Med 2024; 30:216. [PMID: 39543493 PMCID: PMC11566284 DOI: 10.1186/s10020-024-00959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Sepsis-induced organ failure and high mortality are largely ascribed to the failure of bacterial clearance from the infected tissues. Recently, probiotic bacteria-released extracellular vesicles (BEVs) have been implicated as critical mediators of intercellular communication which are widely involved in the regulation of the inflammatory response. However, their functional role in macrophage phagocytosis during sepsis has never been explored. METHODS BEVs were collected from three different strains of probiotics including Lactiplantibacillus plantarum WCFS1 (LP WCFS1), Lactobacillus rhamnosus Gorbach-Goldin (LGG), and Escherichia coli Nissle 1917 (EcN), or from LGG cultured under three pH conditions (pH5-acid, pH6.5-standard, pH8-akaline) through differential centrifugation, filtration, and ultracentrifugation of their culture supernatants. In vitro phagocytosis was measured in Raw264.7 cells and bone marrow-derived macrophages using pHrodo red E. coli BioParticles. The in vivo therapeutic effects of BEVs were tested using a feces-injection-in-peritoneum (FIP) model of polymicrobial sepsis. RESULTS LGG-derived EVs (BEVLGG) were the best among these three probiotics BEVs in stimulating macrophages to take up bacteria. Furthermore, BEVLGG collected from pH8 culture condition (BEVpH8) exhibited the strongest capacity of phagocytosis, compared with BEVpH5 and BEVpH6.5. Treatment of septic mice with BEVpH8 significantly prolonged animal survival; increased bacterial clearance from the blood, peritoneal lavage fluid, and multiple organs; and decreased serum levels of pro-inflammatory cytokines/chemokines, as well as reduced multiple organ injuries, in comparison with control-treated septic mice. Mechanistically, RNA-seq and bioinformatic analysis identified that the FPR1/2 signaling was remarkably activated, along with its downstream pathways (PI3K-Akt-MARCO and NADPH-ROS) in BEVpH8-treated macrophages, compared with control cells. Accordingly, pre-addition of Boc2, a specific antagonist of FPR1/FPR2, to macrophages significantly attenuated BEVpH8-mediated phagocytosis, compared to controls. CONCLUSIONS This study demonstrates that LGG-derived BEVs may have therapeutic effects against sepsis-induced organ injury and mortality through enhancing FPR1/2-mediated macrophage phagocytosis.
Collapse
Affiliation(s)
- Ruiyao Zhu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
- Department of Infection Prevention and Control, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yu Zhang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Xiaohong Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Benjamin D Liu
- Department of Chemistry and Biochemistry, The Ohio State University College of Arts and Sciences, Columbus, OH, USA
| | - Debabrata Chowdhury
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Zhixin Li
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Mingliang Pan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Tianqing Peng
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada
| | - Jing Chen
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Wei Huang
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Liying Zhan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA.
| |
Collapse
|
3
|
Ben-Meir E, Antounians L, Eisha S, Ratjen F, Zani A, Grasemann H. Extracellular vesicles in sputum of children with cystic fibrosis pulmonary exacerbations. ERJ Open Res 2024; 10:00547-2024. [PMID: 39655173 PMCID: PMC11626615 DOI: 10.1183/23120541.00547-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/27/2024] [Indexed: 12/12/2024] Open
Abstract
Background The aim of this study was to quantify mediators of neutrophilic inflammation within airway extracellular vesicles (EVs) of children treated for a cystic fibrosis (CF) pulmonary exacerbation (PEx). Methods EVs were isolated from stored sputum samples collected before and after antibiotic therapy for PEx between 2011 and 2013, and characterised by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Western blot analysis of EV protein extracts was used for EV canonical protein markers CD63, CD9 and flotillin-1 (FLOT1), as well as neutrophil elastase (NE), myeloperoxidase (MPO) and interleukin-8. The EV content of NE and MPO were expressed as ratios of NE/FLOT1 and MPO/FLOT1 protein band densities. Results Sputum samples from 21 children aged 13.3 (range 8.0-17.0) years were analysed. NTA showed high concentrations of particles at the size of small EVs (50-200 nm), and typical EV morphology was confirmed by TEM. CD63, CD9 and FLOT1 were detectable in all samples. Median (interquartile range (IQR)) NE/FLOT1 increased from 2.46 (1.68-5.25) before to 6.83 (3.89-8.89, p<0.001) after PEx therapy, and median (IQR) MPO/FLOT1 increased from 2.30 (1.38-4.44) before to 5.76 (3.45-6.94, p<0.01) after, while EV size remained unchanged. Improvement in lung function (percent predicted forced expiratory volume in 1 s (ppFEV1)) with PEx therapy correlated with NE EV content (r=0.657, p=0.001). Conclusions Airways of children with CF contain EVs that carry NE and MPO as cargo. The lower NE and MPO content at the time of PEx, compared with after therapy, and the correlation with pulmonary function suggest both a functional role of EVs in CF airway inflammation and the potential of EVs as a biomarker to monitor CF lung disease.
Collapse
Affiliation(s)
- Elad Ben-Meir
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Programs in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lina Antounians
- Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Shafinaz Eisha
- Programs in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Felix Ratjen
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Programs in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Hartmut Grasemann
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Programs in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
4
|
Takahara M, Hirayama S, Futamata H, Nakao R, Tashiro Y. Biofilm-derived membrane vesicles exhibit potent immunomodulatory activity in Pseudomonas aeruginosa PAO1. Microbiol Immunol 2024; 68:224-236. [PMID: 38797913 DOI: 10.1111/1348-0421.13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/15/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Pathogenic bacteria form biofilms on epithelial cells, and most bacterial biofilms show increased production of membrane vesicles (MVs), also known as outer membrane vesicles in Gram-negative bacteria. Numerous studies have investigated the MVs released under planktonic conditions; however, the impact of MVs released from biofilms on immune responses remains unclear. This study aimed to investigate the characteristics and immunomodulatory activity of MVs obtained from both planktonic and biofilm cultures of Pseudomonas aeruginosa PAO1. The innate immune responses of macrophages to planktonic-derived MVs (p-MVs) and biofilm-derived MVs (b-MVs) were investigated by measuring the mRNA expression of proinflammatory cytokines. Our results showed that b-MVs induced a higher expression of inflammatory cytokines, including Il1b, Il6, and Il12p40, than p-MVs. The mRNA expression levels of Toll-like receptor 4 (Tlr4) differed between the two types of MVs, but not Tlr2. Polymyxin B significantly neutralized b-MV-mediated cytokine induction, suggesting that lipopolysaccharide of native b-MVs is the origin of the immune response. In addition, heat-treated or homogenized b-MVs induced the mRNA expression of cytokines, including Tnfa, Il1b, Il6, and Il12p40. Heat treatment of MVs led to increased expression of Tlr2 but not Tlr4, suggesting that TLR2 ligands play a role in detecting the pathogen-associated molecular patterns in lysed MVs. Taken together, our data indicate that potent immunomodulatory MVs are produced in P. aeruginosa biofilms and that this behavior could be a strategy for the bacteria to infect host cells. Furthermore, our findings would contribute to developing novel vaccines using MVs.
Collapse
Affiliation(s)
- Minato Takahara
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Satoru Hirayama
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroyuki Futamata
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Ryoma Nakao
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yosuke Tashiro
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
- JST PRESTO, Kawaguchi, Japan
| |
Collapse
|
5
|
Sarkar S, Barnaby R, Nymon AB, Taatjes DJ, Kelley TJ, Stanton BA. Extracellular vesicles secreted by primary human bronchial epithelial cells reduce Pseudomonas aeruginosa burden and inflammation in cystic fibrosis mouse lung. Am J Physiol Lung Cell Mol Physiol 2024; 326:L164-L174. [PMID: 38084406 PMCID: PMC11279747 DOI: 10.1152/ajplung.00253.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
Cystic fibrosis (CF) results in a reduction in the volume of airway surface liquid, increased accumulation of viscous mucus, persistent antibiotic-resistant lung infections that cause chronic inflammation, and a decline in lung function. More than 50% of adults with CF are chronically colonized by Pseudomonas aeruginosa (P. aeruginosa), the primary reason for morbidity and mortality in people with CF (pwCF). Although highly effective modulator therapy (HEMT) is an important part of disease management in CF, HEMT does not eliminate P. aeruginosa or lung inflammation. Thus, new treatments are required to reduce lung infection and inflammation in CF. In a previous in vitro study, we demonstrated that primary human bronchial epithelial cells (HBECs) secrete extracellular vesicles (EVs) that block the ability of P. aeruginosa to form biofilms by reducing the abundance of several proteins necessary for biofilm formation as well as enhancing the sensitivity of P. aeruginosa to β-lactam antibiotics. In this study, using a CF mouse model of P. aeruginosa infection, we demonstrate that intratracheal administration of EVs secreted by HBEC reduced P. aeruginosa lung burden and several proinflammatory cytokines including IFN-γ, TNF-α, and MIP-1β in bronchoalveolar lavage fluid (BALF), even in the absence of antibiotics. Moreover, EVs decreased neutrophils in BALF. Thus, EVs secreted by HBEC reduce the lung burden of P. aeruginosa, decrease inflammation, and reduce neutrophils in a CF mouse model. These results suggest that HBEC via the secretion of EVs may play an important role in the immune response to P. aeruginosa lung infection.NEW & NOTEWORTHY Our findings show that extracellular vesicles secreted by primary human bronchial epithelial cells significantly reduce Pseudomonas aeruginosa burden, inflammation, and weight loss in a cystic fibrosis mouse model of infection.
Collapse
Affiliation(s)
- Sharanya Sarkar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, United States
| | - Roxanna Barnaby
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, United States
| | - Amanda B Nymon
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, United States
| | - Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Center for Biomedical Shared Resources, Larner College of Medicine, University of Vermont, Burlington, Vermont, United States
| | - Thomas J Kelley
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Bruce A Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, United States
| |
Collapse
|
6
|
Xue C, Ma X, Guan X, Feng H, Zheng M, Yang X. Small extracellular vesicles derived from umbilical cord mesenchymal stem cells repair blood-spinal cord barrier disruption after spinal cord injury through down-regulation of Endothelin-1 in rats. PeerJ 2023; 11:e16311. [PMID: 37927780 PMCID: PMC10624166 DOI: 10.7717/peerj.16311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/27/2023] [Indexed: 11/07/2023] Open
Abstract
Spinal cord injury could cause irreversible neurological dysfunction by destroying the blood-spinal cord barrier (BSCB) and allowing blood cells like neutrophils and macrophages to infiltrate the spinal cord. Small extracellular vesicles (sEVs) derived from mesenchymal stem cells (MSCs) found in the human umbilical cord have emerged as a potential therapeutic alternative to cell-based treatments. This study aimed to investigate the mechanism underlying the alterations in the BSCB permeability by human umbilical cord MSC-derived sEVs (hUC-MSCs-sEVs) after SCI. First, we used hUC-MSCs-sEVs to treat SCI rat models, demonstrating their ability to inhibit BSCB permeability damage, improve neurological repair, and reduce SCI-induced upregulation of prepro-endothelin-1 (prepro-ET-1) mRNA and endothelin-1 (ET-1) peptide expression. Subsequently, we confirmed that hUC-MSCs-sEVs could alleviate cell junction destruction and downregulate MMP-2 and MMP-9 expression after SCI, contributing to BSCB repair through ET-1 inhibition. Finally, we established an in vitro model of BSCB using human brain microvascular endothelial cells and verified that hUC-MSCs-sEVs could increase the expression of junction proteins in endothelial cells after oxygen-glucose deprivation by ET-1 downregulation. This study indicates that hUC-MSCs-sEVs could help maintain BSCB's structural integrity and promote functional recovery by suppressing ET-1 expression.
Collapse
Affiliation(s)
- Chenhui Xue
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Xun Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoming Guan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Haoyu Feng
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mingkui Zheng
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Xihua Yang
- Laboratory Animal Center, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
7
|
Carbone A, Vitullo P, Di Gioia S, Conese M. Lung Inflammatory Genes in Cystic Fibrosis and Their Relevance to Cystic Fibrosis Transmembrane Conductance Regulator Modulator Therapies. Genes (Basel) 2023; 14:1966. [PMID: 37895314 PMCID: PMC10606852 DOI: 10.3390/genes14101966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Cystic fibrosis (CF) is a monogenic syndrome determined by over 2000 mutations in the CF Transmembrane Conductance Regulator (CFTR) gene harbored on chromosome 7. In people with CF (PWCF), lung disease is the major determinant of morbidity and mortality and is characterized by a clinical phenotype which differs in the presence of equal mutational assets, indicating that genetic and environmental modifiers play an important role in this variability. Airway inflammation determines the pathophysiology of CF lung disease (CFLD) both at its onset and progression. In this narrative review, we aim to depict the inflammatory process in CF lung, with a particular emphasis on those genetic polymorphisms that could modify the clinical outcome of the respiratory disease in PWCF. The natural history of CF has been changed since the introduction of CFTR modulator therapies in the clinical arena. However, also in this case, there is a patient-to-patient variable response. We provide an overview on inflammatory/immunity gene variants that affect CFLD severity and an appraisal of the effects of CFTR modulator therapies on the inflammatory process in lung disease and how this knowledge may advance the optimization of the management of PWCF.
Collapse
Affiliation(s)
- Annalucia Carbone
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Pamela Vitullo
- Cystic Fibrosis Support Center, Ospedale “G. Tatarella”, 71042 Cerignola, Italy;
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| |
Collapse
|
8
|
Capraro M, Pedrazzi M, De Tullio R, Manfredi M, Cresta F, Castellani C, Averna M. Modulation of Plasmatic Matrix Metalloprotease 9: A Promising New Tool for Understanding the Variable Clinical Responses of Patients with Cystic Fibrosis to Cystic Fibrosis Transmembrane Conductance Regulator Modulators. Int J Mol Sci 2023; 24:13384. [PMID: 37686190 PMCID: PMC10488059 DOI: 10.3390/ijms241713384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND The most recent modulator combination, elexacaftor/tezacaftor/ivacaftor (Trikafta®), has been shown to improve clinical outcomes in most patients with cystic fibrosis (PwCF). Unfortunately, the clinical benefits are sometimes variable; thus, improving our knowledge of the possible causes of this variability can help reduce it. METHODS Circulating mononuclear cells (CMCs) and plasma were collected from 16 PwCF (including those on Trikafta® therapy) and 4 non-CF subjects. Cystic fibrosis transmembrane conductance regulator (CFTR) activity and matrix metalloprotease 9 (MMP9) expression were monitored before and after therapy, together with some clinical parameters. The relationship between MMP9 expression and the modulation of the extracellular-regulated 1/2 (ERK1/2) and nuclear factor-kB (NF-kB) pathways was also analyzed. RESULTS MMP9, markedly expressed in the CMCs and plasma of all the patients included in the study, was downregulated in the clinically responsive PwCF. In the non-responder, the MMP9 levels remained high. The modulation of MMP9 following treatment with Trikafta® may be controlled by the NF-kB pathway. CONCLUSIONS These data strongly suggest that MMP9 downregulation is a potential biomarker of therapy efficacy and that it could be useful in understanding the molecular events underlying the variable clinical responses of patients to Trikafta®. This knowledge could be helpful for future studies of personalized medicine and thereby ensure improvements in individual responses to therapies.
Collapse
Affiliation(s)
- Michela Capraro
- Department of Experimental Medicine (DIMES), University of Genova, 16126 Genova, Italy; (M.C.); (M.P.); (R.D.T.)
| | - Marco Pedrazzi
- Department of Experimental Medicine (DIMES), University of Genova, 16126 Genova, Italy; (M.C.); (M.P.); (R.D.T.)
| | - Roberta De Tullio
- Department of Experimental Medicine (DIMES), University of Genova, 16126 Genova, Italy; (M.C.); (M.P.); (R.D.T.)
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Federico Cresta
- Cystic Fibrosis Center Genova, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (F.C.); (C.C.)
| | - Carlo Castellani
- Cystic Fibrosis Center Genova, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (F.C.); (C.C.)
| | - Monica Averna
- Department of Experimental Medicine (DIMES), University of Genova, 16126 Genova, Italy; (M.C.); (M.P.); (R.D.T.)
| |
Collapse
|
9
|
Cieślik M, Bryniarski K, Nazimek K. Biodelivery of therapeutic extracellular vesicles: should mononuclear phagocytes always be feared? Front Cell Dev Biol 2023; 11:1211833. [PMID: 37476156 PMCID: PMC10354279 DOI: 10.3389/fcell.2023.1211833] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023] Open
Abstract
At present, extracellular vesicles (EVs) are considered key candidates for cell-free therapies, including treatment of allergic and autoimmune diseases. However, their therapeutic effectiveness, dependent on proper targeting to the desired cells, is significantly limited due to the reduced bioavailability resulting from their rapid clearance by the cells of the mononuclear phagocyte system (MPS). Thus, developing strategies to avoid EV elimination is essential when applying them in clinical practice. On the other hand, malfunctioning MPS contributes to various immune-related pathologies. Therapeutic reversal of these effects with EVs would be beneficial and could be achieved, for example, by modulating the macrophage phenotype or regulating antigen presentation by dendritic cells. Additionally, intended targeting of EVs to MPS macrophages for replication and repackaging of their molecules into new vesicle subtype can allow for their specific targeting to appropriate populations of acceptor cells. Herein, we briefly discuss the under-explored aspects of the MPS-EV interactions that undoubtedly require further research in order to accelerate the therapeutic use of EVs.
Collapse
Affiliation(s)
| | | | - Katarzyna Nazimek
- Department of Immunology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
10
|
Abstract
Cystic fibrosis (CF) pathophysiology is hallmarked by excessive inflammation and the inability to resolve lung infections, contributing to morbidity and eventually mortality. Paradoxically, despite a robust inflammatory response, CF lungs fail to clear bacteria and are susceptible to chronic infections. Impaired mucociliary transport plays a critical role in chronic infection but the immune mechanisms contributing to the adaptation of bacteria to the lung microenvironment is not clear. CFTR modulator therapy has advanced CF life expectancy opening up the need to understand changes in immunity as CF patients age. Here, we have summarized the current understanding of immune dysregulation in CF.
Collapse
Affiliation(s)
- Emanuela M Bruscia
- Department of Pediatrics, Section of Pulmonology, Allergy, Immunology and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Tracey L Bonfield
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
11
|
Zou C, Zhang Y, Liu H, Wu Y, Zhou X. Extracellular Vesicles: Recent Insights Into the Interaction Between Host and Pathogenic Bacteria. Front Immunol 2022; 13:840550. [PMID: 35693784 PMCID: PMC9174424 DOI: 10.3389/fimmu.2022.840550] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
Extracellular vesicles (EVs) are nanosized lipid particles released by virtually every living cell. EVs carry bioactive molecules, shuttle from cells to cells and transduce signals, regulating cell growth and metabolism. Pathogenic bacteria can cause serious infections via a wide range of strategies, and host immune systems also develop extremely complex adaptations to counteract bacterial infections. As notable carriers, EVs take part in the interaction between the host and bacteria in several approaches. For host cells, several strategies have been developed to resist bacteria via EVs, including expelling damaged membranes and bacteria, neutralizing toxins, triggering innate immune responses and provoking adaptive immune responses in nearly the whole body. For bacteria, EVs function as vehicles to deliver toxins and contribute to immune escape. Due to their crucial functions, EVs have great application potential in vaccines, diagnosis and treatments. In the present review, we highlight the most recent advances, application potential and remaining challenges in understanding EVs in the interaction between the host and bacteria.
Collapse
Affiliation(s)
- Chaoyu Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
- Department of Hematology and Hematology Research Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Yige Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yu Wu
- Department of Hematology and Hematology Research Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|