1
|
Harris ES, McIntire HJ, Mazur M, Schulz-Hildebrandt H, Leung HM, Tearney GJ, Krick S, Rowe SM, Barnes JW. Reduced sialylation of airway mucin impairs mucus transport by altering the biophysical properties of mucin. Sci Rep 2024; 14:16568. [PMID: 39019950 PMCID: PMC11255327 DOI: 10.1038/s41598-024-66510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
Mucus stasis is a pathologic hallmark of muco-obstructive diseases, including cystic fibrosis (CF). Mucins, the principal component of mucus, are extensively modified with hydroxyl (O)-linked glycans, which are largely terminated by sialic acid. Sialic acid is a negatively charged monosaccharide and contributes to the biochemical/biophysical properties of mucins. Reports suggest that mucin sialylation may be altered in CF; however, the consequences of reduced sialylation on mucus clearance have not been fully determined. Here, we investigated the consequences of reduced sialylation on the charge state and conformation of the most prominent airway mucin, MUC5B, and defined the functional consequences of reduced sialylation on mucociliary transport (MCT). Reduced sialylation contributed to a lower charged MUC5B form and decreased polymer expansion. The inhibition of total mucin sialylation de novo impaired MCT in primary human bronchial epithelial cells and rat airways, and specific α-2,3 sialylation blockade was sufficient to recapitulate these findings. Finally, we show that ST3 beta-galactoside alpha-2,3-sialyltransferase (ST3Gal1) expression is downregulated in CF and partially restored by correcting CFTR via Elexacaftor/Tezacaftor/Ivacaftor treatment. Overall, this study demonstrates the importance of mucin sialylation in mucus clearance and identifies decreased sialylation by ST3Gal1 as a possible therapeutic target in CF and potentially other muco-obstructive diseases.
Collapse
Affiliation(s)
- Elex S Harris
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hannah J McIntire
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marina Mazur
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA
| | | | - Hui Min Leung
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Guillermo J Tearney
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Stefanie Krick
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA.
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Departments of Pediatrics and Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Jarrod W Barnes
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 1900 University Blvd. Tinsley Harrison Tower, Suite 422, Birmingham, AL, 35294, USA.
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
2
|
Harris ES, McIntire HJ, Mazur M, Schulz-Hildebrandt H, Leung HM, Tearney GJ, Krick S, Rowe SM, Barnes JW. Reduced Sialylation of Airway Mucin Impairs Mucus Transport by Altering the Biophysical Properties of Mucin. RESEARCH SQUARE 2024:rs.3.rs-4421613. [PMID: 38853971 PMCID: PMC11160914 DOI: 10.21203/rs.3.rs-4421613/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Mucus stasis is a pathologic hallmark of muco-obstructive diseases, including cystic fibrosis (CF). Mucins, the principal component of mucus, are extensively modified with hydroxyl (O)-linked glycans, which are largely terminated by sialic acid. Sialic acid is a negatively charged monosaccharide and contributes to the biochemical/biophysical properties of mucins. Reports suggest that mucin sialylation may be altered in CF; however, the consequences of reduced sialylation on mucus clearance have not been fully determined. Here, we investigated the consequences of reduced sialylation on the charge state and conformation of the most prominent airway mucin, MUC5B, and defined the functional consequences of reduced sialylation on mucociliary transport (MCT). Reduced sialylation contributed to a lower charged MUC5B form and decreased polymer expansion. The inhibition of total mucin sialylation de novo impaired MCT in primary human bronchial epithelial cells and rat airways, and specific α-2,3 sialylation blockade was sufficient to recapitulate these findings. Finally, we show that ST3 beta-galactoside alpha-2,3-sialyltransferase (ST3Gal1) expression is downregulated in CF and partially restored by correcting CFTR via Elexacaftor/Tezacaftor/Ivacaftor treatment. Overall, this study demonstrates the importance of mucin sialylation in mucus clearance and identifies decreased sialylation by ST3Gal1 as a possible therapeutic target in CF and potentially other muco-obstructive diseases.
Collapse
Affiliation(s)
- Elex S Harris
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | - Hannah J McIntire
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | - Marina Mazur
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | - Stefanie Krick
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| | - Jarrod W Barnes
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
3
|
Venkatakrishnan V, Thaysen-Andersen M, Chen SCA, Nevalainen H, Packer NH. Cystic fibrosis and bacterial colonization define the sputum N-glycosylation phenotype. Glycobiology 2014; 25:88-100. [DOI: 10.1093/glycob/cwu092] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
4
|
Crabbé A, Ledesma MA, Nickerson CA. Mimicking the host and its microenvironment in vitro for studying mucosal infections by Pseudomonas aeruginosa. Pathog Dis 2014; 71:1-19. [PMID: 24737619 DOI: 10.1111/2049-632x.12180] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 02/01/2023] Open
Abstract
Why is a healthy person protected from Pseudomonas aeruginosa infections, while individuals with cystic fibrosis or damaged epithelium are particularly susceptible to this opportunistic pathogen? To address this question, it is essential to thoroughly understand the dynamic interplay between the host microenvironment and P. aeruginosa. Therefore, using model systems that represent key aspects of human mucosal tissues in health and disease allows recreating in vivo host-pathogen interactions in a physiologically relevant manner. In this review, we discuss how factors of mucosal tissues, such as apical-basolateral polarity, junctional complexes, extracellular matrix proteins, mucus, multicellular complexity (including indigenous microbiota), and other physicochemical factors affect P. aeruginosa pathogenesis and are thus important to mimic in vitro. We highlight in vitro cell and tissue culture model systems of increasing complexity that have been used over the past 35 years to study the infectious disease process of P. aeruginosa, mainly focusing on lung models, and their respective advantages and limitations. Continued improvements of in vitro models based on our expanding knowledge of host microenvironmental factors that participate in P. aeruginosa pathogenesis will help advance fundamental understanding of pathogenic mechanisms and increase the translational potential of research findings from bench to the patient's bedside.
Collapse
Affiliation(s)
- Aurélie Crabbé
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ, USA
| | | | | |
Collapse
|
5
|
Venkatakrishnan V, Packer NH, Thaysen-Andersen M. Host mucin glycosylation plays a role in bacterial adhesion in lungs of individuals with cystic fibrosis. Expert Rev Respir Med 2014; 7:553-76. [DOI: 10.1586/17476348.2013.837752] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
6
|
Martino AT, Mueller C, Braag S, Cruz PE, Campbell-Thompson M, Jin S, Flotte TR. N-glycosylation augmentation of the cystic fibrosis epithelium improves Pseudomonas aeruginosa clearance. Am J Respir Cell Mol Biol 2010; 44:824-30. [PMID: 20693405 DOI: 10.1165/rcmb.2009-0285oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Chronic lung colonization with Pseudomonas aeruginosa is anticipated in cystic fibrosis (CF). Abnormal terminal glycosylation has been implicated as a candidate for this condition. We previously reported a down-regulation of mannose-6-phosphate isomerase (MPI) for core N-glycan production in the CFTR-defective human cell line (IB3). We found a 40% decrease in N-glycosylation of IB3 cells compared with CFTR-corrected human cell line (S9), along with a threefold-lower surface attachment of P. aeruginosa strain, PAO1. There was a twofold increase in intracellular bacteria in S9 cells compared with IB3 cells. After a 4-hour clearance period, intracellular bacteria in IB3 cells increased twofold. Comparatively, a twofold decrease in intracellular bacteria occurred in S9 cells. Gene augmentation in IB3 cells with hMPI or hCFTR reversed these IB3 deficiencies. Mannose-6-phosphate can be produced from external mannose independent of MPI, and correction in the IB3 clearance deficiencies was observed when cultured in mannose-rich medium. An in vivo model for P. aeruginosa colonization in the upper airways revealed an increased bacterial burden in the trachea and oropharynx of nontherapeutic CF mice compared with mice treated either with an intratracheal delivery adeno-associated viral vector 5 expressing murine MPI, or a hypermannose water diet. Finally, a modest lung inflammatory response was observed in CF mice, and was partially corrected by both treatments. Augmenting N-glycosylation to attenuate colonization of P. aeruginosa in CF airways reveals a new therapeutic avenue for a hallmark disease condition in CF.
Collapse
Affiliation(s)
- Ashley T Martino
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Perez A, van Heeckeren AM, Nichols D, Gupta S, Eastman JF, Davis PB. Peroxisome proliferator-activated receptor-gamma in cystic fibrosis lung epithelium. Am J Physiol Lung Cell Mol Physiol 2008; 295:L303-13. [PMID: 18556801 DOI: 10.1152/ajplung.90276.2008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pathophysiology of cystic fibrosis (CF) inflammatory lung disease is not well understood. CF airway epithelial cells respond to inflammatory stimuli with increased production of proinflammatory cytokines as a result of increased NF-kappaB activation. Peroxisome proliferator-activated receptor-gamma (PPARgamma) inhibits NF-kappaB activity and is reported to be reduced in CF. If PPARgamma participates in regulatory dysfunction in the CF lung, perhaps PPARgamma ligands might be useful therapeutically. Cell models of CF airway epithelium were used to evaluate PPARgamma expression and binding to NF-kappaB at basal and under conditions of inflammatory stimulation by Pseudomonas aeruginosa or TNFalpha/IL-1beta. An animal model of CF was used to evaluate the potential of PPARgamma agonists as therapeutic agents in vivo. In vitro, PPARgamma agonists reduced IL-8 and MMP-9 release from airway epithelial cells in response to PAO1 or TNFalpha/IL-1beta stimulation. Less NF-kappaB bound to PPARgamma in CF than normal cells, in two different assays; PPARgamma agonists abrogated this reduction. PPARgamma bound less to its target DNA sequence in CF cells. To test the importance of the reported PPARgamma inactivation by phosphorylation, we observed that inhibitors of ERK, but not JNK, were synergistic with PPARgamma agonists in reducing IL-8 secretion. In vivo, administration of PPARgamma agonists reduced airway inflammation in response to acute infection with P. aeruginosa in CF, but not wild-type, mice. In summary, PPARgamma inhibits the inflammatory response in CF, at least in part by interaction with NF-kappaB in airway epithelial cells. PPARgamma agonists may be therapeutic in CF.
Collapse
Affiliation(s)
- Aura Perez
- Deptartment of Pediatrics, School of Medicine, Case Western Reserve University, BRB Bldg. R829, 10900 Euclid Ave., Cleveland, OH 44106-4948, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Schulz BL, Sloane AJ, Robinson LJ, Prasad SS, Lindner RA, Robinson M, Bye PT, Nielson DW, Harry JL, Packer NH, Karlsson NG. Glycosylation of sputum mucins is altered in cystic fibrosis patients. Glycobiology 2007; 17:698-712. [PMID: 17392389 DOI: 10.1093/glycob/cwm036] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cystic fibrosis (CF) is characterized by chronic lung infection and inflammation, with periods of acute exacerbation causing severe and irreversible lung tissue damage. We used protein and glycosylation analysis of high-molecular mass proteins in saline-induced sputum from CF adults with and without an acute exacerbation, CF children with stable disease and preserved lung function, and healthy non-CF adult and child controls to identify potential biomarkers of lung condition. While the main high-molecular mass proteins in the sputum from all subjects were the mucins MUC5B and MUC5AC, these appeared degraded in CF adults with an exacerbation. The glycosylation of these mucins also showed reduced sulfation, increased sialylation, and reduced fucosylation in CF adults compared with controls. Despite improvements in pulmonary function after hospitalization, these differences remained. Two CF children showed glycoprotein profiles similar to those of CF adults with exacerbations and also presented with pulmonary flares shortly after sampling, while the remaining CF children had profiles indistinguishable from those of healthy non-CF controls. Sputum mucin glycosylation and degradation are therefore not inherently different in CF, and may also be useful predictive biomarkers of lung condition.
Collapse
Affiliation(s)
- Benjamin L Schulz
- Proteome Systems Ltd, Unit 1, 35-41 Waterloo Road, North Ryde, Sydney, NSW 2113, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Perez A, Issler AC, Cotton CU, Kelley TJ, Verkman AS, Davis PB. CFTR inhibition mimics the cystic fibrosis inflammatory profile. Am J Physiol Lung Cell Mol Physiol 2007; 292:L383-95. [PMID: 16920886 DOI: 10.1152/ajplung.00403.2005] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Primary airway epithelial cells grown in air-liquid interface differentiate into cultures that resemble native epithelium morphologically, express ion transport similar to those in vivo, and secrete cytokines in response to stimuli. Comparisons of cultures derived from normal and cystic fibrosis (CF) individuals are difficult to interpret due to genetic differences besides CFTR. The recently discovered CFTR inhibitor, CFTRinh-172, was used to create a CF model with its own control to test if loss of CFTR-Cl− conductance alone was sufficient to initiate the CF inflammatory response. Continuous inhibition of CFTR-Cl− conductance for 3–5 days resulted in significant increase in IL-8 secretion at basal ( P = 0.006) and in response to 109 Pseudomonas ( P = 0.0001), a fourfold decrease in Smad3 expression ( P = 0.02), a threefold increase in RhoA expression, and increased NF-κB nuclear translocation upon TNF-α/IL-1β stimulation ( P < 0.000001). CFTR inhibition by CFTRinh-172 over this period does not increase epithelial sodium channel activity, so lack of Cl− conductance alone can mimic the inflammatory CF phenotype. CFTRinh-172 does not affect IL-8, IL-6, or granulocyte/macrophage colony-stimulating factor secretion in two CF phenotype immortalized cell lines: 9/HTEo− pCEP-R and 16HBE14o− AS, or IL-8 secretion in primary CF cells, and inhibitor withdrawal abolishes the increased response, so CFTRinh-172 effects on cytokines are not direct. Five-day treatment with CFTRinh-172 does not affect cells deleteriously as evidenced by lactate dehydrogenase, trypan blue, ciliary activity, electron micrograph histology, and inhibition reversibility. Our results support the hypothesis that lack of CFTR activity is responsible for the onset of the inflammatory cascade in the CF lung.
Collapse
Affiliation(s)
- Aura Perez
- Department of Pediatrics, School of Medicine, Case Western Reserve University, BRB Bldg. R829, 10900 Euclid Ave., Cleveland, OH 44106-4948, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Kube DM, Fletcher D, Davis PB. Relation of exaggerated cytokine responses of CF airway epithelial cells to PAO1 adherence. Respir Res 2005; 6:69. [PMID: 16008840 PMCID: PMC1177994 DOI: 10.1186/1465-9921-6-69] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 07/11/2005] [Indexed: 11/10/2022] Open
Abstract
In many model systems, cystic fibrosis (CF) phenotype airway epithelial cells in culture respond to P. aeruginosa with greater interleukin (IL)-8 and IL-6 secretion than matched controls. In order to test whether this excess inflammatory response results from the reported increased adherence of P. aeruginosa to the CF cells, we compared the inflammatory response of matched pairs of CF and non CF airway epithelial cell lines to the binding of GFP-PAO1, a strain of pseudomonas labeled with green fluorescent protein. There was no clear relation between GFP-PAO1 binding and cytokine production in response to PAO1. Treatment with exogenous aGM1 resulted in greater GFP-PAO1 binding to the normal phenotype compared to CF phenotype cells, but cytokine production remained greater from the CF cell lines. When cells were treated with neuraminidase, PAO1 adherence was equalized between CF and nonCF phenotype cell lines, but IL-8 production in response to inflammatory stimuli was still greater in CF phenotype cells. The polarized cell lines 16HBEo-Sense (normal phenotype) and Antisense (CF phenotype) cells were used to test the effect of disrupting tight junctions, which allows access of PAO1 to basolateral binding sites in both cell lines. IL-8 production increased from CF, but not normal, cells. These data indicate that increased bacterial binding to CF phenotype cells cannot by itself account for excess cytokine production in CF airway epithelial cells, encourage investigation of alternative hypotheses, and signal caution for therapeutic strategies proposed for CF that include disruption of tight junctions in the face of pseudomonas infection.
Collapse
Affiliation(s)
- Dianne M Kube
- Department of Pediatrics, Case Western Reserve University School of Medicine, BRB 8floor, 2109 Adelbert Rd. Cleveland, OH 44106, USA
| | - David Fletcher
- Department of Pediatrics, Case Western Reserve University School of Medicine, BRB 8floor, 2109 Adelbert Rd. Cleveland, OH 44106, USA
| | - Pamela B Davis
- Department of Pediatrics, Case Western Reserve University School of Medicine, BRB 8floor, 2109 Adelbert Rd. Cleveland, OH 44106, USA
| |
Collapse
|
11
|
Kunzelmann K, McMorran B. First Encounter: How Pathogens Compromise Epithelial Transport. Physiology (Bethesda) 2004; 19:240-4. [PMID: 15381751 DOI: 10.1152/physiol.00015.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pathogenic organisms trigger numerous signaling pathways that ultimately lead to drastic changes in physiological functions. Apart from altering structure and function of the epithelial tight junction barrier and activating inflammatory cascades, they induce changes in fluid and electrolyte transport. Pathogens do so by activating or by inhibiting ion channels and transporters, and the result might be to their benefit or to their disadvantage.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, D-93053 Regensburg, Germany.
| | | |
Collapse
|
12
|
Soong G, Reddy B, Sokol S, Adamo R, Prince A. TLR2 is mobilized into an apical lipid raft receptor complex to signal infection in airway epithelial cells. J Clin Invest 2004; 113:1482-9. [PMID: 15146246 PMCID: PMC406530 DOI: 10.1172/jci20773] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Accepted: 03/24/2004] [Indexed: 01/01/2023] Open
Abstract
Toll-like receptors (TLRs) mediate host responses to bacterial gene products. As the airway epithelium is potentially exposed to many diverse inhaled bacteria, TLRs involved in defense of the airways must be broadly responsive, available at the exposed apical surface of the cells, and highly regulated to prevent activation following trivial encounters with bacteria. We demonstrate that TLR2 is enriched in caveolin-1-associated lipid raft microdomains presented on the apical surface of airway epithelial cells after bacterial infection. These receptor complexes include myeloid differentiation protein (MyD88), interleukin-1 receptor-activated kinase-1, and TNF receptor-associated factor 6. The signaling capabilities of TLR2 are amplified through its association with the asialoganglioside gangliotetraosylceramide (Gal beta 1,2GalNAc beta 1,4Gal beta 1,4Glc beta 1,1Cer), which has receptor function itself for many pulmonary pathogens. Ligation of either TLR2 or asialoGM1 by ligands with specificity for either receptor, by Pseudomonas aeruginosa, or by Staphylococcus aureus stimulates IL-8 production through activation of NF-kappa B, as mediated by TLR2 and MyD88. Thus, TLR2 in association with asialo-glycolipids presented within the context of lipid rafts provides a broadly responsive signaling complex at the apical surfaces of airway cells to initiate the host response to potential bacterial infection.
Collapse
Affiliation(s)
- Grace Soong
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
13
|
Soong G, Reddy B, Sokol S, Adamo R, Prince A. TLR2 is mobilized into an apical lipid raft receptor complex to signal infection in airway epithelial cells. J Clin Invest 2004. [DOI: 10.1172/jci200420773] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
Muir A, Soong G, Sokol S, Reddy B, Gomez MI, Van Heeckeren A, Prince A. Toll-like receptors in normal and cystic fibrosis airway epithelial cells. Am J Respir Cell Mol Biol 2003; 30:777-83. [PMID: 14656745 DOI: 10.1165/rcmb.2003-0329oc] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Toll-like receptors (TLRs) mediate cellular responses to diverse microbial ligands. The distribution and function of TLRs in airway cells were studied to identify which are available to signal the presence of inhaled pathogens and to establish if differences in TLR expression are associated with the increased proinflammatory responses seen in cystic fibrosis (CF). Isogenic, polarized CF and control bronchial epithelial cell lines, human airway cells in primary culture, and cftr null and wild-type mice were compared. TLRs 1-10, MD2, and MyD88 were expressed in CF and normal cells. Only TLR2 transcription was modestly increased in CF as compared with normal epithelial cells following bacterial stimulation. TLR2 was predominantly at the apical surface of airway cells and was mobilized to cell surface in response to bacteria. TLR4 was present in a more basolateral distribution in airway cells, but appeared to have a limited role in epithelial responses. Lipopolysaccharide failed to activate nuclear factor-kappaB in these cells, and TLR2 dominant negative but not TLR4 dominant negative mutants inhibited activation by both Gram-negative and Gram-positive bacteria. Increased availability of TLR2 at the apical surfaces of CF epithelial cells is consistent with the increased proinflammatory responses seen in CF airways and suggests a selective participation of TLRs in the airway mucosa.
Collapse
Affiliation(s)
- Amanda Muir
- Department of Pediatrics and Pharmacology, College of Physicians and Surgeons, Columbia University, 416 Black Building, 650 W. 168th Street, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
A subset of cellular compartments maintain acidic interior environments that are critical for the specific functions of each organelle and for cell growth and survival in general. The pH of each organelle reflects the balance between proton pumping, counterion conductance, and proton leak. Alterations in steady-state organelle pH due to defects in either proton pumping activity or counterion conductance have been suggested to contribute to the pathology of several diseases; however, definitive evidence remains elusive. This review describes recent evidence for the misregulation of organelle pH in the progression of cancer, Dent's disease, and cystic fibrosis.
Collapse
Affiliation(s)
- Ora A Weisz
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, 3550 Terrace St., Pittsburgh, PA 15261, USA.
| |
Collapse
|
16
|
Abstract
Due to their diversity and external location on cell membranes, glycans, as glycocalyx components, are key elements in eukaryotic cell, tissue, and organ homeostasis. Although information on the lung glycocalyx is scarce, this article aims to review, discuss, and summarize what is known about bronchoalveolar glycocalyx composition, mainly the sialic acids. It was deemed relevant, however, to make a brief introductory overview of the cell glycocalyx and its particular development in epithelial cells. After that, follows a summary of the evolution of the knowledge regarding the bronchoalveolar glycocalyx composition throughout the years, particularly its morphological features. Since sialic acids are located terminally on the bronchoalveolar lining cells' glycocalyx and play crucial roles, we focused mainly on the existing lung histochemical and biochemical data of these sugar residues, as well as their evolution throughout lung development. The functions of the lung glycocalyx sialic acids are discussed and interpretations of their roles analyzed, including those related to the negative overall superficial shield provided by these molecules. The increasing presence of these sugar residues throughout postnatal lung development should be regarded as pivotal in the development and maintenance of a dynamic bronchoalveolar architecture, supporting the normal histophysiology of the respiratory system. The case for a profound knowledge of lung glycocalyx--given its potential to provide answers to serious clinical problems--is made with particular reference to cystic fibrosis. Finally, concluding remarks and perspectives for future research in this field are put forth.
Collapse
Affiliation(s)
- Maria de Fátima Martins
- Institute of Histology and Embryology and Center for Histophysiology, Experimental Pathology and Developmental Biology, Faculty of Medicine, University of Coimbra, Portugal
| | | |
Collapse
|
17
|
Fozzard HA, Kyle JW. Do Defects in Ion Channel Glycosylation Set the Stage for Lethal Cardiac Arrhythmias? Sci Signal 2002. [DOI: 10.1126/scisignal.1302002pe19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
18
|
Fozzard HA, Kyle JW. Do defects in ion channel glycosylation set the stage for lethal cardiac arrhythmias? SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:pe19. [PMID: 11983936 DOI: 10.1126/stke.2002.130.pe19] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Many ion channels are modified by the addition of carbohydrate residues. Fozzard and Kyle discuss evidence that sialic acid residues on glycosylated cardiac sodium and potassium channels may be important for preventing early after-depolarizations that can result in cardiac arrhythmias.
Collapse
Affiliation(s)
- Harry A Fozzard
- Cardiac Electrophysiology Laboratories, Departments of Medicine and of Neurobiology, Pharmacology, and Physiology, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
19
|
Abstract
While originally characterized as a collection of related syndromes, cystic fibrosis (CF) is now recognized as a single disease whose diverse symptoms stem from the wide tissue distribution of the gene product that is defective in CF, the ion channel and regulator, cystic fibrosis transmembrane conductance regulator (CFTR). Defective CFTR protein impacts the function of the pancreas and alters the consistency of mucosal secretions. The latter of these effects probably plays an important role in the defective resistance of CF patients to many pathogens. As the modalities of CF research have changed over the decades from empirical histological studies to include biophysical measurements of CFTR function, the clinical management of this disease has similarly evolved to effectively address the ever-changing spectrum of CF-related infectious diseases. These factors have led to the successful management of many CF-related infections with the notable exception of chronic lung infection with the gram-negative bacterium Pseudomonas aeruginosa. The virulence of P. aeruginosa stems from multiple bacterial attributes, including antibiotic resistance, the ability to utilize quorum-sensing signals to form biofilms, the destructive potential of a multitude of its microbial toxins, and the ability to acquire a mucoid phenotype, which renders this microbe resistant to both the innate and acquired immunologic defenses of the host.
Collapse
Affiliation(s)
- Jeffrey B. Lyczak
- Channing Laboratory, Brigham and Women's Hospital,, Harvard Medical School,, Children's Hospital, Boston, MA 02115
| | - Carolyn L. Cannon
- Channing Laboratory, Brigham and Women's Hospital,, Harvard Medical School,, Children's Hospital, Boston, MA 02115
| | - Gerald B. Pier
- Channing Laboratory, Brigham and Women's Hospital,, Harvard Medical School,, Children's Hospital, Boston, MA 02115
- Corresponding author. Mailing address: Channing Laboratory, 181 Longwood Ave., Boston, MA 02115. Phone: (617) 525-2269. Fax: (617) 525-2510.
| |
Collapse
|
20
|
Kelley TJ, Elmer HL, Corey DA. Reduced Smad3 protein expression and altered transforming growth factor-beta1-mediated signaling in cystic fibrosis epithelial cells. Am J Respir Cell Mol Biol 2001; 25:732-8. [PMID: 11726399 DOI: 10.1165/ajrcmb.25.6.4574] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cystic fibrosis (CF) is a disease characterized by an aggressive inflammatory response in the airways. Given the antiinflammatory properties of transforming growth factor (TGF)-beta1, it was our goal to examine components of TGF-beta1-mediated signaling in both a cultured cell model and a mouse model of CF. A CF-related reduction of protein levels of the TGF-beta1 signaling molecule Smad3 was found in both of these model systems, whereas Smad4 levels were unchanged. Functional effects of reduced Smad3 expression are manifest in our cultured cell model, as reduced basal and TGF-beta1-stimulated levels of luciferase expression using the TGF-beta1-responsive reporter construct 3TP-Lux in the CF-phenotype cells compared with control cells. However, TGF-beta1-stimulated responses using the A3-Luc reporter construct were normal in both cell lines. These results suggest that select TGF-beta1-mediated signaling pathways are impaired in CF epithelial cells. This selective loss of Smad3 protein expression in CF epithelium may also influence inflammatory responses. Our data demonstrate that both CF-phenotype cells lacking Smad3 expression, and A549 cells expressing a dominant-negative Smad3, are unable to support TGF-beta1-mediated inhibition of either the interleukin (IL)-8 or the NOS2 promoter. We conclude that a CF-related reduction in Smad3 protein expression selectively alters TGF- beta1-mediated signaling in CF epithelium, potentially contributing to aggressive inflammatory responses.
Collapse
Affiliation(s)
- T J Kelley
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106-4948, USA.
| | | | | |
Collapse
|
21
|
Poschet JF, Boucher JC, Tatterson L, Skidmore J, Van Dyke RW, Deretic V. Molecular basis for defective glycosylation and Pseudomonas pathogenesis in cystic fibrosis lung. Proc Natl Acad Sci U S A 2001; 98:13972-7. [PMID: 11717455 PMCID: PMC61151 DOI: 10.1073/pnas.241182598] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The CFTR gene encodes a transmembrane conductance regulator, which is dysfunctional in patients with cystic fibrosis (CF). The mechanism by which defective CFTR (CF transmembrane conductance regulator) leads to undersialylation of plasma membrane glycoconjugates, which in turn promote lung pathology and colonization with Pseudomonas aeruginosa causing lethal bacterial infections in CF, is not known. Here we show by ratiometric imaging with lumenally exposed pH-sensitive green fluorescent protein that dysfunctional CFTR leads to hyperacidification of the trans-Golgi network (TGN) in CF lung epithelial cells. The hyperacidification of TGN, glycosylation defect of plasma membrane glycoconjugates, and increased P. aeruginosa adherence were corrected by incubating CF respiratory epithelial cells with weak bases. Studies with pharmacological agents indicated a role for sodium conductance, modulated by CFTR regulatory function, in determining the pH of TGN. These studies demonstrate the molecular basis for defective glycosylation of lung epithelial cells and bacterial pathogenesis in CF, and suggest a cure by normalizing the pH of intracellular compartments.
Collapse
Affiliation(s)
- J F Poschet
- Department of Microbiology and Immunology University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
22
|
Rhim AD, Stoykova L, Glick MC, Scanlin TF. Terminal glycosylation in cystic fibrosis (CF): a review emphasizing the airway epithelial cell. Glycoconj J 2001; 18:649-59. [PMID: 12386452 DOI: 10.1023/a:1020815205022] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Altered terminal glycosylation, with increased fucosylation and decreased sialylation is a hallmark of the cystic fibrosis (CF) glycosylation phenotype. Oligosaccharides purified from the surface membrane glycoconjugates of CF airway epithelial cells have the Lewis x, selectin ligand in terminal positions. This review is focused on the investigations of the glycoconjugates of the CF airway epithelial cell surface. Two of the major bacterial pathogens in CF, Pseudomonas aeruginosa and Haemophilus influenzae, have binding proteins which recognize fucose in alpha-1,3 linkage and asialoglycoconjugates. Therefore, consideration has been given to the possibility that the altered terminal glycosylation of airway epithelial glycoproteins in CF contributes to both the chronic infection and the robust, but ineffective, inflammatory response in the CF lung. Since the glycosylation phenotype of CF airway epithelial cells have been modulated by the expression of wtCFTR, the hypotheses which have been proposed to relate altered function of CFTR to the regulation of the glycosyltransferases are discussed. Understanding the effects of mutant CFTR on glycosylation may provide further insight into the regulation of glycoconjugate processing as well as new approaches to the therapy of CF.
Collapse
Affiliation(s)
- A D Rhim
- The Cystic Fibrosis Center and Department of Pediatrics, University of Pennsylvania School of Medicine, The Children's Hospital of Philadelphia, 3516 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
23
|
Brockhausen I, Vavasseur F, Yang X. Biosynthesis of mucin type O-glycans: lack of correlation between glycosyltransferase and sulfotransferase activities and CFTR expression. Glycoconj J 2001; 18:685-97. [PMID: 12386454 DOI: 10.1023/a:1020819305931] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Structural differences have been reported in the glycosylation patterns of cystic fibrosis glycoproteins. Although the gene mutated in cystic fibrosis (CFTR) has been cloned and characterized as a chloride channel, its relationship to the highly viscous mucus and structural glycoprotein and mucin abnormalities in cystic fibrosis still remains to be defined. We have evaluated O-glycan biosynthesis in CHO and BHK cells that express CFTR and DeltaF508 CFTR as in vitro models, and utilized the cftr knockout mouse as an in vivo model of CFTR dysfunction. Activities of glycosyltransferases and sulfotransferases synthesizing mucin type O-glycan chains were determined in these models. Differences in transferase activity levels were found between tissues and cell types and during mouse development. No specific patterns of activities were associated with the lack of CFTR or with DeltaF508CFTR expression. This suggests that it is not the presence or absence of normal CFTR, or the presence of mutant CFTR alone, but rather cell specific additional factors or pathophysiological consequences that determine the changes in mucin glycosylation in cystic fibrosis.
Collapse
Affiliation(s)
- I Brockhausen
- Department of Medicine, Etherington Hall, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | | | | |
Collapse
|
24
|
Kube D, Sontich U, Fletcher D, Davis PB. Proinflammatory cytokine responses to P. aeruginosa infection in human airway epithelial cell lines. Am J Physiol Lung Cell Mol Physiol 2001; 280:L493-502. [PMID: 11159033 DOI: 10.1152/ajplung.2001.280.3.l493] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A tendency toward excessive inflammation in cystic fibrosis (CF) patients often accompanies lung infections with Pseudomonas aeruginosa. We tested the cytokine response to P. aeruginosa in two pairs of human airway epithelial cell lines matched except for CF transmembrane conductance regulator activity. The 9/HTEo(-) CF-phenotypic cell line produced significantly more interleukin (IL)-8, IL-6, and granulocyte-macrophage colony-stimulating factor but not regulated on activation normal T cell expressed and secreted (RANTES) in response to Pseudomonas than the 9/HTEo(-) control line, and the differences widened over time. Similarly, a 16HBE cell line lacking transmembrane conductance regulator activity showed enhanced IL-8 and IL-6 responses compared with the control cell line. The pharmacology of the cytokine response also differed because dexamethasone reduced cytokine production to similar levels in the matched cell lines. The protracted proinflammatory cytokine response of the CF-phenotypic cell lines suggests that the limiting mechanisms of normal cells are absent or attenuated. These results are consistent with in vivo observations in patients with CF and suggest that our novel cell lines may be useful for further investigation of the proinflammatory responses in CF airways.
Collapse
Affiliation(s)
- D Kube
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.
| | | | | | | |
Collapse
|