1
|
Lucas R, Hadizamani Y, Gonzales J, Gorshkov B, Bodmer T, Berthiaume Y, Moehrlen U, Lode H, Huwer H, Hudel M, Mraheil MA, Toque HAF, Chakraborty T, Hamacher J. Impact of Bacterial Toxins in the Lungs. Toxins (Basel) 2020; 12:toxins12040223. [PMID: 32252376 PMCID: PMC7232160 DOI: 10.3390/toxins12040223] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial toxins play a key role in the pathogenesis of lung disease. Based on their structural and functional properties, they employ various strategies to modulate lung barrier function and to impair host defense in order to promote infection. Although in general, these toxins target common cellular signaling pathways and host compartments, toxin- and cell-specific effects have also been reported. Toxins can affect resident pulmonary cells involved in alveolar fluid clearance (AFC) and barrier function through impairing vectorial Na+ transport and through cytoskeletal collapse, as such, destroying cell-cell adhesions. The resulting loss of alveolar-capillary barrier integrity and fluid clearance capacity will induce capillary leak and foster edema formation, which will in turn impair gas exchange and endanger the survival of the host. Toxins modulate or neutralize protective host cell mechanisms of both the innate and adaptive immunity response during chronic infection. In particular, toxins can either recruit or kill central players of the lung's innate immune responses to pathogenic attacks, i.e., alveolar macrophages (AMs) and neutrophils. Pulmonary disorders resulting from these toxin actions include, e.g., acute lung injury (ALI), the acute respiratory syndrome (ARDS), and severe pneumonia. When acute infection converts to persistence, i.e., colonization and chronic infection, lung diseases, such as bronchitis, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) can arise. The aim of this review is to discuss the impact of bacterial toxins in the lungs and the resulting outcomes for pathogenesis, their roles in promoting bacterial dissemination, and bacterial survival in disease progression.
Collapse
Affiliation(s)
- Rudolf Lucas
- Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Department of Medicine and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Correspondence: (R.L.); (J.H.); Tel.: +41-31-300-35-00 (J.H.)
| | - Yalda Hadizamani
- Lungen-und Atmungsstiftung, Bern, 3012 Bern, Switzerland;
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, 3012 Bern, Switzerland
| | - Joyce Gonzales
- Department of Medicine and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Boris Gorshkov
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Thomas Bodmer
- Labormedizinisches Zentrum Dr. Risch, Waldeggstr. 37 CH-3097 Liebefeld, Switzerland;
| | - Yves Berthiaume
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Ueli Moehrlen
- Pediatric Surgery, University Children’s Hospital, Zürich, Steinwiesstrasse 75, CH-8032 Zürch, Switzerland;
| | - Hartmut Lode
- Insitut für klinische Pharmakologie, Charité, Universitätsklinikum Berlin, Reichsstrasse 2, D-14052 Berlin, Germany;
| | - Hanno Huwer
- Department of Cardiothoracic Surgery, Voelklingen Heart Center, 66333 Voelklingen/Saar, Germany;
| | - Martina Hudel
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Mobarak Abu Mraheil
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Haroldo Alfredo Flores Toque
- Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Trinad Chakraborty
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Jürg Hamacher
- Lungen-und Atmungsstiftung, Bern, 3012 Bern, Switzerland;
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, 3012 Bern, Switzerland
- Medical Clinic V-Pneumology, Allergology, Intensive Care Medicine and Environmental Medicine, Faculty of Medicine, Saarland University, University Medical Centre of the Saarland, D-66421 Homburg, Germany
- Institute for Clinical & Experimental Surgery, Faculty of Medicine, Saarland University, D-66421 Homburg, Germany
- Correspondence: (R.L.); (J.H.); Tel.: +41-31-300-35-00 (J.H.)
| |
Collapse
|
2
|
Bao Q, Liu Y, Song H, Yang N, Ai D, Zhu Y, Zhang X. Spectrum evaluation-assisted eicosanoid metabolomics for global eicosanoid profiling in human vascular endothelial cells. Clin Exp Pharmacol Physiol 2017; 45:98-108. [DOI: 10.1111/1440-1681.12825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Qiankun Bao
- Tianjin Key Laboratory of Metabolic Diseases; Department of Physiology and Pathophysiology; Tianjin Medical University; Tianjin China
| | - Yajin Liu
- Tianjin Key Laboratory of Metabolic Diseases; Department of Physiology and Pathophysiology; Tianjin Medical University; Tianjin China
| | - Hao Song
- Tianjin Key Laboratory of Metabolic Diseases; Department of Physiology and Pathophysiology; Tianjin Medical University; Tianjin China
| | - Nan Yang
- Department of Physiology and Pathophysiology; Peking University Health Science Center; Beijing China
| | - Ding Ai
- Tianjin Key Laboratory of Metabolic Diseases; Department of Physiology and Pathophysiology; Tianjin Medical University; Tianjin China
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases; Department of Physiology and Pathophysiology; Tianjin Medical University; Tianjin China
- Collaborative Innovation Center of Tianjin for Medical Epigenetics; Tianjin Medical University; Tianjin China
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases; Department of Physiology and Pathophysiology; Tianjin Medical University; Tianjin China
- Collaborative Innovation Center of Tianjin for Medical Epigenetics; Tianjin Medical University; Tianjin China
| |
Collapse
|
3
|
Abstract
Acute respiratory disease syndrome (ARDS) is a common complication of critical illness, associated with significant morbidity, prolonged intensive care unit (ICU) and hospital stay, and increased mortality. Inflammation plays a central role in ARDS, with inflammatory eicosanoid mediators produced from the ω-6 fatty acid arachidonic acid, such as leukotriene B4, being involved. The ω-3 fatty acids found in fish oil exert anti-inflammatory effects, including decreasing production of inflammatory eicosanoids from arachidonic acid. The ω-3 fatty acids are effective in models relevant to ARDS. Several randomized controlled trials of enteral formulas rich in ω-3 fatty acids, often in combination with other bioactive substances, have been conducted in patients with ARDS. Four of these trials reported marked clinical benefits, 2 reported no effect, and 1 reported a negative impact. A systematic review and meta-analysis of these 7 trials identified no overall effect on ventilator-free days or on ICU-free days. There was a small reduction in ICU length of stay and no overall effect on mortality. However, the authors formally identified that trials that used high fat in both treatment and control groups showed a significant reduction in mortality, while trials that used a high, or higher, fat treatment and a low-fat control group showed a trend toward an increase in mortality. It is concluded that differences in outcome reported among these studies largely relate to the relative fat contents of the treatment and control formulas. Further, it is concluded that high-fat enteral formulas should not be used in this patient group.
Collapse
Affiliation(s)
- Philip C Calder
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Yamada H, Oshiro E, Kikuchi S, Hakozaki M, Takahashi H, Kimura KI. Hydroxyeicosapentaenoic acids from the Pacific krill show high ligand activities for PPARs. J Lipid Res 2014; 55:895-904. [PMID: 24668940 DOI: 10.1194/jlr.m047514] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PPARs regulate the expression of genes for energy metabolism in a ligand-dependent manner. PPARs can influence fatty acid oxidation, the level of circulating triglycerides, glucose uptake and insulin sensitivity. Here, we demonstrate that 5-hydroxyeicosapentaenoic acid (HEPE), 8-HEPE, 9-HEPE, 12-HEPE and 18-HEPE (hydroxylation products of EPA) obtained from methanol extracts of Pacific krill (Euphausia pacifica) can act as PPAR ligands. Two of these products, 8-HEPE and 9-HEPE, enhanced the transcription levels of GAL4-PPARs to a significantly greater extent than 5-HEPE, 12-HEPE, 18-HEPE, EPA, and EPA ethyl-ester. 8-HEPE also activated significantly higher transcription of GAL4-PPARα, GAL4-PPARγ, and GAL4-PPARδ than EPA at concentrations greater than 4, 64, and 64 μM, respectively. We also demonstrated that 8-HEPE increased the expression levels of genes regulated by PPARs in FaO, 3T3-F442A, and C2C12 cells. Furthermore, 8-HEPE enhanced adipogenesis and glucose uptake. By contrast, at the same concentrations, EPA showed weak or little effect, indicating that 8-HEPE was the more potent inducer of physiological effects.
Collapse
Affiliation(s)
- Hidetoshi Yamada
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | | | | | | | | | | |
Collapse
|
5
|
McDaniel JC, Massey K, Nicolaou A. Fish oil supplementation alters levels of lipid mediators of inflammation in microenvironment of acute human wounds. Wound Repair Regen 2011; 19:189-200. [PMID: 21362086 PMCID: PMC3686090 DOI: 10.1111/j.1524-475x.2010.00659.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic wounds often result from prolonged inflammation involving excessive polymorphonuclear leukocyte activity. Studies show that the ω-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) found in fish oils generate bioactive lipid mediators that reduce inflammation and polymorphonuclear leukocyte recruitment in numerous inflammatory disease models. This study's purpose was to test the hypotheses that boosting plasma levels of EPA and DHA with oral supplementation would alter lipid mediator levels in acute wound microenvironments and reduce polymorphonuclear leukocyte levels. Eighteen individuals were randomized to 28 days of either EPA+DHA supplementation (Active Group) or placebo. After 28 days, the Active Group had significantly higher plasma levels of EPA (p<0.001) and DHA (p<0.001) than the Placebo Group and significantly lower wound fluid levels of two 15-lipoxygenase products of ω-6 polyunsaturated fatty acids (9-hydroxyoctadecadienoic acid [p=0.033] and 15-hydroxyeicosatrienoic acid [p=0.006]), at 24 hours postwounding. The Active Group also had lower mean levels of myeloperoxidase, a leukocyte marker, at 12 hours and significantly more reepithelialization on Day 5 postwounding. We suggest that lipid mediator profiles can be manipulated by altering polyunsaturated fatty acid intake to create a wound microenvironment more conducive to healing.
Collapse
Affiliation(s)
- Jodi C McDaniel
- College of Nursing, The Ohio State University, Columbus, Ohio 43210-1289, USA.
| | | | | |
Collapse
|
7
|
Fickl H, Cockeran R, Steel HC, Feldman C, Cowan G, Mitchell TJ, Anderson R. Pneumolysin-mediated activation of NFkappaB in human neutrophils is antagonized by docosahexaenoic acid. Clin Exp Immunol 2005; 140:274-81. [PMID: 15807851 PMCID: PMC1809376 DOI: 10.1111/j.1365-2249.2005.02757.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
This study was designed to investigate the relationship between influx of extracellular Ca(2+), activation of NFkappaB and synthesis of interleukin-8 (IL-8) following exposure of human neutrophils to subcytolytic concentrations (8.37 and 41.75 ng/ml) of the pneumococcal toxin, pneumolysin, as well as the potential of the omega-3 polyunsaturated fatty acid, docosahexaenoic acid, to antagonize these events. Activation and translocation of NFkappaB were measured using a radiometric electrophoretic mobility shift assay, while influx of extracellular Ca(2+) and synthesis of IL-8 were determined using a radioassay and an ELISA procedure, respectively. Exposure of neutrophils to pneumolysin was accompanied by influx of Ca(2+), activation of NFkappaB, and synthesis of IL-8, all of which were eliminated by inclusion of the Ca(2+)-chelating agent, EGTA (10 m m), in the cell-suspending medium, as well as by pretreatment of the cells with docosahexaenoic acid (5 and 10 microg/ml). The antagonistic effects of docosahexaenoic acid on these pro-inflammatory interactions of pneumolysin with neutrophils were not attributable to inactivation of the toxin, and required the continuous presence of the fatty acid. These observations demonstrate that activation of NFkappaB and synthesis of IL-8, following exposure of neutrophils to pneumolysin are dependent on toxin-mediated influx of Ca(2+) and that these potentially harmful activities of the toxin are antagonized by docosahexaenoic acid.
Collapse
Affiliation(s)
- H Fickl
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, University of PretoriaPretoria
| | - R Cockeran
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, University of PretoriaPretoria
| | - H C Steel
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, University of PretoriaPretoria
| | - C Feldman
- Division of Pulmonology, Department of Medicine, Johannesburg Hospital and University of the WitwatersrandJohannesburg, South Africa
| | - G Cowan
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of GlasgowGlasgow, UK
| | - T J Mitchell
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of GlasgowGlasgow, UK
| | - R Anderson
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, University of PretoriaPretoria
| |
Collapse
|
8
|
Rose F, Dahlem G, Guthmann B, Grimminger F, Maus U, Hänze J, Duemmer N, Grandel U, Seeger W, Ghofrani HA. Mediator generation and signaling events in alveolar epithelial cells attacked by S. aureus alpha-toxin. Am J Physiol Lung Cell Mol Physiol 2002; 282:L207-14. [PMID: 11792625 DOI: 10.1152/ajplung.00156.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Staphylococcus aureus alpha-toxin is a pore-forming bacterial exotoxin that has been implicated as a significant virulence factor in human staphylococcal diseases. In primary cultures of rat pneumocyte type II cells and the human A549 alveolar epithelial cell line, purified alpha-toxin provoked rapid-onset phosphatidylinositol (PtdIns) hydrolysis as well as liberation of nitric oxide and the prostanoids PGE(2), PGI(2), and thromboxane A(2). In addition, sustained upregulation of proinflammatory interleukin (IL)-8 mRNA expression and protein secretion occurred. "Priming" with low-dose IL-1beta markedly enhanced the IL-8 response to alpha-toxin, which was then accompanied by IL-6 appearance. The cytokine response was blocked by the intracellular Ca(2+)-chelating reagent 1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, the protein kinase C inhibitor bis-indolyl maleimide I, as well as two independent inhibitors of nuclear factor-kappaB activation, pyrrolidine dithiocarbamate and caffeic acid phenethyl ester. We conclude that alveolar epithelial cells are highly reactive target cells of staphylococcal alpha-toxin. alpha-Toxin pore-associated transmembrane Ca(2+) flux and PtdIns hydrolysis-related signaling with downstream activation of protein kinase C and nuclear translocation of nuclear factor-kappaB are suggested to represent important underlying mechanisms. Such reactivity of the alveolar epithelial cells may be relevant for pathogenic sequelae in staphylococcal lung disease.
Collapse
Affiliation(s)
- Frank Rose
- Department of Internal Medicine, Justus-Liebig University, Giessen D-35392, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|