1
|
Wood CE, Keller-Wood M. Current paradigms and new perspectives on fetal hypoxia: implications for fetal brain development in late gestation. Am J Physiol Regul Integr Comp Physiol 2019; 317:R1-R13. [PMID: 31017808 DOI: 10.1152/ajpregu.00008.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The availability of oxygen to the fetus is limited by the route taken by oxygen from the atmosphere to fetal tissues, aided or diminished by pregnancy-associated changes in maternal physiology and, ultimately, a function of atmospheric pressure and composition of the mother's inspired gas. Much of our understanding of the fetal physiological response to hypoxia comes from experiments designed to elucidate the cardiovascular and endocrine responses to transient hypoxia. Complementing this work is equally impactful research into the origins of intrauterine growth restriction in which animal models designed to restrict the transfer of oxygen from the maternal to the fetal circulation were used. A common assumption has been that outcomes measured after a period of hypoxia are related to cellular deprivation of oxygen and reoxygenation: an assumption based on a focus on what we can see "under the streetlights." Recent studies demonstrate that availability of oxygen may not tell the whole story. Transient hypoxia in the fetal sheep stimulates transcriptomics responses that mirror inflammation. This response is accompanied by the appearance of bacteria in the fetal brain and other tissues, likely resulting from a hypoxia-stimulated release of bacteria from the placenta. The appearance of bacteria in the fetus after transient hypoxia complements the recent discovery of bacterial DNA in the normal human placenta and in the tissues of fetal sheep. An understanding of the mechanism of the physiological, cellular, and molecular responses to hypoxia requires an appreciation of stimuli other than cellular oxygen deprivation: stimuli that we would have never known about without looking "between the streetlights," illuminating direct responses to the manipulated variables.
Collapse
Affiliation(s)
- Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida College of Medicine , Gainesville, Florida
| | - Maureen Keller-Wood
- Department of Pharmacodynamics, University of Florida College of Pharmacy , Gainesville, Florida
| |
Collapse
|
2
|
Atanasova KR, Reznikov LR. Neuropeptides in asthma, chronic obstructive pulmonary disease and cystic fibrosis. Respir Res 2018; 19:149. [PMID: 30081920 PMCID: PMC6090699 DOI: 10.1186/s12931-018-0846-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/13/2018] [Indexed: 02/07/2023] Open
Abstract
The nervous system mediates key airway protective behaviors, including cough, mucus secretion, and airway smooth muscle contraction. Thus, its involvement and potential involvement in several airway diseases has become increasingly recognized. In the current review, we focus on the contribution of select neuropeptides in three distinct airway diseases: asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. We present data on some well-studied neuropeptides, as well as call attention to a few that have not received much consideration. Because mucus hypersecretion and mucus obstruction are common features of many airway diseases, we place special emphasis on the contribution of neuropeptides to mucus secretion. Finally, we highlight evidence implicating involvement of neuropeptides in mucus phenotypes in asthma, COPD and cystic fibrosis, as well as bring to light knowledge that is still lacking in the field.
Collapse
Affiliation(s)
- Kalina R Atanasova
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, PO Box 100144, Gainesville, FL, 32610, USA
| | - Leah R Reznikov
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, PO Box 100144, Gainesville, FL, 32610, USA.
| |
Collapse
|
3
|
Abstract
Pulmonary neuroendocrine cells (PNEC) are widely distributed throughout the airway mucosa of mammalian lung as solitary cells and as distinctive innervated clusters, neuroepithelial bodies (NEB). These cells differentiate early during lung development and are more prominent in fetal/neonatal lungs compared to adults. PNEC/NEB cells produce biogenic amine (serotonin) and a variety of peptides (i.e., bombesin) involved in regulation of lung function. During the perinatal period, NEB are thought to function as airway O(2)/CO(2) sensors. Increased numbers of PNEC/NEBs have been observed in a variety of perinatal and postnatal lung disorders. Recent advances in cellular and molecular biology of these cells, as they relate to perinatal and postnatal lung disorders associated with PNEC/NEB cell hyperplasia are reviewed and their possible role in pulmonary pathobiology discussed (WC 125).
Collapse
Affiliation(s)
- Ernest Cutz
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, 555 University Ave, Toronto, Ontario, Canada M5G1x8; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Sunday ME. Oxygen, gastrin-releasing Peptide, and pediatric lung disease: life in the balance. Front Pediatr 2014; 2:72. [PMID: 25101250 PMCID: PMC4103080 DOI: 10.3389/fped.2014.00072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/25/2014] [Indexed: 11/24/2022] Open
Abstract
Excessive oxygen (O2) can cause tissue injury, scarring, aging, and even death. Our laboratory is studying O2-sensing pulmonary neuroendocrine cells (PNECs) and the PNEC-derived product gastrin-releasing peptide (GRP). Reactive oxygen species (ROS) generated from exposure to hyperoxia, ozone, or ionizing radiation (RT) can induce PNEC degranulation and GRP secretion. PNEC degranulation is also induced by hypoxia, and effects of hypoxia are mediated by free radicals. We have determined that excessive GRP leads to lung injury with acute and chronic inflammation, leading to pulmonary fibrosis (PF), triggered via ROS exposure or by directly treating mice with exogenous GRP. In animal models, GRP-blockade abrogates lung injury, inflammation, and fibrosis. The optimal time frame for GRP-blockade and the key target cell types remain to be determined. The concept of GRP as a mediator of ROS-induced tissue damage represents a paradigm shift about how O2 can cause injury, inflammation, and fibrosis. The host PNEC response in vivo may depend on individual ROS sensing mechanisms and subsequent GRP secretion. Ongoing scientific and clinical investigations promise to further clarify the molecular pathways and clinical relevance of GRP in the pathogenesis of diverse pediatric lung diseases.
Collapse
Affiliation(s)
- Mary E Sunday
- Department of Pathology, Duke University Medical Center , Durham, NC , USA
| |
Collapse
|
5
|
Sueblinvong V, Weiss DJ. Stem cells and cell therapy approaches in lung biology and diseases. Transl Res 2010; 156:188-205. [PMID: 20801416 PMCID: PMC4201367 DOI: 10.1016/j.trsl.2010.06.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/14/2010] [Accepted: 06/16/2010] [Indexed: 12/19/2022]
Abstract
Cell-based therapies with embryonic or adult stem cells, including induced pluripotent stem cells, have emerged as potential novel approaches for several devastating and otherwise incurable lung diseases, including emphysema, pulmonary fibrosis, pulmonary hypertension, and the acute respiratory distress syndrome. Although initial studies suggested engraftment of exogenously administered stem cells in lung, this is now generally felt to be a rare occurrence of uncertain physiologic significance. However, more recent studies have demonstrated paracrine effects of administered cells, including stimulation of angiogenesis and modulation of local inflammatory and immune responses in mouse lung disease models. Based on these studies and on safety and initial efficacy data from trials of adult stem cells in other diseases, groundbreaking clinical trials of cell-based therapy have been initiated for pulmonary hypertension and for chronic obstructive pulmonary disease. In parallel, the identity and role of endogenous lung progenitor cells in development and in repair from injury and potential contribution as lung cancer stem cells continue to be elucidated. Most recently, novel bioengineering approaches have been applied to develop functional lung tissue ex vivo. Advances in each of these areas will be described in this review with particular reference to animal models.
Collapse
Key Words
- aec, alveolar epithelial cell
- ali, acute lung injury
- ards, acute respiratory distress syndrome
- basc, bronchioalveolar stem cell
- ccsp, clara cell secretory protein
- cf, cystic fibrosis
- cftr, cystic fibrosis transmembrane conductance regulator
- clp, cecal ligation and puncture
- copd, chronic obstructive pulmonary disease
- enos, endothelial nitric oxide synthetase
- epc, endothelial progenitor cell
- esc, embryonic stem cell
- fev1, forced expiratory volume in 1 second
- fvc, forced vital capacity
- gfp, green fluorescent protein
- hsc, hematopoietic stem cell
- ipf, idiopathic pulmonary fibrosis
- kgf, keratinocyte growth factor
- lps, lipopolysaccharide
- mct, monocrotaline
- mhc, major histocompatibility complex
- msc, mesenchymal stromal (stem) cell
- ph, pulmonary hypertension
- pro-spc, pro-surfactant protein c
- sca-1, stem cell antigen-1
Collapse
Affiliation(s)
- Viranuj Sueblinvong
- Division of Pulmonary, Critical Care and Allergy, Department of Medicine, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
6
|
Cutz E, Fu XW, Yeger H, Nurse CA. Functional live imaging of the pulmonary neuroepithelial body microenvironment. Am J Respir Cell Mol Biol 2008; 40:119-20; author reply 120-1. [PMID: 19075183 DOI: 10.1165/ajrcmb.40.1.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
7
|
Stem cells and cell therapies in lung biology and lung diseases. Ann Am Thorac Soc 2008; 5:637-67. [PMID: 18625757 DOI: 10.1513/pats.200804-037dw] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
8
|
Pan J, Luk C, Kent G, Cutz E, Yeger H. Pulmonary neuroendocrine cells, airway innervation, and smooth muscle are altered in Cftr null mice. Am J Respir Cell Mol Biol 2006; 35:320-6. [PMID: 16614351 PMCID: PMC2643285 DOI: 10.1165/rcmb.2005-0468oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The amine- and peptide-producing pulmonary neuroendocrine cells (PNEC) are widely distributed within the airway mucosa of mammalian lung as solitary cells and innervated clusters, neuroepithelial bodies (NEB), which function as airway O2 sensors. These cells express Cftr and hence could play a role in the pathophysiology of cystic fibrosis (CF) lung disease. We performed confocal microscopy and morphometric analysis on lung sections from Cftr-/- (null), Cftr+/+, and Cftr+/- (control) mice at developmental stages E20, P5, P9, and P30 to determine the distribution, frequency, and innervation of PNEC/NEB, innervation and cell mass of airway smooth muscle, and neuromuscular junctions using synaptic vesicle protein 2, smooth muscle actin, and synaptophysin markers, respectively. The mean number of PNEC/NEB in Cftr-/- mice was significantly reduced compared with control mice at E20, whereas comparable or increased numbers were observed postnatally. NEB cells in Cftr null mice showed a significant reduction in intracorpuscular nerve endings compared with control mice, which is consistent with an intrinsic abnormality of the PNEC system. The airways of Cftr-/- mice showed reduced density (approximately 20-30%) of smooth muscle innervation, decreased mean airway smooth muscle mass (approximately 35%), and reduced density (approximately 20%) of nerve endings compared with control mice. We conclude that the airways of Cftr-/- mice exhibit heretofore unappreciated structural alterations affecting cellular and neural components of the PNEC system and airway smooth muscle and its innervation resulting in blunted O2 sensing and reduced airway tonus. Cftr could play a role in the development of the PNEC system, lung innervation, and airway smooth muscle.
Collapse
Affiliation(s)
- Jie Pan
- Division of Pathology, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
9
|
Pan J, Copland I, Post M, Yeger H, Cutz E. Mechanical stretch-induced serotonin release from pulmonary neuroendocrine cells: implications for lung development. Am J Physiol Lung Cell Mol Physiol 2005; 290:L185-93. [PMID: 16100287 DOI: 10.1152/ajplung.00167.2005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary neuroendocrine cells (PNEC) produce amine (serotonin, 5-HT) and peptides (e.g., bombesin, calcitonin) with growth factor-like properties and are thought to play an important role in lung development. Because physical forces are essential for lung growth and development, we investigated the effects of mechanical strain on 5-HT release in PNEC freshly isolated from rabbit fetal lung and in the PNEC-related tumor H727 cell line. Cultures exposed to sinusoidal cyclic stretch showed a significant 5-HT release inhibitable with gadolinium chloride (10 nM), a blocker of mechanosensitive channels. In contrast to hypoxia (Po2 approximately 20 mmHg), stretch-induced 5-HT release was not affected by Ca2+-free medium or nifedipine (50 microM), excluding the exocytic pathway. In H727 cells, stretch failed to release calcitonin, a peptide stored within dense core vesicles (DCV), whereas hypoxia caused massive calcitonin release. 5-HT released by mechanical stretch is derived predominantly from the cytoplasmic pool, because it is rapid ( approximately 5 min) and is releasable from early (20 days of gestation) fetal PNEC containing few DCV. Both mechanical stretch and hypoxia upregulated expression of tryptophan hydroxylase, the rate-limiting enzyme of 5-HT synthesis. We conclude that mechanical strain is an important physiological stimulus for the release of 5-HT from PNEC via mechanosensitive channels with potential effects on lung development and resorption of lung fluid at the time of birth.
Collapse
Affiliation(s)
- Jie Pan
- Division of Pathology, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada M5G1X8
| | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- E Cutz
- Division of Pathology, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
11
|
Pan J, Bear C, Farragher S, Cutz E, Yeger H. Cystic fibrosis transmembrane conductance regulator modulates neurosecretory function in pulmonary neuroendocrine cell-related tumor cell line models. Am J Respir Cell Mol Biol 2002; 27:553-60. [PMID: 12397014 DOI: 10.1165/rcmb.4843] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The pulmonary neuroendocrine cell (PNEC) system consists of solitary cells and distinctive cell clusters termed neuroepithelial bodies (NEB) localized in the airway epithelium. PNEC/NEB express a variety of bioactive substances, including amine (serotonin, 5HT) and neuropeptides. We have previously shown that NEB cells are O(2) sensors expressing nicotinamide adenine diphosphate oxidase complex and O(2) sensitive K(+) channel. Recently, we demonstrated expression of functional cystic fibrosis transmembrane conductance regulator (CFTR) and Cl(-) conductances in NEB cells of rabbit neonatal lung. Because PNEC/NEB are sparsely distributed and difficult to study in native lung, we investigated small-cell lung carcinoma (SCLC) and carcinoid tumor cell lines (tumor counterparts of normal PNEC/NEB) as models for PNEC/NEB. SCLC (H146, H345) and carcinoid (H727) cell lines express neuroendocrine cell markers, including chromogranin A, neural cell adhesion molecule (N-CAM), 5HT, and tryptophan hydroxylase. We report that H146, H345, and H727 express CFTR messenger RNA (reverse transcription polymerase chain reaction) and protein (immunoblotting) and possess functional CFTR Cl(-) conductance, demonstrated by an iodide efflux assay inhibitable by transfection with antisense CFTR. Using an immunoassay to quantitate 5HT secretion, we also show that downregulation of CFTR abolishes hypoxia-induced 5HT release, and reduces secretory response to high potassium. Our findings suggest that CFTR may modulate neurosecretory activity of PNEC/NEB possessing O(2) sensor function. We propose that these tumor cell lines may be useful models for investigating the role of CFTR in PNEC/NEB functions in health and disease.
Collapse
Affiliation(s)
- Jie Pan
- Department of Paediatric Laboratory Medicine and Programme in Structural Biology and Biochemistry, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|