1
|
Sayed RKA, Hibbert JE, Jorgenson KW, Hornberger TA. The Structural Adaptations That Mediate Disuse-Induced Atrophy of Skeletal Muscle. Cells 2023; 12:2811. [PMID: 38132132 PMCID: PMC10741885 DOI: 10.3390/cells12242811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
The maintenance of skeletal muscle mass plays a fundamental role in health and issues associated with quality of life. Mechanical signals are one of the most potent regulators of muscle mass, with a decrease in mechanical loading leading to a decrease in muscle mass. This concept has been supported by a plethora of human- and animal-based studies over the past 100 years and has resulted in the commonly used term of 'disuse atrophy'. These same studies have also provided a great deal of insight into the structural adaptations that mediate disuse-induced atrophy. For instance, disuse results in radial atrophy of fascicles, and this is driven, at least in part, by radial atrophy of the muscle fibers. However, the ultrastructural adaptations that mediate these changes remain far from defined. Indeed, even the most basic questions, such as whether the radial atrophy of muscle fibers is driven by the radial atrophy of myofibrils and/or myofibril hypoplasia, have yet to be answered. In this review, we thoroughly summarize what is known about the macroscopic, microscopic, and ultrastructural adaptations that mediated disuse-induced atrophy and highlight some of the major gaps in knowledge that need to be filled.
Collapse
Affiliation(s)
- Ramy K. A. Sayed
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Jamie E. Hibbert
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Kent W. Jorgenson
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Troy A. Hornberger
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| |
Collapse
|
2
|
Hakim CH, Yang HT, Burke MJ, Teixeira J, Jenkins GJ, Yang NN, Yao G, Duan D. Extensor carpi ulnaris muscle shows unexpected slow-to-fast fiber type switch in Duchenne muscular dystrophy dogs. Dis Model Mech 2021; 14:273743. [PMID: 34704592 PMCID: PMC8688408 DOI: 10.1242/dmm.049006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022] Open
Abstract
Aged dystrophin-null canines are excellent models for studying experimental therapies for Duchenne muscular dystrophy, a lethal muscle disease caused by dystrophin deficiency. To establish the baseline, we studied the extensor carpi ulnaris (ECU) muscle in 15 terminal age (3-year-old) male affected dogs and 15 age/sex-matched normal dogs. Affected dogs showed histological and anatomical hallmarks of dystrophy, including muscle inflammation and fibrosis, myofiber size variation and centralized myonuclei, as well as a significant reduction of muscle weight, muscle-to-body weight ratio and muscle cross-sectional area. To rigorously characterize the contractile properties of the ECU muscle, we developed a novel in situ assay. Twitch and tetanic force, contraction and relaxation rate, and resistance to eccentric contraction-induced force loss were significantly decreased in affected dogs. Intriguingly, the time-to-peak tension and half-relaxation time were significantly shortened in affected dogs. Contractile kinetics predicted an unforeseen slow-to-fast myofiber-type switch, which we confirmed at the protein and transcript level. Our study establishes a foundation for studying long-term and late-stage therapeutic interventions in dystrophic canines. The unexpected myofiber-type switch highlights the complexity of muscle remodeling in dystrophic large mammals. This article has an associated First Person interview with the first author of the paper. Summary: A slow-to-fast fiber-type switch in dystrophic canine ECU muscle is revealed by contraction kinetics and myosin protein and transcript expression. This highlights the complexity of muscle remodeling in Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA.,National Center for Advancing Translational Sciences, NIH, Bethesda, MD, USA
| | - Hsiao T Yang
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - Matthew J Burke
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - James Teixeira
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - Gregory J Jenkins
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - N N Yang
- National Center for Advancing Translational Sciences, NIH, Bethesda, MD, USA
| | - Gang Yao
- Department of Biomedical, Biological & Chemical Engineering, College of Engineering, The University of Missouri, Columbia, MO, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO, USA.,Department of Biomedical, Biological & Chemical Engineering, College of Engineering, The University of Missouri, Columbia, MO, USA.,Department of Neurology, School of Medicine, The University of Missouri, Columbia, MO, USA.,Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia, MO, USA
| |
Collapse
|
3
|
Canu MH, Montel V, Dereumetz J, Marqueste T, Decherchi P, Coq JO, Dupont E, Bastide B. Early movement restriction deteriorates motor function and soleus muscle physiology. Exp Neurol 2021; 347:113886. [PMID: 34624327 DOI: 10.1016/j.expneurol.2021.113886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/17/2021] [Accepted: 10/02/2021] [Indexed: 11/19/2022]
Abstract
Children with low physical activity and interactions with environment experience atypical sensorimotor development and maturation leading to anatomical and functional disorganization of the sensorimotor circuitry and also to enduring altered motor function. Previous data have shown that postnatal movement restriction in rats results in locomotor disturbances, functional disorganization and hyperexcitability of the hind limb representations in the somatosensory and motor cortices, without apparent brain damage. Due to the reciprocal interplay between the nervous system and muscle, it is difficult to determine whether muscle alteration is the cause or the result of the altered sensorimotor behavior (Canu et al., 2019). In the present paper, our objectives were to evaluate the impact of early movement restriction leading to sensorimotor restriction (SMR) during development on the postural soleus muscle and on sensorimotor performance in rats, and to determine whether changes were reversed when typical activity was resumed. Rats were submitted to SMR by hind limb immobilization for 16 h / day from birth to postnatal day 28 (PND28). In situ isometric contractile properties of soleus muscle, fiber cross sectional area (CSA) and myosin heavy chain content (MHC) were studied at PND28 and PND60. In addition, the motor function was evaluated weekly from PND28 to PND60. At PND28, SMR rats presented a severe atrophy of soleus muscle, a decrease in CSA and a force loss. The muscle maturation appeared delayed, with persistence of neonatal forms of MHC. Changes in kinetic properties were moderate or absent. The Hoffmann reflex provided evidence for spinal hyperreflexia and signs of spasticity. Most changes were reversed at PND60, except muscle atrophy. Functional motor tests that require a good limb coordination, i.e. rotarod and locomotion, showed an enduring alteration related to SMR, even after one month of 'typical' activity. On the other hand, paw withdrawal test and grip test were poorly affected by SMR whereas spontaneous locomotor activity increased over time. Our results support the idea that proprioceptive feedback is at least as important as the amount of motor activity to promote a typical development of motor function. A better knowledge of the interplay between hypoactivity, muscle properties and central motor commands may offer therapeutic perspectives for children suffering from neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marie-Hélène Canu
- Univ. Lille, Univ Artois, Univ Littoral Côte d'Opale, ULR 7369, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France.
| | - Valérie Montel
- Univ. Lille, Univ Artois, Univ Littoral Côte d'Opale, ULR 7369, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Julie Dereumetz
- Univ. Lille, Univ Artois, Univ Littoral Côte d'Opale, ULR 7369, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Tanguy Marqueste
- Institut des Sciences du Mouvement (ISM), UMR 7287 CNRS, Aix-Marseille Université, Campus Scientifique de Luminy, F-13288 Marseille Cedex 09, France
| | - Patrick Decherchi
- Institut des Sciences du Mouvement (ISM), UMR 7287 CNRS, Aix-Marseille Université, Campus Scientifique de Luminy, F-13288 Marseille Cedex 09, France
| | - Jacques-Olivier Coq
- Institut des Sciences du Mouvement (ISM), UMR 7287 CNRS, Aix-Marseille Université, Campus Scientifique de Luminy, F-13288 Marseille Cedex 09, France
| | - Erwan Dupont
- Univ. Lille, Univ Artois, Univ Littoral Côte d'Opale, ULR 7369, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Bruno Bastide
- Univ. Lille, Univ Artois, Univ Littoral Côte d'Opale, ULR 7369, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| |
Collapse
|
4
|
Oliveira JRS, Mohamed JS, Myers MJ, Brooks MJ, Alway SE. Effects of hindlimb suspension and reloading on gastrocnemius and soleus muscle mass and function in geriatric mice. Exp Gerontol 2018; 115:19-31. [PMID: 30448397 DOI: 10.1016/j.exger.2018.11.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 12/21/2022]
Abstract
Reloading of atrophied muscles after hindlimb suspension (HLS) can induce muscle injury and prolong recovery after disuse in old rats, especially in fast contracting muscles. Less is known about the responses in mice and whether fast and slow muscles from geriatric mice will respond in a similar fashion to HLS unloading and recovery (HLS + R). Furthermore, while slow muscles undergo atrophy with disuse, they typically are more resistant to sarcopenia than fast contracting muscles. Geriatric (28 mo. of age) male C57BL/6 mice were randomly placed into 3 groups. These included HLS for 14 days n = 9, and HLS followed by 14 days of reloading recovery (HLS + R; n = 9), or normal ambulatory cage controls (n = 9). Control mice were not exposed to unloading. Electrically evoked maximal muscle function was assessed in vivo in anesthetized mice at baseline, after 14 days of HLS or HLS + R. As expected, HLS significantly reduced body weight, wet weight of gastrocnemius and soleus muscles and in vivo maximal force. There were no differences in vivo fatigability of the plantar flexor muscles and overall fiber size. There were only minor fiber type distribution and frequency distribution of fiber sizes that differ between HLS + R and control gastrocnemius and soleus muscles. Soleus muscle wet weight had recovered to control levels after reloading, but type I/IIA fibers in the soleus muscles were significantly smaller after HLS + R than control muscles. In contrast, gastrocnemius muscle wet weight did not recover to control levels after reloading. Plantar flexion muscle force (primarily influenced by the gastrocnemius muscles) did not recover in HLS + R conditions as compared to HLS conditions and both were lower than control force production signaling for apoptosis, autophagy and anabolic markers were not different between control and HLS + R gastrocnemius and soleus muscles in geriatric mice. These results suggest that molecular signaling does not explain attenuated ability to regain muscle wet weight, fiber size or muscle force production after HLS in geriatric mice. It is possible that fluid shifts, reduced blood flow, or shortened muscle fibers which failed to regain control lengths contributed to the attenuation of muscle wet weight after HLS and reloading and this affected force production. Further work is needed to determine if altered/loss of neural activity contributed to the inability of geriatric mice to regain gastrocnemius muscle weight and function after HLS and reloading.
Collapse
Affiliation(s)
- João Ricardhis S Oliveira
- Interuniversity Exchange Undergraduate Program, CAPES Foundation, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil; Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, Dept. of Human Performance & Applied Exercise Science, West Virginia University School of Medicine, Morgantown, WV 26506, United States of America
| | - Junaith S Mohamed
- Department of Clinical Laboratory Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, United States of America; Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, Dept. of Human Performance & Applied Exercise Science, West Virginia University School of Medicine, Morgantown, WV 26506, United States of America
| | - Matthew J Myers
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, Dept. of Human Performance & Applied Exercise Science, West Virginia University School of Medicine, Morgantown, WV 26506, United States of America
| | - Matthew J Brooks
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, Dept. of Human Performance & Applied Exercise Science, West Virginia University School of Medicine, Morgantown, WV 26506, United States of America
| | - Stephen E Alway
- Dept. of Physical Therapy, College of Health Professions, University of Tennessee Health Sciences Center, Memphis, TN 38163, United States of America; Department of Physiology, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, United States of America; Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, Dept. of Human Performance & Applied Exercise Science, West Virginia University School of Medicine, Morgantown, WV 26506, United States of America.
| |
Collapse
|
5
|
Canu MH, Fourneau J, Coq JO, Dannhoffer L, Cieniewski-Bernard C, Stevens L, Bastide B, Dupont E. Interplay between hypoactivity, muscle properties and motor command: How to escape the vicious deconditioning circle? Ann Phys Rehabil Med 2018; 62:122-127. [PMID: 30394346 DOI: 10.1016/j.rehab.2018.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 09/24/2018] [Accepted: 09/30/2018] [Indexed: 10/28/2022]
Abstract
Activity-dependent processes addressing the central nervous system (CNS) and musculoskeletal structures are critical for maintaining motor performance. Chronic reduction in activity, whether due to a sedentary lifestyle or extended bed rest, results in impaired performance in motor tasks and thus decreased quality of life. In the first part of this paper, we give a narrative review of the effects of hypoactivity on the neuromuscular system and behavioral outcomes. Motor impairments arise from a combination of factors including altered muscle properties, impaired afferent input, and plastic changes in neural structure and function throughout the nervous system. There is a reciprocal interplay between the CNS and muscle properties, and these sensorimotor loops are essential for controlling posture and movement. As a result, patients under hypoactivity experience a self-perpetuating cycle, in with sedentarity leading to decreased motor activity and thus a progressive worsening of a situation, and finally deconditioning. Various rehabilitation strategies have been studied to slow down or reverse muscle alteration and altered motor performance. In the second part of the paper, we review representative protocols directed toward the muscle, the sensory input and/or the cerebral cortex. Improving an understanding of the loss of motor function under conditions of disuse (such as extended bed rest) as well as identifying means to slow this decline may lead to therapeutic strategies to preserve quality of life for a range of individuals. The most efficient strategies seem multifactorial, using a combination of approaches targeting different levels of the neuromuscular system.
Collapse
Affiliation(s)
- Marie-Hélène Canu
- EA 7369 "activité physique, muscle et santé", unité de recherche pluridisciplinaire sport santé société (URePSSS), université de Lille, 59000 Lille, France.
| | - Julie Fourneau
- EA 7369 "activité physique, muscle et santé", unité de recherche pluridisciplinaire sport santé société (URePSSS), université de Lille, 59000 Lille, France
| | - Jacques-Olivier Coq
- UMR 7289, CNRS, institut de neurosciences de la Timone, Aix-Marseille université, 13385 Marseille, France
| | - Luc Dannhoffer
- EA 7369 "activité physique, muscle et santé", unité de recherche pluridisciplinaire sport santé société (URePSSS), université de Lille, 59000 Lille, France
| | - Caroline Cieniewski-Bernard
- EA 7369 "activité physique, muscle et santé", unité de recherche pluridisciplinaire sport santé société (URePSSS), université de Lille, 59000 Lille, France
| | - Laurence Stevens
- EA 7369 "activité physique, muscle et santé", unité de recherche pluridisciplinaire sport santé société (URePSSS), université de Lille, 59000 Lille, France
| | - Bruno Bastide
- EA 7369 "activité physique, muscle et santé", unité de recherche pluridisciplinaire sport santé société (URePSSS), université de Lille, 59000 Lille, France
| | - Erwan Dupont
- EA 7369 "activité physique, muscle et santé", unité de recherche pluridisciplinaire sport santé société (URePSSS), université de Lille, 59000 Lille, France
| |
Collapse
|
6
|
Brooks MJ, Hajira A, Mohamed JS, Alway SE. Voluntary wheel running increases satellite cell abundance and improves recovery from disuse in gastrocnemius muscles from mice. J Appl Physiol (1985) 2018; 124:1616-1628. [PMID: 29470148 PMCID: PMC6032091 DOI: 10.1152/japplphysiol.00451.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 01/18/2018] [Accepted: 02/21/2018] [Indexed: 02/04/2023] Open
Abstract
Reloading of atrophied muscles after hindlimb suspension unloading (HSU) can induce injury and prolong recovery. Low-impact exercise, such as voluntary wheel running, has been identified as a nondamaging rehabilitation therapy in rodents, but its effects on muscle function, morphology, and satellite cell activity after HSU are unclear. This study tested the hypothesis that low-impact wheel running would increase satellite cell proliferation and improve recovery of muscle structure and function after HSU in mice. Young adult male and female C57BL/6 mice ( n = 6/group) were randomly placed into five groups. These included HSU without recovery (HSU), normal ambulatory recovery for 14 days after HSU (HSU+NoWR), and voluntary wheel running recovery for 14 days after HSU (HSU+WR). Two control groups were used: nonsuspended mouse cage controls (Control) and voluntary wheel running controls (ControlWR). Satellite cell activation was evaluated by providing mice 5-bromo-2'-deoxyuridine (BrdU) in their drinking water. As expected, HSU significantly reduced in vivo maximal force, decreased in vivo fatigability, and decreased type I and IIa myosin heavy chain (MHC) abundance in plantarflexor muscles. HSU+WR mice significantly improved plantarflexor fatigue resistance, increased type I and IIa MHC abundance, increased fiber cross-sectional area, and increased the percentage of type I and IIA muscle fibers in the gastrocnemius muscle. HSU+WR mice also had a significantly greater percentage of BrdU-positive and Pax 7-positive nuclei inside muscle fibers and a greater MyoD-to-Pax 7 protein ratio compared with HSU+NoWR mice. The mechanotransduction protein Yes-associated protein (YAP) was elevated with reloading after HSU, but HSU+WR mice had lower levels of the inactive phosphorylated YAPserine127, which may have contributed to increased satellite cell activation with reloading after HSU. These results indicate that voluntary wheel running increased YAP signaling and satellite cell activity after HSU and this was associated with improved recovery. NEW & NOTEWORTHY Although satellite cell involvement in muscle remodeling has been challenged, the data in this study suggest that voluntary wheel running increased satellite cell activity and suppressed Yes-associated protein (YAP) protein relative to no wheel running and this was associated with improved muscle recovery of force, fatigue resistance, expression of type I myosin heavy chain, and greater fiber cross-sectional area after disuse.
Collapse
Affiliation(s)
- Matthew J Brooks
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, Department of Human Performance and Applied Exercise Science, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Ameena Hajira
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, Department of Human Performance and Applied Exercise Science, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Junaith S Mohamed
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, Department of Human Performance and Applied Exercise Science, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Stephen E Alway
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, Department of Human Performance and Applied Exercise Science, West Virginia University School of Medicine , Morgantown, West Virginia
- Department of Physical Therapy, College of Health Professions and Department of Physiology, College of Medicine, University of Tennessee Health Sciences Center , Memphis, Tennessee
| |
Collapse
|
7
|
Cielen N, Maes K, Heulens N, Troosters T, Carmeliet G, Janssens W, Gayan-Ramirez GN. Interaction between Physical Activity and Smoking on Lung, Muscle, and Bone in Mice. Am J Respir Cell Mol Biol 2017; 54:674-82. [PMID: 26448063 DOI: 10.1165/rcmb.2015-0181oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Physical inactivity is an important contributor to skeletal muscle weakness, osteoporosis, and weight loss in chronic obstructive pulmonary disease. However, the effects of physical inactivity, in interaction with smoking, on lung, muscle, and bone are poorly understood. To address this issue, male mice were randomly assigned to an active (daily running), moderately inactive (space restriction), or extremely inactive group (space restriction followed by hindlimb suspension to mimic bed rest) during 24 weeks and simultaneously exposed to either cigarette smoke or room air. The effects of different physical activity levels and smoking status and their respective interaction were examined on lung function, body composition, in vitro limb muscle function, and bone parameters. Smoking caused emphysema, reduced food intake with subsequent loss of body weight, and fat, lean, and muscle mass, but increased trabecular bone volume. Smoking induced muscle fiber atrophy, which did not result in force impairment. Moderate inactivity only affected lung volumes and compliance, whereas extreme inactivity increased lung inflammation, lowered body and fat mass, induced fiber atrophy with soleus muscle dysfunction, and reduced exercise capacity and all bone parameters. When combined with smoking, extreme inactivity also aggravated lung inflammation and emphysema, and accelerated body and muscle weight loss. This study shows that extreme inactivity, especially when imposed by absolute rest, accelerates lung damage and inflammation. When combined with smoking, extreme inactivity is deleterious for muscle bulk, bone, and lungs. These data highlight that the consequences of physical inactivity during the course of chronic obstructive pulmonary disease should not be neglected.
Collapse
Affiliation(s)
- Nele Cielen
- 1 Department of Clinical and Experimental Medicine, Laboratory of Respiratory Diseases, Catholic University (KU) of Leuven, Leuven, Belgium
| | - Karen Maes
- 1 Department of Clinical and Experimental Medicine, Laboratory of Respiratory Diseases, Catholic University (KU) of Leuven, Leuven, Belgium
| | - Nele Heulens
- 1 Department of Clinical and Experimental Medicine, Laboratory of Respiratory Diseases, Catholic University (KU) of Leuven, Leuven, Belgium
| | - Thierry Troosters
- 1 Department of Clinical and Experimental Medicine, Laboratory of Respiratory Diseases, Catholic University (KU) of Leuven, Leuven, Belgium.,2 Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium; and
| | - Geert Carmeliet
- 3 Department of Clinical and Experimental Medicine, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Wim Janssens
- 1 Department of Clinical and Experimental Medicine, Laboratory of Respiratory Diseases, Catholic University (KU) of Leuven, Leuven, Belgium
| | - Ghislaine N Gayan-Ramirez
- 1 Department of Clinical and Experimental Medicine, Laboratory of Respiratory Diseases, Catholic University (KU) of Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Ogneva IV, Biryukov NS. Lecithin Prevents Cortical Cytoskeleton Reorganization in Rat Soleus Muscle Fibers under Short-Term Gravitational Disuse. PLoS One 2016; 11:e0153650. [PMID: 27073851 PMCID: PMC4830545 DOI: 10.1371/journal.pone.0153650] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/07/2016] [Indexed: 01/03/2023] Open
Abstract
The aim of this study was to prevent the cortical cytoskeleton reorganization of rat soleus muscle fibers under short-term gravitational disuse. Once a day, we injected the right soleus muscle with 0.5 ml lecithin at a concentration of 200 mg/ml and the left soleus muscle with a diluted solution in an equal volume for 3 days prior to the experiment. To simulate microgravity conditions in rats, an anti-orthostatic suspension was used according to the Ilyin-Novikov method modified by Morey-Holton et al. for 6 hours. The following groups of soleus muscle tissues were examined: «C», «C+L», «HS», and «HS+L». The transversal stiffness of rat soleus muscle fibers after 6 hours of suspension did not differ from that of the control group for the corresponding legs; there were no differences between the groups without lecithin «C» and «HS» or between the groups with lecithin «C+L» and «HS+L». However, lecithin treatment for three days resulted in an increase in cell stiffness; in the «C+L» group, cell stiffness was significantly higher by 22.7% (p < 0.05) compared with that of group «C». The mRNA content of genes encoding beta- and gamma-actin and beta-tubulin did not significantly differ before and after suspension in the corresponding groups. However, there was a significant increase in the mRNA content of these genes after lecithin treatment: the beta-actin and gamma-actin mRNA content in group «C+L» increased by 200% compared with that of group «C», and beta-tubulin increased by 100% (as well as the mRNA content of tubulin-binding proteins Ckap5, Tcp1, Cct5 and Cct7). In addition, desmin mRNA content remained unchanged in all of the experimental groups. As a result of the lecithin injections, there was a redistribution of the mRNA content of genes encoding actin monomer- and filament-binding proteins in the direction of increasing actin polymerization and filament stability; the mRNA content of Arpc3 and Lcp1 increased by 3- and 5-fold, respectively, but the levels of Tmod1 and Svil decreased by 2- and 5-fold, respectively. However, gravitational disuse did not result in changes in the mRNA content of Arpc3, Tmod1, Svil or Lcp1. Anti-orthostatic suspension for 6 hours resulted in a decrease in the mRNA content of alpha-actinin-4 (Actn4) and alpha-actinin-1 (Actn1) in group «HS» compared with that of group «C» by 25% and 30%, respectively, as well as a decrease and increase in the ACTN4 protein content in the membrane and cytoplasmic fractions, respectively. Lecithin injection resulted in an increase in the Actn1 and Actn4 mRNA content in group «C+L» by 1.5-fold and more than 2-fold, respectively, compared with the levels in group «C». Moreover, in group «HS+L», the mRNA content did not change in these genes compared with the levels in group «C+L», and the ACTN4 protein content in the membrane and cytoplasmic fractions also remained unchanged. Thus, lecithin prevented the reduction of Actn1 and Actn4 mRNA and the migration of ACTN4 from the cortical cytoskeleton to the cytoplasm.
Collapse
Affiliation(s)
- Irina V. Ogneva
- Department of Molecular and Cell Biomedicine, State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- * E-mail:
| | - Nikolay S. Biryukov
- Department of Molecular and Cell Biomedicine, State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (State University), Moscow region, Russia
| |
Collapse
|
9
|
Yanagihara GR, Paiva AG, Gasparini GA, Macedo AP, Frighetto PD, Volpon JB, Shimano AC. High-impact exercise in rats prior to and during suspension can prevent bone loss. Braz J Med Biol Res 2016; 49:S0100-879X2016000300605. [PMID: 26840705 PMCID: PMC4763823 DOI: 10.1590/1414-431x20155086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/16/2015] [Indexed: 11/22/2022] Open
Abstract
High-impact exercise has been considered an important method for treating bone loss in osteopenic experimental models. In this study, we investigated the effects of osteopenia caused by inactivity in femora and tibiae of rats subjected to jump training using the rat tail suspension model. Eight-week-old female Wistar rats were divided into five groups (n=10 each group): jump training for 2 weeks before suspension and training during 3 weeks of suspension; jump training for 2 weeks before suspension; jump training only during suspension; suspension without any training; and a control group. The exercise protocol consisted of 20 jumps/day, 5 days/week, with a jump height of 40 cm. The bone mineral density of the femora and tibiae was measured by double energy X-ray absorptiometry and the same bones were evaluated by mechanical tests. Bone microarchitecture was evaluated by scanning electron microscopy. One-way ANOVA was used to compare groups. Significance was determined as P<0.05. Regarding bone mineral density, mechanical properties and bone microarchitecture, the beneficial effects were greater in the bones of animals subjected to pre-suspension training and subsequently to training during suspension, compared with the bones of animals subjected to pre-suspension training or to training during suspension. Our results indicate that a period of high impact exercise prior to tail suspension in rats can prevent the installation of osteopenia if there is also training during the tail suspension.
Collapse
Affiliation(s)
- G R Yanagihara
- Laboratório de Bioengenharia, Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - A G Paiva
- Laboratório de Bioengenharia, Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - G A Gasparini
- Laboratório de Bioengenharia, Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - A P Macedo
- Laboratório de Bioengenharia, Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - P D Frighetto
- Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, São Paulo, SP, Brasil
| | - J B Volpon
- Laboratório de Bioengenharia, Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - A C Shimano
- Laboratório de Bioengenharia, Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
10
|
Feng HZ, Chen X, Malek MH, Jin JP. Slow recovery of the impaired fatigue resistance in postunloading mouse soleus muscle corresponding to decreased mitochondrial function and a compensatory increase in type I slow fibers. Am J Physiol Cell Physiol 2015; 310:C27-40. [PMID: 26447205 DOI: 10.1152/ajpcell.00173.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/05/2015] [Indexed: 02/08/2023]
Abstract
Unloading or disuse rapidly results in skeletal muscle atrophy, switching to fast-type fibers, and decreased resistance to fatigue. The recovery process is of major importance in rehabilitation for various clinical conditions. Here we studied mouse soleus muscle during 60 days of reloading after 4 wk of hindlimb suspension. Unloading produced significant atrophy of soleus muscle with decreased contractile force and fatigue resistance, accompanied by switches of myosin isoforms from IIa to IIx and IIb and fast troponin T to more low-molecular-weight splice forms. The total mass, fiber size, and contractile force of soleus muscle recovered to control levels after 15 days of reloading. However, the fatigue resistance showed a trend of worsening during this period with significant infiltration of inflammatory cells at days 3 and 7, indicating reloading injuries that were accompanied by active regeneration with upregulations of filamin-C, αB-crystallin, and desmin. The fatigue resistance partially recovered after 30-60 days of reloading. The expression of peroxisome proliferator-activated receptor γ coactivator 1α and mitofusin-2 showed changes parallel to that of fatigue resistance after unloading and during reloading, suggesting a causal role of decreased mitochondrial function. Slow fiber contents in the soleus muscle were increased after 30-60 days of reloading to become significantly higher than the normal level, indicating a secondary adaption to compensate for the slow recovery of fatigue resistance.
Collapse
Affiliation(s)
- Han-Zhong Feng
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Xuequn Chen
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Moh H Malek
- Department of Health Care Sciences, Wayne State University, Detroit, Michigan
| | - J-P Jin
- Department of Physiology, Wayne State University, Detroit, Michigan;
| |
Collapse
|
11
|
Ogneva IV, Gnyubkin V, Laroche N, Maximova MV, Larina IM, Vico L. Structure of the cortical cytoskeleton in fibers of postural muscles and cardiomyocytes of mice after 30-day 2-g centrifugation. J Appl Physiol (1985) 2014; 118:613-23. [PMID: 25539936 DOI: 10.1152/japplphysiol.00812.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Altered external mechanical loading during spaceflights causes negative effects on muscular and cardiovascular systems. The aim of the study was estimation of the cortical cytoskeleton statement of the skeletal muscle cells and cardiomyocytes. The state of the cortical cytoskeleton in C57BL6J mice soleus, tibialis anterior muscle fibers, and left ventricle cardiomyocytes was investigated after 30-day 2-g centrifugation ("2-g" group) and within 12 h after its completion ("2-g + 12-h" group). We used atomic force microscopy for estimating cell's transverse stiffness, Western blotting for measuring protein content, and RT-PCR for estimating their expression level. The transverse stiffness significantly decreased in cardiomyocytes (by 16%) and increased in skeletal muscles fibers (by 35% for soleus and by 29% for tibialis anterior muscle fibers) in animals of the 2-g group (compared with the control group). For cardiomyocytes, we found that, in the 2-g + 12-h group, α-actinin-1 content decreased in the membranous fraction (by 27%) and increased in cytoplasmic fraction (by 28%) of proteins (compared with the levels in the 2-g group). But for skeletal muscle fibers, similar changes were noted for α-actinin-4, but not for α-actinin-1. In conclusion, we showed that the different isoforms of α-actinins dissociate from cortical cytoskeleton under increased/decreased of mechanical load.
Collapse
Affiliation(s)
- Irina V Ogneva
- Department of Molecular and Cell Biomedicine, State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia; I. M. Sechenov First Moscow State Medical University, Moscow, Russia;
| | - V Gnyubkin
- INSERM U1059 Lab Biologie Intégrée du Tissu Osseux, Université de Lyon, St. Etienne, France; and
| | - N Laroche
- INSERM U1059 Lab Biologie Intégrée du Tissu Osseux, Université de Lyon, St. Etienne, France; and
| | - M V Maximova
- Department of Molecular and Cell Biomedicine, State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia; Moscow Institute of Physics and Technology (State University), Moscow, Russia
| | - I M Larina
- Department of Molecular and Cell Biomedicine, State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - L Vico
- INSERM U1059 Lab Biologie Intégrée du Tissu Osseux, Université de Lyon, St. Etienne, France; and
| |
Collapse
|
12
|
Muscle-specific GSK-3β ablation accelerates regeneration of disuse-atrophied skeletal muscle. Biochim Biophys Acta Mol Basis Dis 2014; 1852:490-506. [PMID: 25496993 DOI: 10.1016/j.bbadis.2014.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 01/08/2023]
Abstract
Muscle wasting impairs physical performance, increases mortality and reduces medical intervention efficacy in chronic diseases and cancer. Developing proficient intervention strategies requires improved understanding of the molecular mechanisms governing muscle mass wasting and recovery. Involvement of muscle protein- and myonuclear turnover during recovery from muscle atrophy has received limited attention. The insulin-like growth factor (IGF)-I signaling pathway has been implicated in muscle mass regulation. As glycogen synthase kinase 3 (GSK-3) is inhibited by IGF-I signaling, we hypothesized that muscle-specific GSK-3β deletion facilitates the recovery of disuse-atrophied skeletal muscle. Wild-type mice and mice lacking muscle GSK-3β (MGSK-3β KO) were subjected to a hindlimb suspension model of reversible disuse-induced muscle atrophy and followed during recovery. Indices of muscle mass, protein synthesis and proteolysis, and post-natal myogenesis which contribute to myonuclear accretion, were monitored during the reloading of atrophied muscle. Early muscle mass recovery occurred more rapidly in MGSK-3β KO muscle. Reloading-associated changes in muscle protein turnover were not affected by GSK-3β ablation. However, coherent effects were observed in the extent and kinetics of satellite cell activation, proliferation and myogenic differentiation observed during reloading, suggestive of increased myonuclear accretion in regenerating skeletal muscle lacking GSK-3β. This study demonstrates that muscle mass recovery and post-natal myogenesis from disuse-atrophy are accelerated in the absence of GSK-3β.
Collapse
|
13
|
Blaauw B, Schiaffino S, Reggiani C. Mechanisms modulating skeletal muscle phenotype. Compr Physiol 2014; 3:1645-87. [PMID: 24265241 DOI: 10.1002/cphy.c130009] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian skeletal muscles are composed of a variety of highly specialized fibers whose selective recruitment allows muscles to fulfill their diverse functional tasks. In addition, skeletal muscle fibers can change their structural and functional properties to perform new tasks or respond to new conditions. The adaptive changes of muscle fibers can occur in response to variations in the pattern of neural stimulation, loading conditions, availability of substrates, and hormonal signals. The new conditions can be detected by multiple sensors, from membrane receptors for hormones and cytokines, to metabolic sensors, which detect high-energy phosphate concentration, oxygen and oxygen free radicals, to calcium binding proteins, which sense variations in intracellular calcium induced by nerve activity, to load sensors located in the sarcomeric and sarcolemmal cytoskeleton. These sensors trigger cascades of signaling pathways which may ultimately lead to changes in fiber size and fiber type. Changes in fiber size reflect an imbalance in protein turnover with either protein accumulation, leading to muscle hypertrophy, or protein loss, with consequent muscle atrophy. Changes in fiber type reflect a reprogramming of gene transcription leading to a remodeling of fiber contractile properties (slow-fast transitions) or metabolic profile (glycolytic-oxidative transitions). While myonuclei are in postmitotic state, satellite cells represent a reserve of new nuclei and can be involved in the adaptive response.
Collapse
Affiliation(s)
- Bert Blaauw
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | |
Collapse
|
14
|
Ogneva IV, Biryukov NS, Leinsoo TA, Larina IM. Possible role of non-muscle alpha-actinins in muscle cell mechanosensitivity. PLoS One 2014; 9:e96395. [PMID: 24780915 PMCID: PMC4004558 DOI: 10.1371/journal.pone.0096395] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/06/2014] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED The main hypothesis suggested that changes in the external mechanical load would lead to different deformations of the submembranous cytoskeleton and, as a result, dissociation of different proteins from its structure (induced by increased/decreased mechanical stress). The study subjects were fibers of the soleus muscle and cardiomyocytes of Wistar rats. Changes in external mechanical conditions were reconstructed by means of antiorthostatic suspension of the animals by their tails for 6, 12, 18, 24 and 72 hours. Transversal stiffness was measured by atomic force microscopy imaging; beta-, gamma-actin, alpha-actinin 1 and alpha-actinin 4 levels in membranous and cytoplasmic fractions were quantified by Western blot analysis; expression rates of the corresponding genes were studied using RT-PCR. RESULTS In 6 hours, alpha-actinin 1 and alpha-actinin 4 levels decreased in the membranous fraction of proteins of cardiomyocytes and soleus muscle fibers, respectively, but increased in the cytoplasmic fraction of the abovementioned cells. After 6-12 hours of suspension, the expression rates of beta-, gamma-actin, alpha-actinin 1 and alpha-actinin 4 were elevated in the soleus muscle fibers, but the alpha-actinin 1 expression rate returned to the reference level in 72 hours. After 18-24 hours, the expression rates of beta-actin and alpha-actinin 4 increased in cardiomyocytes, while the alpha-actinin 1 expression rate decreased in soleus muscle fibers. After 12 hours, the beta- and gamma-actin content dropped in the membranous fraction and increased in the cytoplasmic protein fractions from both cardiomyocytes and soleus muscle fibers. The stiffness of both cell types decreased after the same period of time. Further, during the unloading period the concentration of nonmuscle actin and different isoforms of alpha-actinins increased in the membranous fraction from cardiomyocytes. At the same time, the concentration of the abovementioned proteins decreased in the soleus muscle fibers.
Collapse
Affiliation(s)
- Irina V. Ogneva
- Department of Molecular and Cell Biomedicine, State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
- * E-mail:
| | - Nikolay S. Biryukov
- Department of Molecular and Cell Biomedicine, State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Toomas A. Leinsoo
- Department of Molecular and Cell Biomedicine, State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Irina M. Larina
- Department of Molecular and Cell Biomedicine, State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
15
|
Park S, Brisson BK, Liu M, Spinazzola JM, Barton ER. Mature IGF-I excels in promoting functional muscle recovery from disuse atrophy compared with pro-IGF-IA. J Appl Physiol (1985) 2013; 116:797-806. [PMID: 24371018 DOI: 10.1152/japplphysiol.00955.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prolonged disuse of skeletal muscle results in atrophy, and once physical activity is resumed, there is increased susceptibility to injury. Insulin-like growth factor-I (IGF-I) is considered a potential therapeutic target to attenuate atrophy during unloading and to enhance rehabilitation upon reloading of skeletal muscles, due to its multipronged actions on satellite cell proliferation, differentiation, and survival, as well as its actions on muscle fibers to boost protein synthesis and inhibit protein degradation. However, the form of IGF-I delivered may alter the success of treatment. Using the hindlimb suspension model of disuse atrophy, we compared the efficacy of two IGF-I forms in protection against atrophy and enhancement of recovery: mature IGF-I (IGF-IS) lacking the COOH-terminal extension, called the E-peptide, and IGF-IA, which is the predominant form retaining the E-peptide. Self-complementary adeno-associated virus harboring the murine Igf1 cDNA constructs were delivered to hindlimbs of adult female C57BL6 mice 3 days prior to hindlimb suspension. Hindlimb muscles were unloaded for 7 days and then reloaded for 3, 7, and 14 days. Loss of muscle mass following suspension was not prevented by either IGF-I construct. However, IGF-IS expression maintained soleus muscle force production. Further, IGF-IS treatment caused rapid recovery of muscle fiber morphology during reloading and maintained muscle strength. Analysis of gene expression revealed that IGF-IS expression accelerated the downregulation of atrophy-related genes compared with untreated or IGF-IA-treated samples. We conclude that mature-IGF-I may be a better option than pro-IGF-IA to promote skeletal muscle recovery following disuse atrophy.
Collapse
Affiliation(s)
- Soohyun Park
- Department of Anatomy and Cell Biology, School of Dental Medicine
| | | | | | | | | |
Collapse
|
16
|
Gupta S, Manske SL, Judex S. Increasing the Number of Unloading/Reambulation Cycles does not Adversely Impact Body Composition and Lumbar Bone Mineral Density but Reduces Tissue Sensitivity. ACTA ASTRONAUTICA 2013; 92:89-96. [PMID: 23976804 PMCID: PMC3747666 DOI: 10.1016/j.actaastro.2012.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A single exposure to hindlimb unloading leads to changes in body mass, body composition and bone, but the consequences of multiple exposures are not yet understood. Within a 18wk period, adult C57BL/6 male mice were exposed to one (1x-HLU), two (2x-HLU) or three (3x-HLU) cycles of 2 wk of hindlimb unloading (HLU) followed by 4 wk of reambulation (RA), or served as ambulatory age-matched controls. In vivo µCT longitudinally tracked changes in abdominal adipose and lean tissues, lumbar vertebral apparent volumetric bone mineral density (vBMD) and upper hindlimb muscle cross-sectional area before and after the final HLU and RA cycle. Significant decreases in total adipose tissue and vertebral vBMD were observed such that all unloaded animals reached similar values after the final unloading cycle. However, the magnitude of these losses diminished in mice undergoing their 2nd or 3rd HLU cycle. Irrespective of the number of HLU/RA cycles, total adipose tissue and vertebral vBMD recovered and were no different from age-matched controls after the final RA period. In contrast, upper hindlimb muscle cross-sectional area was significantly lower than controls in all unloaded groups after the final RA period. These results suggest that tissues in the abdominal region are more resilient to multiple bouts of unloading and more amenable to recovery during reambulation than the peripheral musculoskeletal system.
Collapse
Affiliation(s)
- Shikha Gupta
- Integrative Skeletal Adaptation & Genetics Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | | | | |
Collapse
|
17
|
Hanson AM, Harrison BC, Young MH, Stodieck LS, Ferguson VL. Longitudinal characterization of functional, morphologic, and biochemical adaptations in mouse skeletal muscle with hindlimb suspension. Muscle Nerve 2013; 48:393-402. [DOI: 10.1002/mus.23753] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Andrea M. Hanson
- Aerospace Engineering Sciences, BioServe Space Technologies; University of Colorado; Boulder Colorado USA
| | - Brooke C. Harrison
- Molecular, Cellular, and Developmental Biology; University of Colorado; Boulder Colorado USA
| | - Mary H. Young
- Aerospace Engineering Sciences, BioServe Space Technologies; University of Colorado; Boulder Colorado USA
| | - Louis S. Stodieck
- Aerospace Engineering Sciences, BioServe Space Technologies; University of Colorado; Boulder Colorado USA
| | - Virginia L. Ferguson
- Department of Mechanical Engineering; University of Colorado; UCB 427 Boulder Colorado 80309 USA
| |
Collapse
|
18
|
Kim JH, Thompson LV. Inactivity, age, and exercise: single-muscle fiber power generation. J Appl Physiol (1985) 2012; 114:90-8. [PMID: 23104693 DOI: 10.1152/japplphysiol.00525.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We examined the effects of mild therapeutic exercise during a period of inactivity on size and contractile functions of myosin heavy chain (MHC) type I (n = 204) and type II (n = 419) single fibers from the medial gastrocnemius in three age groups. Young adult (5-12 mo), middle-aged (24-31 mo), and old (32-37 mo) F344BNF1 rats were assigned to one of three groups: weight-bearing control, non-weight bearing (NWB), and NWB plus exercise (NWBX). Fourteen days of hindlimb suspension were applied in NWB rats. The NWBX rats exercised on the treadmill for 15 min, four times a day, during the period of NWB. The NWBX did not improve peak power, but increased normalized power of MHC type I fibers in young adult rats. In MHC type II fibers, NWBX did not change peak power, isometric maximal force, V(max), and fiber size from young adult and middle-aged rats. NWBX did not improve peak power and isometric maximal force and showed a dramatic decline in V(max) and normalized power in the old rats. Collectively, mild treadmill exercise during a period of inactivity does not improve peak power of MHC type I or type II fiber from the gastrocnemius in young, middle-aged, and old rats. However, NWBX is beneficial in enhancing normalized power of MHC type I fibers in young adult rats, most likely due to the stimulus intensity and the ability of the individual fibers to adapt to the stimulus. In contrast, several factors, such as impaired adaptation potential, inappropriate exercise intensity, or increased susceptibility to muscle damage, may contribute to the lack of improvement in the older rats.
Collapse
Affiliation(s)
- Jong-Hee Kim
- Department of Physical Medicine and Rehabilitation, Medical School, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
19
|
Stodieck LS, Greybeck BJ, Cannon CM, Hanson AM, Young MH, Simske SJ, Ferguson VL. In vivo measurement of hindlimb neuromuscular function in mice. Muscle Nerve 2012; 45:536-43. [DOI: 10.1002/mus.22294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
20
|
Kim JH, Thompson LV. Differential effects of mild therapeutic exercise during a period of inactivity on power generation in soleus type I single fibers with age. J Appl Physiol (1985) 2012; 112:1752-61. [PMID: 22422796 DOI: 10.1152/japplphysiol.01077.2011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The purpose of this study was to investigate the effects of mild therapeutic exercise (treadmill) in preventing the inactivity-induced alterations in contractile properties (e.g., power, force, and velocity) of type I soleus single fibers in three different age groups. Young adult (5- to 12-mo-old), middle-aged (24- to 31-mo-old), and old (32- to 40-mo-old) F344BNF1 rats were randomly assigned to three experimental groups: weight-bearing control (CON), non-weight bearing (NWB), and NWB with exercise (NWBX). NWB rats were hindlimb suspended for 2 wk, representing inactivity. The NWBX rats were hindlimb suspended for 2 wk and received therapeutic exercise on a treadmill four times a day for 15 min each. Peak power and isometric maximal force were reduced following hindlimb suspension (HS) in all three age groups. HS decreased fiber diameter in young adult and old rats (-21 and -12%, respectively). Specific tension (isometric maximal force/cross-sectional area) was significantly reduced in both the middle-aged (-36%) and old (-23%) rats. The effects of the mild therapeutic exercise program on fiber diameter and contractile properties were age specific. Mild treadmill therapeutic exercise attenuated the HS-induced reduction in fiber diameter (+17%, 93% level of CON group) and peak power (μN·fiber length·s(-1)) (+46%, 63% level of CON group) in young adult rats. In the middle-aged animals, this exercise protocol improved peak power (+60%, 100% level of CON group) and normalized power (kN·m(-2)·fiber length·s(-1)) (+45%, 108% level of CON group). Interestingly, treadmill exercise resulted in a further reduction in shortening velocity (-42%, 67% level of CON group) and specific tension (-29%, 55% level of CON group) in the old animals. These results suggest that mild treadmill exercise is beneficial in attenuating and preventing inactivity-induced decline in peak power of type I soleus single fibers in young adult and middle-aged animals, respectively. However, this exercise program does not prevent the HS-induced decline in muscle function in the old animals.
Collapse
Affiliation(s)
- Jong-Hee Kim
- Department of Physical Medicine and Rehabilitation, Medical School, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
21
|
Transversal stiffness and beta-actin and alpha-actinin-4 content of the M. soleus fibers in the conditions of a 3-day reloading after 14-day gravitational unloading. J Biomed Biotechnol 2011; 2011:393405. [PMID: 21941432 PMCID: PMC3177293 DOI: 10.1155/2011/393405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 07/07/2011] [Accepted: 07/22/2011] [Indexed: 11/29/2022] Open
Abstract
The aim of the work was to analyze the structural changes in different parts of the sarcolemma and contractile apparatus of muscle fibers by measuring their transversal stiffness by atomic force microscopy in a three-day reloading after a 14-day gravity disuse, which was carried out by hind-limbs suspension. The object of the study was the soleus muscle of the Wistar rat. It was shown that after 14 days of disuse, there was a reduction of transversal stiffness of all points of the sarcolemma and contractile apparatus. Readaptation for 3 days leads to complete recovery of the values of the transversal stiffness of the sarcolemma and to partial value recovery of the contractile apparatus. The changes in transversal stiffness of sarcolemma correlate with beta-actin and alpha-actinin-4 in membrane protein fractions.
Collapse
|
22
|
Hao Y, Jackson JR, Wang Y, Edens N, Pereira SL, Alway SE. β-Hydroxy-β-methylbutyrate reduces myonuclear apoptosis during recovery from hind limb suspension-induced muscle fiber atrophy in aged rats. Am J Physiol Regul Integr Comp Physiol 2011; 301:R701-15. [PMID: 21697520 DOI: 10.1152/ajpregu.00840.2010] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
β-Hydroxy-β-methylbutyrate (HMB) is a leucine metabolite shown to reduce protein catabolism in disease states and promote skeletal muscle hypertrophy in response to loading exercise. In this study, we evaluated the efficacy of HMB to reduce muscle wasting and promote muscle recovery following disuse in aged animals. Fisher 344×Brown Norway rats, 34 mo of age, were randomly assigned to receive either Ca-HMB (340 mg/kg body wt) or the water vehicle by gavage (n = 32/group). The animals received either 14 days of hindlimb suspension (HS, n = 8/diet group) or 14 days of unloading followed by 14 days of reloading (R; n = 8/diet group). Nonsuspended control animals were compared with suspended animals after 14 days of HS (n = 8) or after R (n = 8). HMB treatment prevented the decline in maximal in vivo isometric force output after 2 wk of recovery from hindlimb unloading. The HMB-treated animals had significantly greater plantaris and soleus fiber cross-sectional area compared with the vehicle-treated animals. HMB decreased the amount of TUNEL-positive nuclei in reloaded plantaris muscles (5.1% vs. 1.6%, P < 0.05) and soleus muscles (3.9% vs. 1.8%, P < 0.05). Although HMB did not significantly alter Bcl-2 protein abundance compared with vehicle treatment, HMB decreased Bax protein abundance following R, by 40% and 14% (P < 0.05) in plantaris and soleus muscles, respectively. Cleaved caspase-3 was reduced by 12% and 9% (P < 0.05) in HMB-treated reloaded plantaris and soleus muscles, compared with vehicle-treated animals. HMB reduced cleaved caspase-9 by 14% and 30% (P < 0.05) in reloaded plantaris and soleus muscles, respectively, compared with vehicle-treated animals. Although, HMB was unable to prevent unloading-induced atrophy, it attenuated the decrease in fiber area in fast and slow muscles after HS and R. HMB's ability to protect against muscle loss may be due in part to putative inhibition of myonuclear apoptosis via regulation of mitochondrial-associated caspase signaling.
Collapse
Affiliation(s)
- Yanlei Hao
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology,West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | | | | | | | | | | |
Collapse
|
23
|
Kachaeva EV, Turtikova OV, Leinsoo TA, Shenkman BS. Insulin-like growth factor 1 and the key markers of proteolysis during the acute period of reloading of the muscle atrophied under disuse. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s0006350910060205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
24
|
Seven days of muscle re-loading and voluntary wheel running following hindlimb suspension in mice restores running performance, muscle morphology and metrics of fatigue but not muscle strength. J Muscle Res Cell Motil 2010; 31:141-53. [PMID: 20632203 DOI: 10.1007/s10974-010-9218-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 06/15/2010] [Indexed: 10/19/2022]
Abstract
In this study, we examined the effects of 2-week hindlimb un-loading in mice followed by re-ambulation with voluntary access to running wheels. The recovery period was terminated at a time point when physical performance--defined by velocity, time, and distance ran per day--of the suspended group matched that of an unsuspended group. Mice were assigned to one of four groups: unsuspended non-exercise (Control), 14 days of hindlimb suspension (HS), 7 days of access to running wheels (E7), or 14 days of HS plus 7 days access to running wheels (HSE7). HS resulted in significant decreases in body and muscle mass, hindlimb strength, soleus force, soleus specific force, fatigue resistance, and fiber cross sectional area (CSA). Seven days of re-ambulation with access to running wheels following HS recovered masses to Control values, increased fiber CSA, increased resistance to fatigue and improved recovery from fatigue in the soleus. HS resulted in a myosin heavy chain (MHC) phenotype shift from slow toward fast-twitch fibers, though running alone did not influence the expression of MHC fibers. Compared to the Control group, HSE7 mice did not recover functional hindlimb strength as assessed through measurements either in vivo or ex vivo. Results from this study demonstrate that 7 days of muscle re-loading with access to wheel-running following HS can stimulate muscle to regain mass and fiber CSA and exhibit improved metrics of fatigue resistance and recovery, yet muscles remain impaired in regard to strength. Understanding this mismatch between muscle morphology and strength may prove of value in designing effective exercise protocols for disuse muscle atrophy rehabilitation.
Collapse
|
25
|
Trappe S, Costill D, Gallagher P, Creer A, Peters JR, Evans H, Riley DA, Fitts RH. Exercise in space: human skeletal muscle after 6 months aboard the International Space Station. J Appl Physiol (1985) 2009; 106:1159-68. [PMID: 19150852 DOI: 10.1152/japplphysiol.91578.2008] [Citation(s) in RCA: 245] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this investigation was to document the exercise program used by crewmembers (n = 9; 45 +/- 2 yr) while aboard the International Space Station (ISS) for 6 mo and examine its effectiveness for preserving calf muscle characteristics. Before and after spaceflight, we assessed calf muscle volume (MRI), static and dynamic calf muscle performance, and muscle fiber types (gastrocnemius and soleus). While on the ISS, crewmembers had access to a running treadmill, cycle ergometer, and resistance exercise device. The exercise regimen varied among the crewmembers with aerobic exercise performed approximately 5 h/wk at a moderate intensity and resistance exercise performed 3-6 days/wk incorporating multiple lower leg exercises. Calf muscle volume decreased (P < 0.05) 13 +/- 2% with greater (P < 0.05) atrophy of the soleus (-15 +/- 2%) compared with the gastrocnemius (-10 +/- 2%). Peak power was 32% lower (P < 0.05) after spaceflight. Force-velocity characteristics were reduced (P < 0.05) -20 to -29% across the velocity spectrum. There was a 12-17% shift in myosin heavy chain (MHC) phenotype of the gastrocnemius and soleus with a decrease (P < 0.05) in MHC I fibers and a redistribution among the faster phenotypes. These data show a reduction in calf muscle mass and performance along with a slow-to-fast fiber type transition in the gastrocnemius and soleus muscles, which are all qualities associated with unloading in humans. Future long-duration space missions should modify the current ISS exercise prescription and/or hardware to better preserve human skeletal muscle mass and function, thereby reducing the risk imposed to crewmembers.
Collapse
Affiliation(s)
- Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, IN 47306, USA.
| | | | | | | | | | | | | | | |
Collapse
|