1
|
Tumor Necrosis Factor Alpha: Implications of Anesthesia on Cancers. Cancers (Basel) 2023; 15:cancers15030739. [PMID: 36765695 PMCID: PMC9913216 DOI: 10.3390/cancers15030739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Cancer remains a major public health issue and a leading cause of death worldwide. Despite advancements in chemotherapy, radiation therapy, and immunotherapy, surgery is the mainstay of cancer treatment for solid tumors. However, tumor cells are known to disseminate into the vascular and lymphatic systems during surgical manipulation. Additionally, surgery-induced stress responses can produce an immunosuppressive environment that is favorable for cancer relapse. Up to 90% of cancer-related deaths are the result of metastatic disease after surgical resection. Emerging evidence shows that the interactions between tumor cells and the tumor microenvironment (TME) not only play decisive roles in tumor initiation, progression, and metastasis but also have profound effects on therapeutic efficacy. Tumor necrosis factor alpha (TNF-α), a pleiotropic cytokine contributing to both physiological and pathological processes, is one of the main mediators of inflammation-associated carcinogenesis in the TME. Because TNF-α signaling may modulate the course of cancer, it can be therapeutically targeted to ameliorate clinical outcomes. As the incidence of cancer continues to grow, approximately 80% of cancer patients require anesthesia during cancer care for diagnostic, therapeutic, or palliative procedures, and over 60% of cancer patients receive anesthesia for primary surgical resection. Numerous studies have demonstrated that perioperative management, including surgical manipulation, anesthetics/analgesics, and other supportive care, may alter the TME and cancer progression by affecting inflammatory or immune responses during cancer surgery, but the literature about the impact of anesthesia on the TNF-α production and cancer progression is limited. Therefore, this review summarizes the current knowledge of the implications of anesthesia on cancers from the insights of TNF-α release and provides future anesthetic strategies for improving oncological survival.
Collapse
|
2
|
Zheng N, Xu A, Lin X, Mo Z, Xie X, Huang Z, Liang Y, Cai Z, Tan J, Shao X. Whole-body hyperthermia combined with chemotherapy and intensity-modulated radiotherapy for treatment of advanced nasopharyngeal carcinoma: a retrospective study with propensity score matching. Int J Hyperthermia 2021; 38:1304-1312. [PMID: 34468276 DOI: 10.1080/02656736.2021.1971778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Several studies have reported the combination of intracavity or cervical lymph node hyperthermia with chemoradiotherapy (CRT) to improve clinical outcomes in nasopharyngeal carcinoma (NPC), but the combination with whole-body hyperthermia (WBH) for treating NPC is unexplored. We aimed to assess the efficacy of the combination of radiotherapy, chemotherapy and WBH in patients with locoregionally advanced NPC. METHODS Between July 2008 and November 2012, 239 newly diagnosed NPC patients were enrolled in a pre-propensity score-matched cohort, including 193 patients who received CRT (CRT group) and 46 who underwent CRT with WBH (HCRT group). The feasibility and clinical outcomes of both groups were evaluated and toxicities assessed. Survival rates were assessed using the Kaplan-Meier method, log-rank test and Cox regression. RESULTS Following propensity score matching, 46 patients from each group were included. The 5-year overall survival (OS) rates were 65.2% in the CRT group and 80.3% in the HCRT group (p=.027). In contrast, the other survival outcomes at 5 years were similar between the groups: locoregional recurrence-free survival (LRRFS), 74.7% vs. 87.6% (p=.152); distant metastasis-free survival (DMFS), 67.4% vs. 77.9% (p=.125); and progression-free survival (PFS), 53.1% vs. 69.2% (p=.115). In the multivariate analyses, the only two independent predictors of OS were clinical stage and HCRT. CONCLUSIONS These results suggest that WBH, when combined with CRT, can improve the OS of patients with advanced NPC.
Collapse
Affiliation(s)
- Naiying Zheng
- Department of Radiotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| | - Anan Xu
- Department of Radiotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| | - Xiantao Lin
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, PR China
| | - Zhiwen Mo
- Department of Radiotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| | - Xiaoxue Xie
- Department of Radiotherapy, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, PR China
| | - Zhong Huang
- Department of Radiotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| | - Ying Liang
- Department of Radiotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| | - Zhihua Cai
- Department of Chemotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| | - Jianming Tan
- Department of Radiotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| | - Xunfan Shao
- Department of Radiotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
3
|
Carneiro MW, Brancato L, Wylleman B, van Zwol E, Conings L, Vueghs P, Gorbaslieva I, Van den Bossche J, Rudenko O, Janicot M, Bogers JP. Safety evaluation of long-term temperature controlled whole-body thermal treatment in female Aachen minipig. Int J Hyperthermia 2021; 38:165-175. [PMID: 33576280 DOI: 10.1080/02656736.2021.1876256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objective: Thermal treatment (TT), defined as treatment using supra-physiological body temperatures (39-45 C), somewhat resembles fever in terms of temperature range, one of the first natural barriers for the body to fight exposure to external pathogens. Methods: Whole-body thermal treatment (WBTT) consists of heating up the complete body to a temperature range of 39 to 45 C. Despite the recognized therapeutic potential of hyperthermia, the broad clinical use of WBTT has been limited by safety issues related to medical devices and procedures used to achieve WBTT, in particular adequate control of the body temperature. To circumvent this, a sophisticated medical device was developed, allowing long-term temperature controlled WBTT (41.5 C for up to 8 h). Technical feasibility and tolerability of the WBTT procedure (including complete anesthesia) were tested using female Aachen minipig. Optical fiber temperature sensors inserted in multiple organs were used and demonstrated consistent monitoring and control of different organs temperature over an extended period of time. Results: Clinical evaluation of the animals before, during and after treatment revealed minor clinical parameter changes, but all of them were clinically acceptable. These changes were limited and reversible, and the animals remained healthy throughout the whole procedure and follow-up. In addition, histopathological analysis of selected key organs showed no thermal treatment-related changes. Conclusion: It was concluded that WBTT (41.5 C for up to 8 h) was well tolerated and safe in female Aachen minipigs. Altogether, data supports the safe clinical use of the WBTT medical device and protocol, enabling its implementation into human patients suffering from life-threatening diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - John-Paul Bogers
- ElmediX NV, Mechelen, Belgium.,Laboratory for Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Li Z, Deng J, Sun J, Ma Y. Hyperthermia Targeting the Tumor Microenvironment Facilitates Immune Checkpoint Inhibitors. Front Immunol 2020; 11:595207. [PMID: 33240283 PMCID: PMC7680736 DOI: 10.3389/fimmu.2020.595207] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have ushered in a new era of cancer therapy; however, ICIs are only effective in selective patients. The efficacy of ICIs is closely related to the tumor microenvironment. Fever for a long time was thought to directly regulate the immune response, and artificial “fever” from hyperthermia modulates the tumor immune microenvironment by providing danger signals with heat shock proteins (HSPs) as well as subsequent activation of immune systems. Encouraging results have been achieved in preclinical studies focused on potential synergetic effects by combining hyperthermia with ICIs. In this review, we summarized a cluster of immune-related factors that not only make hyperthermia a treatment capable of defending against cancer but also make hyperthermia a reliable treatment that creates a type I-like tumor microenvironment (overexpression of PD-L1 and enrichment of tumor infiltrating lymphocytes) in complementary for the enhancement of the ICIs. Then we reviewed recent preclinical data of the combination regimens involving hyperthermia and ICIs that demonstrated the combined efficacy and illustrated possible approaches to further boost the effectiveness of this combination.
Collapse
Affiliation(s)
- Zihui Li
- Oncology Department, The Third People's Hospital of Hubei Province, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Jie Deng
- Oncology Department, The Third People's Hospital of Hubei Province, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Jianhai Sun
- Oncology Department, The Third People's Hospital of Hubei Province, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Yanling Ma
- Oncology Department, The Third People's Hospital of Hubei Province, Affiliated Hospital of Jianghan University, Wuhan, China
| |
Collapse
|
5
|
Yu H, Ingram N, Rowley JV, Green DC, Thornton PD. Meticulous Doxorubicin Release from pH-Responsive Nanoparticles Entrapped within an Injectable Thermoresponsive Depot. Chemistry 2020; 26:13352-13358. [PMID: 32330327 DOI: 10.1002/chem.202000389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Indexed: 12/27/2022]
Abstract
The dual stimuli-controlled release of doxorubicin from gel-embedded nanoparticles is reported. Non-cytotoxic polymer nanoparticles are formed from poly(ethylene glycol)-b-poly(benzyl glutamate) that, uniquely, contain a central ester link. This connection renders the nanoparticles pH-responsive, enabling extensive doxorubicin release in acidic solutions (pH 6.5), but not in solutions of physiological pH (pH 7.4). Doxorubicin-loaded nanoparticles were found to be stable for at least 31 days and lethal against the three breast cancer cell lines tested. Furthermore, doxorubicin-loaded nanoparticles could be incorporated within a thermoresponsive poly(2-hydroxypropyl methacrylate) gel depot, which forms immediately upon injection of poly(2-hydroxypropyl methacrylate) in dimethyl sulfoxide solution into aqueous solution. The combination of the poly(2-hydroxypropyl methacrylate) gel and poly(ethylene glycol)-b-poly(benzyl glutamate) nanoparticles yields an injectable doxorubicin delivery system that facilities near-complete drug release when maintained at elevated temperatures (37 °C) in acidic solution (pH 6.5). In contrast, negligible payload release occurs when the material is stored at room temperature in non-acidic solution (pH 7.4). The system has great potential as a vehicle for the prolonged, site-specific release of chemotherapeutics.
Collapse
Affiliation(s)
- Huayang Yu
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Nicola Ingram
- Leeds Institute of Biomedical and Clinical Sciences, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, UK
| | - Jason V Rowley
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - David C Green
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul D Thornton
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
6
|
Targeting the heat shock response in combination with radiotherapy: Sensitizing cancer cells to irradiation-induced cell death and heating up their immunogenicity. Cancer Lett 2015; 368:209-29. [DOI: 10.1016/j.canlet.2015.02.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/22/2015] [Accepted: 02/26/2015] [Indexed: 12/16/2022]
|
7
|
Pimolsanti R, Wongkajornsilpa A, Chotiyarnwong P, Asavamongkolku A, Waikakul S. Effects of thermoablation with or without caffeine on giant cell tumour of bone. J Orthop Surg (Hong Kong) 2015; 23:95-9. [PMID: 25920654 DOI: 10.1177/230949901502300122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PURPOSE To evaluate the effect of caffeine on the apoptosis rate of giant cell tumour of bone cells during thermoablation. METHODS Giant cell tumour of bone tissue (2 cm3) was collected from 10 patients. Cells were incubated at 37ºC, 40ºC, 45ºC, 50ºC, 52.5ºC, and 55ºC for 20 minutes (3 tubes for each temperature). Caffeine was added to the tubes in amounts of 0 μg/ml (control), 50 μg/ml, and 100 μg/ml. The apoptotic effect of thermoablation with or without caffeine was evaluated. RESULTS In all test conditions, the apoptotic rate of tumour cells increased when the temperature increased. Compared with controls (no caffeine), adding 50 or 100 μg/ml of caffeine did not increase the apoptotic rate significantly at 40ºC to 52.5ºC. Caffeine had no enhancing effect at any temperature. Conversely, at 55ºC, the apoptotic rate was lower when 100 μg/ml of caffeine was added than when no or 50 μg/ml of caffeine added (p=0.045). CONCLUSION Thermoablation at 40ºC to 52.5ºC for 20 minutes increased the apoptosis rate of giant cell tumour of bone cells. Caffeine had no enhancing effect at any temperature. Conversely, at 55ºC, caffeine had cytoprotective effects on the tumour cells against thermoablation.
Collapse
Affiliation(s)
- Rapin Pimolsanti
- Department of Orthopaedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Adisak Wongkajornsilpa
- Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pojchong Chotiyarnwong
- Department of Orthopaedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Apichart Asavamongkolku
- Department of Orthopaedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Saranatra Waikakul
- Department of Orthopaedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Sun J, Guo M, Pang H, Qi J, Zhang J, Ge Y. Treatment of malignant glioma using hyperthermia. Neural Regen Res 2014; 8:2775-82. [PMID: 25206588 PMCID: PMC4145998 DOI: 10.3969/j.issn.1673-5374.2013.29.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/20/2013] [Indexed: 12/28/2022] Open
Abstract
Thirty pathologically diagnosed patients with grade III–IV primary or recurrent malignant glioma (tumor diameter 3–7 cm) were randomly divided into two groups. The control group underwent conventional radiotherapy and chemotherapy. In the hyperthermia group, primary cases received hyperthermia treatment, and patients with recurrent tumors were treated with hyperthermia in com-bination with radiotherapy and chemotherapy. Hyperthermia treatment was administered using a 13.56-MHz radio frequency hyperthermia device. Electrodes were inserted into the tumor with the aid of a CT-guided stereotactic apparatus and heat was applied for 1 hour. During 3 months after hyperthermia, patients were evaluated with head CT or MRI every month. Gliomas in the hyper-thermia group exhibited growth retardation or growth termination. Necrosis was evident in 80% of the heated tumor tissue and there was a decrease in tumor diameter. Our findings indicate that ra-dio frequency hyperthermia has a beneficial effect in the treatment of malignant glioma.
Collapse
Affiliation(s)
- Jiahang Sun
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| | - Mian Guo
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| | - Hengyuan Pang
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| | - Jingtao Qi
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| | - Jinwei Zhang
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| | - Yunlong Ge
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| |
Collapse
|
9
|
TERUNUMA HIROSHI, DENG XUEWEN, TOKI ATSUSHI, YOSHIMURA AKIKO, NISHINO NORIYUKI, TAKANO YOSHINAO, NIEDA MIE, SASANUMA JINICHI, TERANISHI YASUSHI, WATANABE KAZUO. Effects of Hyperthermia on the Host Immune System :. ACTA ACUST UNITED AC 2012. [DOI: 10.3191/thermalmed.28.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Souto JC, Vila L, Brú A. Polymorphonuclear neutrophils and cancer: intense and sustained neutrophilia as a treatment against solid tumors. Med Res Rev 2011; 31:311-63. [PMID: 19967776 DOI: 10.1002/med.20185] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polymorphonuclear neutrophils (PMN) are the most abundant circulating immune cells and represent the first line of immune defense against infection. This review of the biomedical literature of the last 40 years shows that they also have a powerful antitumoral effect under certain circumstances. Typically, the microenvironment surrounding a solid tumor possesses many of the characteristics of chronic inflammation, a condition considered very favorable for tumor growth and spread. However, there are many circumstances that shift the chronic inflammatory state toward an acute inflammatory response around a tumor. This shift seems to convert PMN into very efficient anticancer effector cells. Clinical reports of unexpected antitumoral effects linked to the prolonged use of granulocyte colony-stimulating factor, which stimulates an intense and sustained neutrophilia, suggest that an easy way to fight solid tumors would be to encourage the development of intense peritumoral PMN infiltrates. Specifically designed clinical trials are urgently needed to evaluate the safety and efficacy of such drug-induced neutrophilia in patients with solid tumors. This antitumoral role of neutrophils may provide new avenues for the clinical treatment of cancer.
Collapse
Affiliation(s)
- Juan Carlos Souto
- Department of Hematology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| | | | | |
Collapse
|
11
|
Beachy SH, Repasky EA. Toward establishment of temperature thresholds for immunological impact of heat exposure in humans. Int J Hyperthermia 2011; 27:344-52. [PMID: 21591898 DOI: 10.3109/02656736.2011.562873] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
There is interest in understanding the health impact of thermal effects as a result of exposure of humans to radiofrequency/microwave (RF/MW) fields. Immune cells and responses are affected by modest changes in temperature and it is important to quantify these effects and establish safety thresholds similar to what has been done with other tissue targets. Since previous summaries of thresholds for thermal damage to normal tissues have not focused much attention to cells of the immune system, this summary highlights recent studies which demonstrate positive and some negative effects of temperature shifts on human immune cells. We emphasise literature reporting adverse immunological endpoints (such as cell damage, death and altered function) and provide the temperature at which these effects were noted. Whereas there have been many in vitro studies of adverse temperature effects on immune cells, there has been limited validation of these temperature effects in vivo. However, data from heat stress/stroke patients do provide some information regarding core temperatures (40°C) at which thermal damage to immunological processes can begin to occur. We conclude that there is considerable need for more quantitative time temperature assessments using relevant animal models, more complete kinetic analyses to determine how long immunological effects persist, and for analysis of whether frequency of exposure has impact on immune function. To date, no attempt to categorise effects by using cumulative thermal dose measurements (e.g. cumulative equivalent minutes at a given temperature) has been conducted for cells or tissues of the immune system, representing a major gap in this field.
Collapse
Affiliation(s)
- Sarah H Beachy
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
12
|
Jia D, Rao W, Wang C, Jin C, Wang S, Chen D, Zhang M, Guo J, Chang Z, Liu J. Inhibition of B16 murine melanoma metastasis and enhancement of immunity by fever-range whole body hyperthermia. Int J Hyperthermia 2011; 27:275-85. [PMID: 21501029 DOI: 10.3109/02656736.2011.559613] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Whole body hyperthermia (WBH) has been regarded as a promising alternative therapy to cure late stage cancer with metastasis. As the final biological and therapeutic effects are dependent on the specific protocol, the potential of using a microwave-based WBH approach for metastasis inhibition is established and its typical results are discussed. MATERIALS AND METHODS The effectiveness of a 30-min whole body hyperthermia (WH) on animals, raised to a rectal temperature of 40.2° ± 0.3°C for 30 min followed by 84 h observation by 2450 MHz microwave irradiation, were evaluated. In an experimental lung metastasis model by injection of B16-F10 melanoma, lungs were removed from sacrificed mice 16 days after tumour implantation, and the expression of heat shock protein, inter-cellular adhesion molecule 1 (ICAM-1), proliferating cell nuclear antigen (PCNA) and cyclin D(1) was examined. CD4(+), CD8(+) and NK cell subpopulation in peripheral blood were measured by flow cytometry before and after the last treatment. RESULTS The best therapeutic effect was obtained when the mice were treated with WBH in combination with the initial chemotherapy with cis-diaminodichloroplatinum (CDDP) and dacarbazine (DTIC) (p < 0.05). The WBH alone has an advantage of reduced toxicity and lower cost. Heat shock protein (HSP) expression increased in the hyperthermia groups. Reduction of PCNA and cyclin D(1) was observed in the mice treated with WH alone or in combination with chemotherapy. In the hyperthermia groups, CD4(+)/CD8(+) decreased while the NK increased slightly. CONCLUSIONS The whole body hyperthermia protocol described in this work inhibits B16 tumour metastasis by inhibiting cell proliferation, neovascularisation and stimulating favourable immune responses. It demonstrated that WBH treatment benefits therapy of metastasis cancers.
Collapse
Affiliation(s)
- Dewei Jia
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Jia D, Liu J. Current devices for high-performance whole-body hyperthermia therapy. Expert Rev Med Devices 2010; 7:407-23. [PMID: 20420562 DOI: 10.1586/erd.10.13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
For late-stage cancer, whole-body hyperthermia (WBH) is highly regarded by physicians as a promising alternative to conventional therapies. Although WBH is still under scrutiny due to potential toxicity, its benefits are incomparable, as diversified devices and very promising treatment protocols in this area are advanced into Phase II and III clinical trials. Following the introduction of the WBH principle, this paper comprehensively reviews the state-of-art high-performance WBH devices based on the heat induction mechanisms - radiation, convection and conduction. Through analyzing each category's physical principle and heat-induction property, the advantages and disadvantages of the devices are evaluated. Technical strategies and critical scientific issues are summarized. For future developments, research directions worth pursuing are presented in this article.
Collapse
Affiliation(s)
- Dewei Jia
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, PR China
| | | |
Collapse
|
14
|
Fisher DT, Vardam TD, Muhitch JB, Evans SS. Fine-tuning immune surveillance by fever-range thermal stress. Immunol Res 2010; 46:177-88. [PMID: 19760057 DOI: 10.1007/s12026-009-8122-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An effectively orchestrated immune response to infection and disease depends on efficient trafficking of lymphocytes across vascular beds at distinct tissue sites. Local inflammation and systemic fever increase immune surveillance to immune-relevant sites throughout the body. During the initiation phase of inflammation, this tightly regulated process improves leukocyte trafficking to the secondary lymphoid organs where they undergo activation and expansion in response to cognate antigen. In the resolution phase following the clearance of the invading pathogen, lymphocyte entry is rapidly returned to baseline conditions. Specialized blood vessels termed high endothelial venules (HEVs) have emerged as critical 'hotspots' controlling the rate of lymphocyte entry into lymphoid organs during both phases of inflammation. In this review, we will examine the remarkably tight regulation of lymphocyte trafficking across HEVs conferred by inflammatory cues associated with the thermal element of fever. These studies have revealed a novel role for interleukin-6 (IL-6) trans-signaling in eliciting systemic effects on lymphocyte trafficking patterns to fine-tune immune surveillance.
Collapse
Affiliation(s)
- Daniel T Fisher
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | |
Collapse
|
15
|
Schmidtner J, Distel LV, Ott OJ, Nkenke E, Sprung CN, Fietkau R, Lubgan D. Hyperthermia and irradiation of head and neck squamous cancer cells causes migratory profile changes of tumour infiltrating lymphocytes. Int J Hyperthermia 2009; 25:347-54. [DOI: 10.1080/02656730902852677] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
16
|
Dayanc BE, Beachy SH, Ostberg JR, Repasky EA. Dissecting the role of hyperthermia in natural killer cell mediated anti-tumor responses. Int J Hyperthermia 2009; 24:41-56. [DOI: 10.1080/02656730701858297] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
17
|
Radek KA, Lopez-Garcia B, Hupe M, Niesman IR, Elias PM, Taupenot L, Mahata SK, O’Connor DT, Gallo RL. The neuroendocrine peptide catestatin is a cutaneous antimicrobial and induced in the skin after injury. J Invest Dermatol 2008; 128:1525-34. [PMID: 18185531 PMCID: PMC2757066 DOI: 10.1038/sj.jid.5701225] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Epithelia establish a microbial barrier against infection through the production of antimicrobial peptides (AMPs). In this study, we investigated whether catestatin (Cst), a peptide derived from the neuroendocrine protein chromogranin A (CHGA), is a functional AMP and is present in the epidermis. We show that Cst is antimicrobial against relevant skin microbes, including gram-positive and gram-negative bacteria, yeast, and fungi. The antimicrobial mechanism of Cst was found to be similar to other AMPs, as it was dependent on bacterial charge and growth conditions, and induced membrane disruption. The potential relevance of Cst against skin pathogens was supported by the observation that CHGA was expressed in keratinocytes. In human skin, CHGA was found to be proteolytically processed into the antimicrobial fragment Cst, thus enabling its AMP function. Furthermore, Cst expression in murine skin increased in response to injury and infection, providing potential for increased protection against infection. These data demonstrate that a neuroendocrine peptide has antimicrobial function against a wide assortment of skin pathogens and is upregulated upon injury, thus demonstrating a direct link between the neuroendocrine and cutaneous immune systems. JID JOURNAL CLUB ARTICLE: For questions, answers, and open discussion about this article please go to http://network.nature.com/group/jidclub.
Collapse
Affiliation(s)
- Katherine A. Radek
- Department of Dermatology, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
- Department of Medicine, University of California at San Diego, La Jolla, California, USA
| | - Belen Lopez-Garcia
- Department of Dermatology, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
- Department of Medicine, University of California at San Diego, La Jolla, California, USA
| | - Melanie Hupe
- Department of Dermatology, School of Medicine, University of California, San Francisco, California, USA
- Department of Dermatology, Veterans Administration Center, San Francisco, California, USA
| | - Ingrid R. Niesman
- Department of Dermatology, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Peter M. Elias
- Department of Dermatology, School of Medicine, University of California, San Francisco, California, USA
- Department of Dermatology, Veterans Administration Center, San Francisco, California, USA
| | - Laurent Taupenot
- Department of Dermatology, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
- Department of Medicine, University of California at San Diego, La Jolla, California, USA
| | - Sushil K. Mahata
- Department of Dermatology, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
- Department of Medicine, University of California at San Diego, La Jolla, California, USA
| | - Daniel T. O’Connor
- Department of Dermatology, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
- Department of Medicine, University of California at San Diego, La Jolla, California, USA
- Department of Medicine and Pharmacology, Center for Molecular Genetics, University of California at San Diego, La Jolla, California, USA
| | - Richard L. Gallo
- Department of Dermatology, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
- Department of Medicine, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
18
|
Chen H, Zhang J, Qian Z, Liu F, Chen X, Hu Y, Gu Y. In vivo non-invasive optical imaging of temperature-sensitive co-polymeric nanohydrogel. NANOTECHNOLOGY 2008; 19:185707. [PMID: 21825703 DOI: 10.1088/0957-4484/19/18/185707] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Assessment of hyperthermia in pathological tissue is a promising strategy for earlier diagnosis of malignant tumors. In this study, temperature-sensitive co-polymeric nanohydrogel poly(N-isopropylacrylamide-co-acrylic acid) (PNIPA-co-AA) was successfully synthesized by the precipitation polymerization method. The diameters of nanohydrogels were controlled to be less than 100 nm. Also the lower critical solution temperature (LCST, 40 °C) was manipulated above physiological temperature after integration of near-infrared (NIR) organic dye (heptamethine cyanine dye, HMCD) within its interior cores. NIR laser light (765 nm), together with sensitive charge coupled device (CCD) cameras, were designed to construct an NIR imaging system. The dynamic behaviors of PNIPA-co-AA-HMCD composites in denuded mice with or without local hyperthermia treatment were real-time monitored by an NIR imager. The results showed that the PNIPA-co-AA-HMCD composites accumulated in the leg treated with local heating and diffused much slower than that in the other leg without heating. The results demonstrated that the temperature-responsive PNIPA-co-AA-HMCD composites combining with an NIR imaging system could be an effective temperature mapping technique, which provides a promising prospect for earlier tumor diagnosis and thermally related therapeutic assessment.
Collapse
Affiliation(s)
- Haiyan Chen
- Department of Analytical Chemistry, School of Basic Science, 24 Shennong Road, China Pharmaceutical University, Nanjing 210009, People's Republic of China. Department of Biomedical Engineering, School of Life Science and Technology, 24 Shennong Road, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
19
|
Lehrnbecher T, Koehl U, Wittekindt B, Bochennek K, Tramsen L, Klingebiel T, Chanock SJ. Changes in host defence induced by malignancies and antineoplastic treatment: implication for immunotherapeutic strategies. Lancet Oncol 2008; 9:269-78. [DOI: 10.1016/s1470-2045(08)70071-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Romanovsky AA. Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am J Physiol Regul Integr Comp Physiol 2007; 292:R37-46. [PMID: 17008453 DOI: 10.1152/ajpregu.00668.2006] [Citation(s) in RCA: 434] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
While summarizing the current understanding of how body temperature (Tb) is regulated, this review discusses the recent progress in the following areas: central and peripheral thermosensitivity and temperature-activated transient receptor potential (TRP) channels; afferent neuronal pathways from peripheral thermosensors; and efferent thermoeffector pathways. It is proposed that activation of temperature-sensitive TRP channels is a mechanism of peripheral thermosensitivity. Special attention is paid to the functional architecture of the thermoregulatory system. The notion that deep Tb is regulated by a unified system with a single controller is rejected. It is proposed that Tb is regulated by independent thermoeffector loops, each having its own afferent and efferent branches. The activity of each thermoeffector is triggered by a unique combination of shell and core Tbs. Temperature-dependent phase transitions in thermosensory neurons cause sequential activation of all neurons of the corresponding thermoeffector loop and eventually a thermoeffector response. No computation of an integrated Tb or its comparison with an obvious or hidden set point of a unified system is necessary. Coordination between thermoeffectors is achieved through their common controlled variable, Tb. The described model incorporates Kobayashi’s views, but Kobayashi’s proposal to eliminate the term sensor is rejected. A case against the term set point is also made. Because this term is historically associated with a unified control system, it is more misleading than informative. The term balance point is proposed to designate the regulated level of Tb and to attract attention to the multiple feedback, feedforward, and open-loop components that contribute to thermal balance.
Collapse
Affiliation(s)
- Andrej A Romanovsky
- Systemic Inflammation Laboratory, Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA.
| |
Collapse
|
21
|
Tomiyama-Miyaji C, Watanabe M, Ohishi T, Kanda Y, Kainuma E, Bakir HY, Shen J, Ren H, Inoue M, Tajima K, Bai X, Abo T. Modulation of the endocrine and immune systems by well-controlled hyperthermia equipment. Biomed Res 2007; 28:119-25. [PMID: 17625344 DOI: 10.2220/biomedres.28.119] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Since high levels of hyperthermia induce immunosuppression to a certain extent (i.e., granulocytosis and lymphocytopenia) in patients, we applied mild hyperthermia in volunteers using equipment enabling well-controlled hyperthermia. Restricted control of rectal temperature at 39.4 (+/- 0.2) degrees C for 30 min was conducted and various parameters of the body were examined. The most prominent change observed during exposure to hyperthermia was elevated levels of pH and PO(2) in the blood, even in the venous blood. A transient elevation of ACTH, cortisol and growth hormone in the blood was also seen during this time. In parallel with this phenomenon, the number of total lymphocytes and those of its subsets (especially CD57(+) or CD56(+) NK cells and NKT cells) increased. More interestingly, the proportion of HLA-DR (MHC class II antigens) increased in NK and NKT cells, and their intensity on the surface of CD20(+) B cells increased. These results suggest that mild hyperthermia is important for modulation of the functions of the circulatory, endocrine and immune systems.
Collapse
|
22
|
TERUNUMA HIROSHI, WADA AYANO, DENG XUEWEN, YASUMA YOSHIHIDE, ONISHI TETSURO, TOKI ATSUSHI, ABE HIROYUKI. Mild Hyperthermia Modulates the Relative Frequency of Lymphocyte Cell Subpopulations: an Increase in a Cytolytic NK Cell Subset and a Decrease in a Regulatory T Cell Subset. ACTA ACUST UNITED AC 2007. [DOI: 10.3191/thermalmedicine.23.41] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
23
|
|