1
|
Shaughnessy CA, Hall DJ, Norstog JL, Barany A, Regish AM, Ferreira-Martins D, Breves JP, Komoroske LM, McCormick SD. A Cftr-independent, Ano1-rich seawater-adaptive ionocyte in sea lamprey gills. J Exp Biol 2025; 228:jeb250110. [PMID: 40007443 PMCID: PMC11993260 DOI: 10.1242/jeb.250110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
All ionoregulating marine fishes examined to date utilize seawater-type ionocytes expressing the apical Cl- channel, cystic fibrosis transmembrane conductance regulator (Cftr) to secrete Cl-. We performed transcriptomic, molecular and functional studies to identify Cl- transporters in the seawater-type ionocytes of sea lamprey (Petromyzon marinus). Gill cftr expression was minimal or undetectable in larvae and post-metamorphic juveniles. We identified other Cl- transporters highly expressed in the gills and/or upregulated following metamorphosis and further investigated two candidates that stood out in our analysis, a Ca2+-activated Cl- channel, anoctamin 1 (ano1), and the Clc chloride channel family member 2 (clcn2). Of these, ano1 was expressed 10-100 times more than clcn2 in the gills; moreover, ano1 was upregulated during seawater acclimation, while clcn2 was not. Using an antibody raised against sea lamprey Ano1, we did not detect Ano1 in the gills of larvae, found elevated levels in juveniles and observed a 4-fold increase in juveniles after seawater acclimation. Ano1 was localized to seawater-type branchial ionocytes but, surprisingly, was localized to the basolateral membrane. In vivo pharmacological inhibition experiments demonstrated that a DIDS-sensitive mechanism was critical to the maintenance of osmoregulatory homeostasis in seawater- but not freshwater-acclimated sea lamprey. Taken together, our results provide evidence of a Cftr-independent mechanism for branchial Cl- secretion in sea lamprey that leverages Ano1-expressing ionocytes. Once further characterized, the Cftr-independent, Ano1-rich ionocytes of sea lamprey could reveal novel strategies for branchial Cl- secretion, whether by Ano1 or some other Cl- transporter, not previously known in ionoregulating marine organisms.
Collapse
Affiliation(s)
- Ciaran A. Shaughnessy
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
- Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA
- US Geological Survey, Eastern Ecological Science Center, Conte Research Laboratory, Turners Falls, MA 01376, USA
| | - Daniel J. Hall
- US Geological Survey, Eastern Ecological Science Center, Conte Research Laboratory, Turners Falls, MA 01376, USA
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Jessica L. Norstog
- Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA
- US Geological Survey, Eastern Ecological Science Center, Conte Research Laboratory, Turners Falls, MA 01376, USA
| | - Andre Barany
- US Geological Survey, Eastern Ecological Science Center, Conte Research Laboratory, Turners Falls, MA 01376, USA
- Departamento de Biología, Universidad de Cádiz, 11003 Cádiz, Spain
- Departamento de Genética, Fisiología y Microbiología, Universidad Complutense, 28040 Madrid, Spain
| | - Amy M. Regish
- US Geological Survey, Eastern Ecological Science Center, Conte Research Laboratory, Turners Falls, MA 01376, USA
| | - Diogo Ferreira-Martins
- US Geological Survey, Eastern Ecological Science Center, Conte Research Laboratory, Turners Falls, MA 01376, USA
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
- Interdisciplinary Center of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Jason P. Breves
- Department of Biology, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Lisa M. Komoroske
- Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA 01003, USA
| | - Stephen D. McCormick
- US Geological Survey, Eastern Ecological Science Center, Conte Research Laboratory, Turners Falls, MA 01376, USA
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Su H, Ma D, Fan J, Zhong Z, Tian Y, Zhu H. A TMT-Based Proteomic Analysis of Osmoregulation in the Gills of Oreochromis mossambicus Exposed to Three Osmotic Stresses. Int J Mol Sci 2025; 26:2791. [PMID: 40141432 PMCID: PMC11943422 DOI: 10.3390/ijms26062791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Salinity and alkalinity are critical environmental factors that affect fish physiology and ability to survive. Oreochromis mossambicus is a euryhaline species that can endure a wide range of salinities and has the potential to serve as a valuable model animal for environmental science. In order to detect the histomorphological changes, antioxidant enzymes, and proteomic responses of O. mossambicus to different osmotic stresses, O. mossambicus was subjected to salinity stress (25 g/L, S_S), alkalinity stress (4 g/L, A_S), saline-alkalinity stress (salinity: 25 g/L, alkalinity: 4 g/L, SA_S), and freshwater (the control group; C_S). The histomorphological and antioxidant enzyme results indicated that salinity, alkalinity, and saline-alkalinity stresses have different degrees of damage and effects on the gills and liver of O. mossambicus. Compared with the control, 83, 187, and 177 differentially expressed proteins (DEPs) were identified in the salinity, alkalinity, and saline-alkalinity stresses, respectively. The obtained DEPs can be summarized into four categories: ion transport channels or proteins, energy synthesis and metabolism, immunity, and apoptosis. The KEGG enrichment results indicated that DNA replication and repair were significantly enriched in the salinity stress group. Lysosomes and oxidative phosphorylation were considerably enriched in the alkalinity stress group. Comparatively, the three most important enriched pathways in the saline-alkalinity stress group were Parkinson's disease, Alzheimer's disease, and Huntington's disease. The findings of this investigation yield robust empirical evidence elucidating osmoregulatory mechanisms and adaptive biological responses in euryhaline teleost, thereby establishing a scientific foundation for the cultivation and genomic exploration of high-salinity-tolerant teleost species. This advancement facilitates the sustainable exploitation of saline-alkaline aquatic ecosystems while contributing to the optimization of piscicultural practices in hypersaline environments.
Collapse
Affiliation(s)
- Huanhuan Su
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, No. 1, Xingyu Road, Liwan District, Guangzhou 510380, China; (H.S.); (D.M.); (J.F.); (Z.Z.); (Y.T.)
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China
| | - Dongmei Ma
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, No. 1, Xingyu Road, Liwan District, Guangzhou 510380, China; (H.S.); (D.M.); (J.F.); (Z.Z.); (Y.T.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China
| | - Jiajia Fan
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, No. 1, Xingyu Road, Liwan District, Guangzhou 510380, China; (H.S.); (D.M.); (J.F.); (Z.Z.); (Y.T.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China
| | - Zaixuan Zhong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, No. 1, Xingyu Road, Liwan District, Guangzhou 510380, China; (H.S.); (D.M.); (J.F.); (Z.Z.); (Y.T.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China
| | - Yuanyuan Tian
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, No. 1, Xingyu Road, Liwan District, Guangzhou 510380, China; (H.S.); (D.M.); (J.F.); (Z.Z.); (Y.T.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China
| | - Huaping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, No. 1, Xingyu Road, Liwan District, Guangzhou 510380, China; (H.S.); (D.M.); (J.F.); (Z.Z.); (Y.T.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China
| |
Collapse
|
3
|
Sackville MA, Gillis JA, Brauner CJ. The origins of gas exchange and ion regulation in fish gills: evidence from structure and function. J Comp Physiol B 2024; 194:557-568. [PMID: 38530435 DOI: 10.1007/s00360-024-01545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 03/28/2024]
Abstract
Gill function in gas exchange and ion regulation has played key roles in the evolution of fishes. In this review, we summarize data from the fields of palaeontology, developmental biology and comparative physiology for when and how the gills first acquired these functions. Data from across disciplines strongly supports a stem vertebrate origin for gas exchange structures and function at the gills with the emergence of larger, more active fishes. However, the recent discovery of putative ionocytes in extant cephalochordates and hemichordates suggests that ion regulation at gills might have originated much earlier than gas exchange, perhaps in the ciliated pharyngeal arches in the last common ancestor of deuterostomes. We hypothesize that the ancestral form of ion regulation served a filter-feeding function in the ciliated pharyngeal arches, and was later coopted in vertebrates to regulate extracellular ion and acid-base balance. We propose that future research should explore ionocyte homology and function across extant deuterostomes to test this hypothesis and others in order to determine the ancestral origins of ion regulation in fish gills.
Collapse
Affiliation(s)
| | - J Andrew Gillis
- Bay Paul Centre, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Breves JP, Shaughnessy CA. Endocrine control of gill ionocyte function in euryhaline fishes. J Comp Physiol B 2024; 194:663-684. [PMID: 38739280 DOI: 10.1007/s00360-024-01555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024]
Abstract
The endocrine system is an essential regulator of the osmoregulatory organs that enable euryhaline fishes to maintain hydromineral balance in a broad range of environmental salinities. Because branchial ionocytes are the primary site for the active exchange of Na+, Cl-, and Ca2+ with the external environment, their functional regulation is inextricably linked with adaptive responses to changes in salinity. Here, we review the molecular-level processes that connect osmoregulatory hormones with branchial ion transport. We focus on how factors such as prolactin, growth hormone, cortisol, and insulin-like growth-factors operate through their cognate receptors to direct the expression of specific ion transporters/channels, Na+/K+-ATPases, tight-junction proteins, and aquaporins in ion-absorptive (freshwater-type) and ion-secretory (seawater-type) ionocytes. While these connections have historically been deduced in teleost models, more recently, increased attention has been given to understanding the nature of these connections in basal lineages. We conclude our review by proposing areas for future investigation that aim to fill gaps in the collective understanding of how hormonal signaling underlies ionocyte-based processes.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA.
| | - Ciaran A Shaughnessy
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK, 74078, USA
| |
Collapse
|
5
|
Yamaguchi Y, Ikeba K, Yoshida MA, Takagi W. Molecular basis of the unique osmoregulatory strategy in the inshore hagfish, Eptatretus burgeri. Am J Physiol Regul Integr Comp Physiol 2024; 327:R208-R233. [PMID: 38105762 DOI: 10.1152/ajpregu.00166.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Hagfishes are characterized by omo- and iono-conforming nature similar to marine invertebrates. Conventionally, hagfishes had been recognized as the most primitive living vertebrate that retains plesiomorphic features. However, some of the "ancestral" features of hagfishes, such as rudimentary eyes and the lack of vertebrae, have been proven to be deceptive. Similarly, by the principle of maximum parsimony, the unique body fluid regulatory strategy of hagfishes seems to be apomorphic, since the lamprey, another cyclostome, adopts osmo- and iono-regulatory mechanisms as in jawed vertebrates. Although hagfishes are unequivocally important in discussing the origin and evolution of the vertebrate osmoregulatory system, the molecular basis for the body fluid homeostasis in hagfishes has been poorly understood. In the present study, we explored this matter in the inshore hagfish, Eptatretus burgeri, by analyzing the transcriptomes obtained from the gill, kidney, and muscle of the animals acclimated to distinct environmental salinities. Together with the measurement of parameters in the muscular fluid compartment, our data indicate that the hagfish possesses an ability to conduct free amino acid (FAA)-based osmoregulation at a cellular level, which is in coordination with the renal and branchial FAA absorption. We also revealed that the hagfish does possess the orthologs of the known osmoregulatory genes and that the transepithelial movement of inorganic ions in the hagfish gill and kidney is more complex than previously thought. These observations pose a challenge to the conventional view that the physiological features of hagfishes have been inherited from the last common ancestor of the extant vertebrates.
Collapse
Affiliation(s)
- Yoko Yamaguchi
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Kiriko Ikeba
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Masa-Aki Yoshida
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
- Marine Biological Science Section, Education and Research Center for Biological Resources, Faculty of Life and Environmental Science, Shimane University, Okinoshima, Japan
| | - Wataru Takagi
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
6
|
Ferreira-Martins D, Walton E, Karlstrom RO, Sheridan MA, McCormick SD. The GH/IGF axis in the sea lamprey during metamorphosis and seawater acclimation. Mol Cell Endocrinol 2023; 571:111937. [PMID: 37086859 DOI: 10.1016/j.mce.2023.111937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/24/2023]
Abstract
How the growth hormone (GH)/insulin-like growth factor (IGF) system affects osmoregulation in basal vertebrates remains unknown. We examined changes in the expression of components of the GH/IGF axis and gill ion transporters during metamorphosis and following seawater (SW) exposure of sea lamprey. During metamorphosis, increases in gill nka and nkcc1 and salinity tolerance were accompanied by increases in pituitary gh, liver igf1, gill ghr and igf1, but not liver ghr. SW exposure of fully metamorphosed sea lamprey resulted in slight increases in plasma chloride concentrations after SW exposure, indicating a high level of SW tolerance, but no major changes in mRNA levels of gill ion transporters or components of the GH/IGF axis. Our results indicate that metamorphosis is a critical point in the lifecycle of sea lamprey for stimulation of the GH/IGF axis and is temporally associated with and likely promotes metamorphosis and SW tolerance.
Collapse
Affiliation(s)
- Diogo Ferreira-Martins
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Emily Walton
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Rolf O Karlstrom
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Mark A Sheridan
- Department of Biological Sciences, 2901 Main St, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Stephen D McCormick
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
7
|
Katsu Y, Lin X, Ji R, Chen Z, Kamisaka Y, Bamba K, Baker ME. N-terminal domain influences steroid activation of the Atlantic sea lamprey corticoid receptor. J Steroid Biochem Mol Biol 2023; 228:106249. [PMID: 36646152 DOI: 10.1016/j.jsbmb.2023.106249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Lampreys are jawless fish that evolved about 550 million years ago at the base of the vertebrate line. Modern lampreys contain a corticoid receptor (CR), the common ancestor of the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR), which first appear in cartilaginous fish, such as sharks. Until recently, 344 amino acids at the amino terminus of adult lamprey CR were not present in the lamprey CR sequence in GenBank. A search of the recently sequenced lamprey germline genome identified two CR sequences, CR1 and CR2, containing the 344 previously un-identified amino acids. CR1 also contains a novel four amino acid insertion in the DNA-binding domain (DBD). We studied corticosteroid and progesterone activation of CR1 and CR2 and found their strongest response was to 11-deoxycorticosterone and 11-deoxycortisol, the two circulating corticosteroids in lamprey. Based on steroid specificity, both CRs are close to elephant shark MR and distant from elephant shark GR. HEK293 cells that were transfected with full-length CR1 or CR2 and the MMTV promoter have about 3-fold higher steroid-mediated activation compared to HEK293 cells transfected with these CRs and the TAT3 promoter. Deletion of the amino-terminal domain (NTD) of lamprey CR1 and CR2 to form truncated CRs decreased transcriptional activation by about 70% in HEK293 cells that were transfected with MMTV, but increased transcription by about 6-fold in cells transfected with TAT3. This indicated that the promoter has an important effect on NTD regulation of transcriptional activation of the CR by steroids. Our results also indicate that the entire lamprey CR sequence is needed for an accurate determination of steroid-mediated transcription.
Collapse
Affiliation(s)
| | - Xiaozhi Lin
- Graduate School of Life Science Hokkaido University Sapporo, Japan
| | - Ruigeng Ji
- Graduate School of Life Science Hokkaido University Sapporo, Japan
| | - Ze Chen
- Graduate School of Life Science Hokkaido University Sapporo, Japan
| | - Yui Kamisaka
- Graduate School of Life Science Hokkaido University Sapporo, Japan
| | - Koto Bamba
- Faculty of Science Hokkaido University Sapporo, Japan
| | - Michael E Baker
- Division of Nephrology-Hypertension Department of Medicine, 0693 University of California, San Diego 9500 Gilman Drive La Jolla, CA 92093-0693, USA; Center for Academic Research and Training in Anthropogeny (CARTA) University of California, San Diego La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Discovery of prolactin-like in lamprey: Role in osmoregulation and new insight into the evolution of the growth hormone/prolactin family. Proc Natl Acad Sci U S A 2022; 119:e2212196119. [PMID: 36161944 DOI: 10.1073/pnas.2212196119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We used a representative of one of the oldest extant vertebrate lineages (jawless fish or agnathans) to investigate the early evolution and function of the growth hormone (GH)/prolactin (PRL) family. We identified a second member of the GH/PRL family in an agnathan, the sea lamprey (Petromyzon marinus). Structural, phylogenetic, and synteny analyses supported the identification of this hormone as prolactin-like (PRL-L), which has led to added insight into the evolution of the GH/PRL family. At least two ancestral genes were present in early vertebrates, which gave rise to distinct GH and PRL-L genes in lamprey. A series of gene duplications, gene losses, and chromosomal rearrangements account for the diversity of GH/PRL-family members in jawed vertebrates. Lamprey PRL-L is produced in the proximal pars distalis of the pituitary and is preferentially bound by the lamprey PRL receptor, whereas lamprey GH is preferentially bound by the lamprey GH receptor. Pituitary PRL-L messenger RNA (mRNA) levels were low in larvae, then increased significantly in mid-metamorphic transformers (stage 3); thereafter, levels subsided in final-stage transformers and metamorphosed juveniles. The abundance of PRL-L mRNA and immunoreactive protein increased in the pituitary of juveniles under hypoosmotic conditions, and treatment with PRL-L blocked seawater-associated inhibition of freshwater ion transporters. These findings clarify the origin and divergence of GH/PRL family genes in early vertebrates and reveal a function of PRL-L in osmoregulation of sea lamprey, comparable to a role of PRLs that is conserved in jawed vertebrates.
Collapse
|
9
|
Taugbøl A, Solbakken MH, Jakobsen KS, Vøllestad LA. Salinity-induced transcriptome profiles in marine and freshwater threespine stickleback after an abrupt 6-hour exposure. Ecol Evol 2022; 12:e9395. [PMID: 36311407 PMCID: PMC9596333 DOI: 10.1002/ece3.9395] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
Abstract
Saltwater and freshwater environments have opposing physiological challenges, yet, there are fish species that are able to enter both habitats during short time spans, and as individuals they must therefore adjust quickly to osmoregulatory contrasts. In this study, we conducted an experiment to test for plastic responses to abrupt salinity changes in two populations of threespine stickleback, Gasterosteus aculeatus, representing two ecotypes (freshwater and ancestral saltwater). We exposed both ecotypes to abrupt native (control treatment) and non-native salinities (0‰ and 30‰) and sampled gill tissue for transcriptomic analyses after 6 h of exposure. To investigate genomic responses to salinity, we analyzed four different comparisons; one for each ecotype (in their control and exposure salinity; (1) and (2), one between ecotypes in their control salinity (3), and the fourth comparison included all transcripts identified in (3) that did not show any expressional changes within ecotype in either the control or the exposed salinity (4)). Abrupt salinity transfer affected the expression of 10 and 1530 transcripts for the saltwater and freshwater ecotype, respectively, and 1314 were differentially expressed between the controls, including 502 that were not affected by salinity within ecotype (fixed expression). In total, these results indicate that factors other than genomic expressional plasticity are important for osmoregulation in stickleback, due to the need for opposite physiological pathways to survive the abrupt change in salinity.
Collapse
Affiliation(s)
- Annette Taugbøl
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES)University of OsloBlindernNorway
- Norwegian Institute for Nature Research (NINA)LillehammerNorway
| | - Monica Hongrø Solbakken
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES)University of OsloBlindernNorway
| | - Kjetill S. Jakobsen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES)University of OsloBlindernNorway
| | - Leif Asbjørn Vøllestad
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES)University of OsloBlindernNorway
| |
Collapse
|
10
|
Zhao J, Zhang L, Du L, Chen Z, Tang Y, Chen L, Liu X, You L, Zhang Y, Fu X, Li H. Foxa1 mediates eccrine sweat gland development through transcriptional regulation of Na-K-ATPase expression. Braz J Med Biol Res 2022; 55:e12149. [PMID: 35976271 PMCID: PMC9377534 DOI: 10.1590/1414-431x2022e12149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Eccrine sweat glands (ESGs) perform critical functions in temperature regulation in humans. Foxa1 plays an important role in ESG maturation and sweat secretion. Its molecular mechanism, however, remains unknown. This study investigated the expression of Foxa1 and Na-K-ATPase (NKA) in rat footpads at different development stages using immunofluorescence staining, qRT-PCR, and immunoblotting. Also, bioinformatics analysis and Foxa1 overexpression and silencing were employed to evaluate Foxa1 regulation of NKA. The results demonstrated that Foxa1 was consistently expressed during the late stages of ESGs and had a significant role in secretory coil maturation during sweat secretion. Furthermore, the mRNA abundance and protein expression of NKA had similar accumulation trends to those of Foxa1, confirming their underlying connections. Bioinformatics analysis revealed that Foxa1 may interact with these two proteins via binding to conserved motifs in their promoter regions. Foxa1 gain-of-function and loss-of-function experiments in Foxa1-modified cells demonstrated that the activities of NKA were dependent on the presence of Foxa1. Collectively, these data provided evidence that Foxa1 may influence ESG development through transcriptional regulation of NKA expression.
Collapse
Affiliation(s)
- Junhong Zhao
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lei Zhang
- Mental Health Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lijie Du
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zixiu Chen
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yue Tang
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lijun Chen
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiang Liu
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lei You
- School of Basic Medicine, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yonghong Zhang
- School of Basic Medicine, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, The First Affiliated Hospital, Chinese PLA General Hospital, Beijing, China
| | - Haihong Li
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
11
|
Su M, Liu N, Zhang Z, Zhang J. Osmoregulatory strategies of estuarine fish Scatophagus argus in response to environmental salinity changes. BMC Genomics 2022; 23:545. [PMID: 35907798 PMCID: PMC9339187 DOI: 10.1186/s12864-022-08784-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Scatophagus argus, an estuarine inhabitant, can rapidly adapt to different salinity environments. However, the knowledge of the molecular mechanisms underlying its strong salinity tolerance remains unclear. The gill, as the main osmoregulatory organ, plays a vital role in the salinity adaptation of the fish, and thus relative studies are constructive to reveal unique osmoregulatory mechanisms in S. argus. RESULTS In the present study, iTRAQ coupled with nanoLC-MS/MS techniques were employed to explore branchial osmoregulatory mechanisms in S. argus acclimated to different salinities. Among 1,604 identified proteins, 796 differentially expressed proteins (DEPs) were detected. To further assess osmoregulatory strategies in the gills under different salinities, DEPs related to osmoregulatory (22), non-directional (18), hypo- (52), and hypersaline (40) stress responses were selected. Functional annotation analysis of these selected DEPs indicated that the cellular ion regulation (e.g. Na+-K+-ATPase [NKA] and Na+-K+-2Cl- cotransporter 1 [NKCC1]) and ATP synthesis were deeply involved in the osmoregulatory process. As an osmoregulatory protein, NKCC1 expression was inhibited under hyposaline stress but showed the opposite trend in hypersaline conditions. The expression levels of NKA α1 and β1 were only increased under hypersaline challenge. However, hyposaline treatments could enhance branchial NKA activity, which was inhibited under hypersaline environments, and correspondingly, reduced ATP content was observed in gill tissues exposed to hyposaline conditions, while its contents were increased in hypersaline groups. In vitro experiments indicated that Na+, K+, and Cl- ions were pumped out of branchial cells under hypoosmotic stress, whereas they were absorbed into cells under hyperosmotic conditions. Based on our results, we speculated that NKCC1-mediated Na+ influx was inhibited, and proper Na+ efflux was maintained by improving NKA activity under hyposaline stress, promoting the rapid adaptation of branchial cells to the hyposaline condition. Meanwhile, branchial cells prevented excessive loss of ions by increasing NKA internalization and reducing ATP synthesis. In contrast, excess ions in cells exposed to the hyperosmotic medium were excreted with sufficient energy supply, and reduced NKA activity and enhanced NKCC1-mediated Na+ influx were considered a compensatory regulation. CONCLUSIONS S. argus exhibited divergent osmoregulatory strategies in the gills when encountering hypoosmotic and hyperosmotic stresses, facilitating effective adaptabilities to a wide range of environmental salinity fluctuation.
Collapse
Affiliation(s)
- Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Nanxi Liu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Zhengqi Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
12
|
Mauduit O, Aure MH, Delcroix V, Basova L, Srivastava A, Umazume T, Mays JW, Bellusci S, Tucker AS, Hajihosseini MK, Hoffman MP, Makarenkova HP. A mesenchymal to epithelial switch in Fgf10 expression specifies an evolutionary-conserved population of ionocytes in salivary glands. Cell Rep 2022; 39:110663. [PMID: 35417692 PMCID: PMC9113928 DOI: 10.1016/j.celrep.2022.110663] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/21/2022] [Accepted: 03/21/2022] [Indexed: 12/21/2022] Open
Abstract
Fibroblast growth factor 10 (FGF10) is well established as a mesenchyme-derived growth factor and a critical regulator of fetal organ development in mice and humans. Using a single-cell RNA sequencing (RNA-seq) atlas of salivary gland (SG) and a tamoxifen inducible Fgf10CreERT2:R26-tdTomato mouse, we show that FGF10pos cells are exclusively mesenchymal until postnatal day 5 (P5) but, after P7, there is a switch in expression and only epithelial FGF10pos cells are observed after P15. Further RNA-seq analysis of sorted mesenchymal and epithelial FGF10pos cells shows that the epithelial FGF10pos population express the hallmarks of ancient ionocyte signature Forkhead box i1 and 2 (Foxi1, Foxi2), Achaete-scute homolog 3 (Ascl3), and the cystic fibrosis transmembrane conductance regulator (Cftr). We propose that epithelial FGF10pos cells are specialized SG ionocytes located in ducts and important for the ionic modification of saliva. In addition, they maintain FGF10-dependent gland homeostasis via communication with FGFR2bpos ductal and myoepithelial cells.
Collapse
Affiliation(s)
- Olivier Mauduit
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vanessa Delcroix
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Liana Basova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amrita Srivastava
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Takeshi Umazume
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jacqueline W Mays
- Oral Immunobiology Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Saverio Bellusci
- Cardio-Pulmonary Institute (CPI) and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, King's College London, London WC2R 2LS, UK
| | | | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
13
|
Barany A, Shaughnessy CA, Pelis RM, Fuentes J, Mancera JM, McCormick SD. Tissue and salinity specific Na +/Cl - cotransporter (NCC) orthologues involved in the adaptive osmoregulation of sea lamprey (Petromyzon marinus). Sci Rep 2021; 11:22698. [PMID: 34811419 PMCID: PMC8608846 DOI: 10.1038/s41598-021-02125-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Two orthologues of the gene encoding the Na+-Cl− cotransporter (NCC), termed ncca and nccb, were found in the sea lamprey genome. No gene encoding the Na+-K+-2Cl− cotransporter 2 (nkcc2) was identified. In a phylogenetic comparison among other vertebrate NCC and NKCC sequences, the sea lamprey NCCs occupied basal positions within the NCC clades. In freshwater, ncca mRNA was found only in the gill and nccb only in the intestine, whereas both were found in the kidney. Intestinal nccb mRNA levels increased during late metamorphosis coincident with salinity tolerance. Acclimation to seawater increased nccb mRNA levels in the intestine and kidney. Electrophysiological analysis of intestinal tissue ex vivo showed this tissue was anion absorptive. After seawater acclimation, the proximal intestine became less anion absorptive, whereas the distal intestine remained unchanged. Luminal application of indapamide (an NCC inhibitor) resulted in 73% and 30% inhibition of short-circuit current (Isc) in the proximal and distal intestine, respectively. Luminal application of bumetanide (an NKCC inhibitor) did not affect intestinal Isc. Indapamide also inhibited intestinal water absorption. Our results indicate that NCCb is likely the key ion cotransport protein for ion uptake by the lamprey intestine that facilitates water absorption in seawater. As such, the preparatory increases in intestinal nccb mRNA levels during metamorphosis of sea lamprey are likely critical to development of whole animal salinity tolerance.
Collapse
Affiliation(s)
- A Barany
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, Puerto Real, 11519, Cádiz, Spain. .,Centre of Marine Sciences (CCMar), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal. .,Conte Anadromous Fish Research Laboratory, Eastern Ecological Science Center, U.S. Geological Survey, Turners Falls, MA, 01376, USA.
| | - C A Shaughnessy
- Conte Anadromous Fish Research Laboratory, Eastern Ecological Science Center, U.S. Geological Survey, Turners Falls, MA, 01376, USA.,Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - R M Pelis
- Department of Pharmaceutical Sciences, Binghamton University, State University of New York, Johnson City, NY, 13790, USA
| | - J Fuentes
- Centre of Marine Sciences (CCMar), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - J M Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, Puerto Real, 11519, Cádiz, Spain
| | - S D McCormick
- Conte Anadromous Fish Research Laboratory, Eastern Ecological Science Center, U.S. Geological Survey, Turners Falls, MA, 01376, USA.,Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
14
|
Barany A, Gilannejad N, Alameda-López M, Rodríguez-Velásquez L, Astola A, Martínez-Rodríguez G, Roo J, Muñoz JL, Mancera JM. Osmoregulatory Plasticity of Juvenile Greater Amberjack ( Seriola dumerili) to Environmental Salinity. Animals (Basel) 2021; 11:2607. [PMID: 34573573 PMCID: PMC8465821 DOI: 10.3390/ani11092607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Osmotic costs in teleosts are highly variable, reaching up to 50% of energy expenditure in some. In several species, environmental salinities close to the isosmotic point (~15 psu) minimize energy demand for osmoregulation while enhancing growth. The present study aimed to characterize the physiological status related to osmoregulation in early juveniles of the greater amberjack, Seriola dumerili, acclimated to three salinities (15, 22, and 36 psu). Our results indicate that plasma metabolic substrates were enhanced at the lower salinities, whereas hepatic carbohydrate and energetic lipid substrates decreased. Moreover, osmoregulatory parameters, such as osmolality, muscle water content, gill and intestine Na+-K+-ATPase activities, suggested a great osmoregulatory capacity in this species. Remarkably, electrophysiological parameters, such as short-circuit current (Isc) and transepithelial electric resistance (TER), were enhanced significantly at the posterior intestine. Concomitantly, Isc and TER anterior-to-posterior intestine differences were intensified with increasing environmental salinity. Furthermore, the expression of several adeno-hypophyseal genes was assessed. Expression of prl showed an inverse linear relationship with increasing environmental salinity, while gh mRNA enhanced significantly in the 22 psu-acclimated groups. Overall, these results could explain the better growth observed in S. dumerili juveniles kept at salinities close to isosmotic rather than in seawater.
Collapse
Affiliation(s)
- Andre Barany
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cádiz, Puerto Real, E11510 Cádiz, Spain; (M.A.-L.); (L.R.-V.); (J.M.M.)
| | - Neda Gilannejad
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), Puerto Real, E11519 Cádiz, Spain; (N.G.); (G.M.-R.)
- NORCE Norwegian Research Centre AS, Uni Research Environment, Nygårdsgaten 112, E5008 Bergen, Norway
| | - María Alameda-López
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cádiz, Puerto Real, E11510 Cádiz, Spain; (M.A.-L.); (L.R.-V.); (J.M.M.)
| | - Liliana Rodríguez-Velásquez
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cádiz, Puerto Real, E11510 Cádiz, Spain; (M.A.-L.); (L.R.-V.); (J.M.M.)
| | - Antonio Astola
- Department of Biomedicine, Biotechnology, and Public Health, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cadiz, Puerto Real, E11510 Cádiz, Spain;
| | - Gonzalo Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), Puerto Real, E11519 Cádiz, Spain; (N.G.); (G.M.-R.)
| | - Javier Roo
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario Ecoaqua, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, E35214 Gran Canaria, Spain;
| | - Jose Luis Muñoz
- Department of Production, IFAPA Centro “El Toruño”, Junta de Andalucía, El Puerto de Santa María, E11500 Cádiz, Spain;
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cádiz, Puerto Real, E11510 Cádiz, Spain; (M.A.-L.); (L.R.-V.); (J.M.M.)
| |
Collapse
|
15
|
Shaughnessy CA, McCormick SD. 11-Deoxycortisol is a stress responsive and gluconeogenic hormone in a jawless vertebrate, the sea lamprey (Petromyzon marinus). J Exp Biol 2021; 224:269003. [PMID: 34086050 DOI: 10.1242/jeb.241943] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/27/2021] [Indexed: 11/20/2022]
Abstract
Although corticosteroid-mediated hepatic gluconeogenic activity in response to stress has been extensively studied in fishes and other vertebrates, there is little information on the stress response in basal vertebrates. In sea lamprey (Petromyzon marinus), a representative member of the most basal extant vertebrate group Agnatha, 11-deoxycortisol and deoxycorticosterone are the major circulating corticosteroids. The present study examined changes in circulating glucose and 11-deoxycortisol concentrations in response to a physical stressor. Furthermore, the gluconeogenic actions of 11-deoxycortisol and deoxycorticosterone were examined. Within 6 h of exposure of larval and juvenile sea lamprey to an acute handling stress, plasma 11-deoxycortisol levels increased 15- and 6-fold, respectively, and plasma glucose increased 3- and 4-fold, respectively. Radiometric receptor binding studies revealed that a corticosteroid receptor (CR) is present in the liver at lower abundance than in other tissues (gill and anterior intestine) and that the binding affinity of the liver CR was similar for 11-deoxycortisol and deoxycorticosterone. Transcriptional tissue profiles indicate a wide distribution of cr transcription, kidney-specific transcription of steroidogenic acute regulatory protein (star) and liver-specific transcription of phosphoenolpyruvate carboxykinase (pepck). Ex vivo incubation of liver tissue with 11-deoxycortisol resulted in dose-dependent increases in pepck mRNA levels. Finally, intraperitoneal administration of 11-deoxycortisol and deoxycorticosterone demonstrated that only 11-deoxycortisol resulted in an increase in plasma glucose. Together, these results provide the first direct evidence for the gluconeogenic activity of 11-deoxycortisol in an agnathan, indicating that corticosteroid regulation of plasma glucose is a basal trait among vertebrates.
Collapse
Affiliation(s)
- Ciaran A Shaughnessy
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA.,U.S. Geological Survey, Eastern Ecological Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA 01376, USA
| | - Stephen D McCormick
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA.,U.S. Geological Survey, Eastern Ecological Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA 01376, USA.,Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
16
|
Barany A, Shaughnessy CA, McCormick SD. Corticosteroid control of Na +/K +-ATPase in the intestine of the sea lamprey (Petromyzon marinus). Gen Comp Endocrinol 2021; 307:113756. [PMID: 33741310 DOI: 10.1016/j.ygcen.2021.113756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 01/15/2023]
Abstract
Anadromous sea lamprey (Petromyzon marinus) larvae undergo a months-long true metamorphosis during which they develop seawater (SW) tolerance prior to downstream migration and SW entry. We have previously shown that intestinal Na+/K+-ATPase (NKA) activity increases during metamorphosis and is critical to the osmoregulatory function of the intestine in SW. The present study investigated the role of 11-deoxycortisol (S) in controlling NKA in the anterior (AI) and posterior (PI) intestine during sea lamprey metamorphosis. In a tissue profile, nka mRNA and protein were most abundant in the gill, kidney, and AI. During metamorphosis, AI nka mRNA increased 10-fold, whereas PI nka mRNA did not change. Specific corticosteroid receptors were found in the AI, which had a higher binding affinity for S compared to 11-deoxycorticosterone (DOC). In vivo administration of S in mid-metamorphic lamprey upregulated NKA activity 3-fold in the AI and PI, whereas administration of DOC did not affect intestinal NKA activity. During a 24 h SW challenge test, dehydration of white muscle moisture was rescued by prior treatment with S, which was associated with increased intestinal nka mRNA and NKA activity. These results indicate that intestinal osmoregulation in sea lamprey is a target for control by S during metamorphosis and the development of SW tolerance.
Collapse
Affiliation(s)
- Andre Barany
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cádiz, Spain; U.S. Geological Survey, Eastern Ecological Science Center, Conte Anadromous Fish Research Laboratory, US Geological Survey, Turners Falls, MA, USA.
| | - Ciaran A Shaughnessy
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, USA; U.S. Geological Survey, Eastern Ecological Science Center, Conte Anadromous Fish Research Laboratory, US Geological Survey, Turners Falls, MA, USA
| | - Stephen D McCormick
- U.S. Geological Survey, Eastern Ecological Science Center, Conte Anadromous Fish Research Laboratory, US Geological Survey, Turners Falls, MA, USA; Department of Biology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
17
|
Islam MJ, Kunzmann A, Slater MJ. Extreme winter cold-induced osmoregulatory, metabolic, and physiological responses in European seabass (Dicentrarchus labrax) acclimatized at different salinities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145202. [PMID: 33736134 DOI: 10.1016/j.scitotenv.2021.145202] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Despite climate-change challenges, for most aquaculture species, physiological responses to different salinities during ambient extreme cold events remain unknown. Here, European seabass acclimatized at 3, 6, 12, and 30 PSU were subjected to 20 days of an ambient extreme winter cold event (8 °C), and monitored for growth and physiological performance. Growth performance decreased significantly (p < 0.05) in fish exposed at 3 and 30 PSU compared to 6 and 12 PSU. During cold stress exposure, serum Na+, Cl-, and K+ concentrations were significantly (p < 0.05) increased in fish exposed at 30 PSU. Serum cortisol, glucose, and blood urea nitrogen (BUN) were increased significantly (p < 0.05) in fish exposed at 3 and 30 PSU. In contrast, opposite trends were observed for serum protein, lactate, and triglycerides content during cold exposure. Transaminase activities [glutamic-pyruvate transaminase (GPT), glutamic oxaloacetic transaminase (GOT), lactic acid dehydrogenase (LDH), gamma-glutamyl-transaminase (γGGT)] were significantly higher in fish exposed at 3 and 30 PSU on days 10 and 20. The abundance of heat shock protein 70 (HSP70), tumor necrosis factor-α (TNF-α), cystic fibrosis transmembrane conductance (CFTR) were significantly (p < 0.05) increased in fish exposed at 3 and 30 PSU during cold shock exposure. In contrast, insulin-like growth factor 1 (Igf1) expression was significantly lower in fish exposed at 3 and 30 PSU. Whereas, on day 20, Na+/K+ ATPase α1 and Na+/K+/Cl- cotransporter-1 (NKCC1) were significantly upregulated in fish exposed at 30 PSU, followed by 12, 6, and 3 PSU. Results demonstrated that ambient extreme winter cold events induce metabolic and physiological stress responses and provide a conceivable mechanism by which growth and physiological fitness are limited at cold thermal events. However, during ambient extreme cold (8 °C) exposure, European seabass exhibited better physiological fitness at 12 and 6 PSU water, providing possible insight into future aquaculture management options.
Collapse
Affiliation(s)
- Md Jakiul Islam
- Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany; Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany; Faculty of Biology and Chemistry (FB 02), University of Bremen, 28359 Bremen, Germany.
| | - Andreas Kunzmann
- Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany
| | - Matthew James Slater
- Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany
| |
Collapse
|
18
|
Yin X, Martinez AS, Sepúlveda MS, Christie MR. Rapid genetic adaptation to recently colonized environments is driven by genes underlying life history traits. BMC Genomics 2021; 22:269. [PMID: 33853517 PMCID: PMC8048285 DOI: 10.1186/s12864-021-07553-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Background Uncovering the mechanisms underlying rapid genetic adaptation can provide insight into adaptive evolution and shed light on conservation, invasive species control, and natural resource management. However, it can be difficult to experimentally explore rapid adaptation due to the challenges associated with propagating and maintaining species in captive environments for long periods of time. By contrast, many introduced species have experienced strong selection when colonizing environments that differ substantially from their native range and thus provide a “natural experiment” for studying rapid genetic adaptation. One such example occurred when sea lamprey (Petromyzon marinus), native to the northern Atlantic, naturally migrated into Lake Champlain and expanded their range into the Great Lakes via man-made shipping canals. Results Utilizing 368,886 genome-wide single nucleotide polymorphisms (SNPs), we calculated genome-wide levels of genetic diversity (i.e., heterozygosity and π) for sea lamprey collected from native (Connecticut River), native but recently colonized (Lake Champlain), and invasive (Lake Michigan) populations, assessed genetic differentiation between all populations, and identified candidate genes that responded to selection imposed by the novel environments. We observed a 14 and 24% reduction in genetic diversity in Lake Michigan and Lake Champlain populations, respectively, compared to individuals from the Connecticut River, suggesting that sea lamprey populations underwent a genetic bottleneck during colonization. Additionally, we identified 121 and 43 outlier genes in comparisons between Lake Michigan and Connecticut River and between Lake Champlain and Connecticut River, respectively. Six outlier genes that contained synonymous SNPs in their coding regions and two genes that contained nonsynonymous SNPs may underlie the rapid evolution of growth (i.e., GHR), reproduction (i.e., PGR, TTC25, STARD10), and bioenergetics (i.e., OXCT1, PYGL, DIN4, SLC25A15). Conclusions By identifying the genomic basis of rapid adaptation to novel environments, we demonstrate that populations of invasive species can be a useful study system for understanding adaptive evolution. Furthermore, the reduction in genome-wide levels of genetic diversity associated with colonization coupled with the identification of outlier genes underlying key life history traits known to have changed in invasive sea lamprey populations (e.g., growth, reproduction) illustrate the utility in applying genomic approaches for the successful management of introduced species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07553-x.
Collapse
Affiliation(s)
- Xiaoshen Yin
- Department of Biological Sciences, Purdue University, 915 W. State St., West Lafayette, Indiana, 47907-2054, USA
| | - Alexander S Martinez
- Department of Biological Sciences, Purdue University, 915 W. State St., West Lafayette, Indiana, 47907-2054, USA
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, 715 W. State St., West Lafayette, Indiana, 47907-2054, USA
| | - Mark R Christie
- Department of Biological Sciences, Purdue University, 915 W. State St., West Lafayette, Indiana, 47907-2054, USA. .,Department of Forestry and Natural Resources, Purdue University, 715 W. State St., West Lafayette, Indiana, 47907-2054, USA.
| |
Collapse
|
19
|
Shaughnessy CA, Breves JP. Molecular mechanisms of Cl
−
transport in fishes: New insights and their evolutionary context. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:207-216. [DOI: 10.1002/jez.2428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Affiliation(s)
| | - Jason P. Breves
- Department of Biology Skidmore College Saratoga Springs New York USA
| |
Collapse
|
20
|
Shaughnessy CA, Barany A, McCormick SD. 11-Deoxycortisol controls hydromineral balance in the most basal osmoregulating vertebrate, sea lamprey (Petromyzon marinus). Sci Rep 2020; 10:12148. [PMID: 32699304 PMCID: PMC7376053 DOI: 10.1038/s41598-020-69061-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/01/2020] [Indexed: 12/23/2022] Open
Abstract
It is unknown whether and how osmoregulation is controlled by corticosteroid signaling in the phylogenetically basal vertebrate group Agnatha, including lampreys and hagfishes. It is known that a truncated steroid biosynthetic pathway in lampreys produces two predominant circulating corticosteroids, 11-deoxycortisol (S) and 11-deoxycorticosterone (DOC). Furthermore, lampreys express only a single, ancestral corticosteroid receptor (CR). Whether S and/or DOC interact with the CR to control osmoregulation in lampreys is still unknown. We examined the role of the endogenous corticosteroids in vivo and ex vivo in sea lamprey (Petromyzon marinus) during the critical metamorphic period during which sea lamprey increase osmoregulatory capacity and acquire seawater (SW) tolerance. We demonstrate in vivo that increases in circulating [S] and gill CR abundance are associated with increases in osmoregulatory capacity during metamorphosis. We further show that in vivo and ex vivo treatment with S increases activity and expression of gill active ion transporters and improves SW tolerance, and that only S (and not DOC) has regulatory control over active ion transport in the gills. Lastly, we show that the lamprey CR expresses an ancestral, spironolactone-as-agonist structural motif and that spironolactone treatment in vivo increases osmoregulatory capacity. Together, these results demonstrate that S is an osmoregulatory hormone in lamprey and that receptor-mediated discriminative corticosteroid regulation of hydromineral balance is an evolutionarily basal trait among vertebrates.
Collapse
Affiliation(s)
- Ciaran A Shaughnessy
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, USA.
| | - Andre Barany
- Departamento de Biología, Universidad de Cádiz, Cádiz, Spain
| | - Stephen D McCormick
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, USA
- Department of Biology, University of Massachusetts, Amherst, MA, USA
- U.S. Geological Survey, Leetown Science Center, S.O. Conte Anadromous Fish Research Center, Turners Falls, MA, USA
| |
Collapse
|