1
|
McKenna MJ, Renaud JM, Ørtenblad N, Overgaard K. A century of exercise physiology: effects of muscle contraction and exercise on skeletal muscle Na +,K +-ATPase, Na + and K + ions, and on plasma K + concentration-historical developments. Eur J Appl Physiol 2024; 124:681-751. [PMID: 38206444 PMCID: PMC10879387 DOI: 10.1007/s00421-023-05335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/27/2023] [Indexed: 01/12/2024]
Abstract
This historical review traces key discoveries regarding K+ and Na+ ions in skeletal muscle at rest and with exercise, including contents and concentrations, Na+,K+-ATPase (NKA) and exercise effects on plasma [K+] in humans. Following initial measures in 1896 of muscle contents in various species, including humans, electrical stimulation of animal muscle showed K+ loss and gains in Na+, Cl- and H20, then subsequently bidirectional muscle K+ and Na+ fluxes. After NKA discovery in 1957, methods were developed to quantify muscle NKA activity via rates of ATP hydrolysis, Na+/K+ radioisotope fluxes, [3H]-ouabain binding and phosphatase activity. Since then, it became clear that NKA plays a central role in Na+/K+ homeostasis and that NKA content and activity are regulated by muscle contractions and numerous hormones. During intense exercise in humans, muscle intracellular [K+] falls by 21 mM (range - 13 to - 39 mM), interstitial [K+] increases to 12-13 mM, and plasma [K+] rises to 6-8 mM, whilst post-exercise plasma [K+] falls rapidly, reflecting increased muscle NKA activity. Contractions were shown to increase NKA activity in proportion to activation frequency in animal intact muscle preparations. In human muscle, [3H]-ouabain-binding content fully quantifies NKA content, whilst the method mainly detects α2 isoforms in rats. Acute or chronic exercise affects human muscle K+, NKA content, activity, isoforms and phospholemman (FXYD1). Numerous hormones, pharmacological and dietary interventions, altered acid-base or redox states, exercise training and physical inactivity modulate plasma [K+] during exercise. Finally, historical research approaches largely excluded female participants and typically used very small sample sizes.
Collapse
Affiliation(s)
- Michael J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, VIC, 8001, Australia.
- College of Physical Education, Southwest University, Chongqing, China.
- College of Sport Science, Zhuhai College of Science and Technology, Zhuhai, China.
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Neuromuscular Research Center, University of Ottawa, Ottawa, ON, Canada
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Kristian Overgaard
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Wyckelsma VL, Perry BD, Bangsbo J, McKenna MJ. Inactivity and exercise training differentially regulate abundance of Na +-K +-ATPase in human skeletal muscle. J Appl Physiol (1985) 2019; 127:905-920. [PMID: 31369327 DOI: 10.1152/japplphysiol.01076.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Physical inactivity is a global health risk that can be addressed through application of exercise training suitable for an individual's health and age. People's willingness to participate in physical activity is often limited by an initially poor physical capability and early onset of fatigue. One factor associated with muscle fatigue during intense contractions is an inexcitability of skeletal muscle cells, reflecting impaired transmembrane Na+/K+ exchange and membrane depolarization, which are regulated via the transmembranous protein Na+-K+-ATPase (NKA). This short review focuses on the plasticity of NKA in skeletal muscle in humans after periods of altered usage, exploring NKA upregulation with exercise training and downregulation with physical inactivity. In human skeletal muscle, the NKA content quantified by [3H]ouabain binding site content shows robust, yet tightly constrained, upregulation of 8-22% with physical training, across a broad range of exercise training types. Muscle NKA content in humans undergoes extensive downregulation with injury that involves substantial muscular inactivity. Surprisingly, however, no reduction in NKA content was found in the single study that investigated short-term disuse. Despite clear findings that exercise training and injury modulate NKA content, the adaptability of the individual NKA isoforms in muscle (α1-3 and β1-3) and of the accessory and regulatory protein FXYD1 are surprisingly inconsistent across studies, for exercise training as well as for injury/disuse. Potential reasons for this are explored. Finally, we provide suggestions for future studies to provide greater understanding of NKA regulation during exercise training and inactivity in humans.
Collapse
Affiliation(s)
- V L Wyckelsma
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - B D Perry
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - J Bangsbo
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - M J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Christiansen D. Molecular stressors underlying exercise training-induced improvements in K + regulation during exercise and Na + ,K + -ATPase adaptation in human skeletal muscle. Acta Physiol (Oxf) 2019; 225:e13196. [PMID: 30288889 DOI: 10.1111/apha.13196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/12/2018] [Accepted: 09/28/2018] [Indexed: 12/28/2022]
Abstract
Despite substantial progress made towards a better understanding of the importance of skeletal muscle K+ regulation for human physical function and its association with several disease states (eg type-II diabetes and hypertension), the molecular basis underpinning adaptations in K+ regulation to various stimuli, including exercise training, remains inadequately explored in humans. In this review, the molecular mechanisms essential for enhancing skeletal muscle K+ regulation and its key determinants, including Na+ ,K+ -ATPase function and expression, by exercise training are examined. Special attention is paid to the following molecular stressors and signaling proteins: oxygenation, redox balance, hypoxia, reactive oxygen species, antioxidant function, Na+ ,K+ , and Ca2+ concentrations, anaerobic ATP turnover, AMPK, lactate, and mRNA expression. On this basis, an update on the effects of different types of exercise training on K+ regulation in humans is provided, focusing on recent discoveries about the muscle fibre-type-dependent regulation of Na+ ,K+ -ATPase-isoform expression. Furthermore, with special emphasis on blood-flow-restricted exercise as an exemplary model to modulate the key molecular mechanisms identified, it is discussed how training interventions may be designed to maximize improvements in K+ regulation in humans. The novel insights gained from this review may help us to better understand how exercise training and other strategies, such as pharmacological interventions, may be best designed to enhance K+ regulation and thus the physical function in humans.
Collapse
Affiliation(s)
- Danny Christiansen
- Department of Nutrition, Exercise and Sports (NEXS) University of Copenhagen Copenhagen Denmark
- Institute for Health and Sport (IHES) Victoria University Melbourne Victoria Australia
| |
Collapse
|
4
|
Wyckelsma VL, Levinger I, Murphy RM, Petersen AC, Perry BD, Hedges CP, Anderson MJ, McKenna MJ. Intense interval training in healthy older adults increases skeletal muscle [ 3H]ouabain-binding site content and elevates Na +,K +-ATPase α 2 isoform abundance in Type II fibers. Physiol Rep 2017; 5:5/7/e13219. [PMID: 28373411 PMCID: PMC5392511 DOI: 10.14814/phy2.13219] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 12/12/2022] Open
Abstract
Young adults typically adapt to intense exercise training with an increased skeletal muscle Na+,K+-ATPase (NKA) content, concomitant with reduced extracellular potassium concentration [K+] during exercise and enhanced exercise performance. Whether these changes with longitudinal training occur in older adults is unknown and was investigated here. Fifteen older adults (69.4 ± 3.5 years, mean ± SD) were randomized to either 12 weeks of intense interval training (4 × 4 min at 90-95% peak heart rate), 3 days/week (IIT, n = 8); or no exercise controls (n = 7). Before and after training, participants completed an incremental cycle ergometer exercise test until a rating of perceived exertion of 17 (very hard) on a 20-point scale was attained, with measures of antecubital venous [K+]v Participants underwent a resting muscle biopsy prior to and at 48-72 h following the final training session. After IIT, the peak exercise work rate (25%), oxygen uptake (16%) and heart rate (6%) were increased (P < 0.05). After IIT, the peak exercise plasma [K+]v tended to rise (P = 0.07), while the rise in plasma [K+]v relative to work performed (nmol.L-1J-1) was unchanged. Muscle NKA content increased by 11% after IIT (P < 0.05). Single fiber measurements, increased in NKA α2 isoform in Type II fibers after IIT (30%, P < 0.05), with no changes to the other isoforms in single fibers or homogenate. Thus, intense exercise training in older adults induced an upregulation of muscle NKA, with a fiber-specific increase in NKA α2 abundance in Type II fibers, coincident with increased muscle NKA content and enhanced exercise performance.
Collapse
Affiliation(s)
- Victoria L Wyckelsma
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living (ISEAL), Victoria, Australia
| | - Itamar Levinger
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living (ISEAL), Victoria, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia
| | - Aaron C Petersen
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living (ISEAL), Victoria, Australia
| | - Ben D Perry
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living (ISEAL), Victoria, Australia.,Renal Division, Department of Medicine, Emory University, Atlanta, Georgia
| | - Christopher P Hedges
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living (ISEAL), Victoria, Australia
| | - Mitchell J Anderson
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living (ISEAL), Victoria, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Michael J McKenna
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living (ISEAL), Victoria, Australia
| |
Collapse
|
5
|
Wyckelsma VL, McKenna MJ. Effects of Age on Na(+),K(+)-ATPase Expression in Human and Rodent Skeletal Muscle. Front Physiol 2016; 7:316. [PMID: 27531982 PMCID: PMC4969555 DOI: 10.3389/fphys.2016.00316] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/13/2016] [Indexed: 12/30/2022] Open
Abstract
The maintenance of transmembrane Na(+) and K(+) concentration gradients and membrane potential is vital for the production of force in skeletal muscle. In aging an inability to maintain ion regulation and membrane potential would have adverse consequences on the capacity for performing repeated muscle contractions, which are critical for everyday activities and functional independence. This short review focusses on the effects of aging on one major and vital component affecting muscle Na(+) and K(+) concentrations, membrane potential and excitability in skeletal muscle, the Na(+),K(+)-ATPase (Na(+),K(+)-pump, NKA) protein. The review examines the effects of age on NKA in both human and rodent models and highlights a distant lack of research in NKA with aging. In rodents, the muscle NKA measured by [(3)H]ouabain binding site content, declines with advanced age from peak values in early life. In human skeletal muscle, however, there appears to be no age effect on [(3)H]ouabain binding site content in physically active older adults between 55 and 76 years compared to those aged between 18 and 30 years of age. Analysis of the NKA isoforms reveal differential changes with age in fiber-types in both rat and humans. The data show considerable disparities, suggesting different regulation of NKA isoforms between rodents and humans. Finally we review the importance of physical activity on NKA content in older humans. Findings suggest that physical activity levels of an individual may have a greater effect on regulating the NKA content in skeletal muscle rather than aging per se, at least up until 80 years of age.
Collapse
Affiliation(s)
- Victoria L Wyckelsma
- Clinical Exercise Science Program, Institute of Sport Exercise and Active Living, Victoria University Melbourne, VIC, Australia
| | - Michael J McKenna
- Clinical Exercise Science Program, Institute of Sport Exercise and Active Living, Victoria University Melbourne, VIC, Australia
| |
Collapse
|
6
|
Pirkmajer S, Chibalin AV. Na,K-ATPase regulation in skeletal muscle. Am J Physiol Endocrinol Metab 2016; 311:E1-E31. [PMID: 27166285 DOI: 10.1152/ajpendo.00539.2015] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/02/2016] [Indexed: 12/17/2022]
Abstract
Skeletal muscle contains one of the largest and the most dynamic pools of Na,K-ATPase (NKA) in the body. Under resting conditions, NKA in skeletal muscle operates at only a fraction of maximal pumping capacity, but it can be markedly activated when demands for ion transport increase, such as during exercise or following food intake. Given the size, capacity, and dynamic range of the NKA pool in skeletal muscle, its tight regulation is essential to maintain whole body homeostasis as well as muscle function. To reconcile functional needs of systemic homeostasis with those of skeletal muscle, NKA is regulated in a coordinated manner by extrinsic stimuli, such as hormones and nerve-derived factors, as well as by local stimuli arising in skeletal muscle fibers, such as contractions and muscle energy status. These stimuli regulate NKA acutely by controlling its enzymatic activity and/or its distribution between the plasma membrane and the intracellular storage compartment. They also regulate NKA chronically by controlling NKA gene expression, thus determining total NKA content in skeletal muscle and its maximal pumping capacity. This review focuses on molecular mechanisms that underlie regulation of NKA in skeletal muscle by major extrinsic and local stimuli. Special emphasis is given to stimuli and mechanisms linking regulation of NKA and energy metabolism in skeletal muscle, such as insulin and the energy-sensing AMP-activated protein kinase. Finally, the recently uncovered roles for glutathionylation, nitric oxide, and extracellular K(+) in the regulation of NKA in skeletal muscle are highlighted.
Collapse
Affiliation(s)
- Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; and
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Wyckelsma VL, McKenna MJ, Levinger I, Petersen AC, Lamboley CR, Murphy RM. Cell specific differences in the protein abundances of GAPDH and Na(+),K(+)-ATPase in skeletal muscle from aged individuals. Exp Gerontol 2015; 75:8-15. [PMID: 26747222 DOI: 10.1016/j.exger.2015.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/12/2015] [Accepted: 12/27/2015] [Indexed: 10/22/2022]
Abstract
Na(+), K(+)-ATPase (NKA) isoforms (α1,α2,α3,β1,β2,β3) are involved in the maintenance of membrane potential and hence are important regulators of cellular homeostasis. Given the age-related decline in skeletal muscle function, we investigated whether the natural physiological process of aging is associated with altered abundance of NKA isoforms (α1,α2,α3,β1,β2,β3) or of the commonly used control protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Importantly, measurements were made in both whole muscle or specific fiber types obtained from skeletal muscle biopsies. Seventeen healthy older (AGED, 69.4 ± 3.5 years, mean ± SD) and 14 younger (YOUNG, 25.5 ± 2.8 years) adults underwent a muscle biopsy for biochemical analyses. Comparing homogenates from AGED and YOUNG individuals revealed higher β3 isoform (p<0.05) and lower GAPDH (p<0.05). Analysis of individual fibers in muscle from YOUNG individuals, showed greater α3 and β2 isoforms, and more GAPDH in Type II compared with Type I fibers (p<0.05). In the AGED, GAPDH was higher in Type II compared with Type I fibers (p<0.05), there were no fiber type differences in the NKA isoforms (p>0.05). Compared with the same fiber type in YOUNG, α1 was greater (Type I) and α3 lower (Type II), while in both fiber types, β2 was lower, β3 greater and GAPDH lower, in muscle from AGED individuals (all p<0.05). Overall, we demonstrate that (i) GAPDH is an inappropriate choice of protein for normalization in all skeletal muscle research and (ii) full understanding of the role of NKA isoforms in human skeletal muscle requires consideration of age and muscle fiber type.
Collapse
Affiliation(s)
- Victoria L Wyckelsma
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Michael J McKenna
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia
| | - Itamar Levinger
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia
| | - Aaron C Petersen
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia
| | - Cedric R Lamboley
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
DiFranco M, Hakimjavadi H, Lingrel JB, Heiny JA. Na,K-ATPase α2 activity in mammalian skeletal muscle T-tubules is acutely stimulated by extracellular K+. ACTA ACUST UNITED AC 2015; 146:281-94. [PMID: 26371210 PMCID: PMC4586590 DOI: 10.1085/jgp.201511407] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 08/21/2015] [Indexed: 11/20/2022]
Abstract
The K+ affinity of the Na,K-ATPase α2 isoform matches its activity to the range of extracellular K+ concentrations in the T-tubules at rest and during contraction, maintaining the excitability of active muscle. The Na,K-ATPase α2 isoform is the predominant Na,K-ATPase in adult skeletal muscle and the sole Na,K-ATPase in the transverse tubules (T-tubules). In quiescent muscles, the α2 isozyme operates substantially below its maximal transport capacity. Unlike the α1 isoform, the α2 isoform is not required for maintaining resting ion gradients or the resting membrane potential, canonical roles of the Na,K-ATPase in most other cells. However, α2 activity is stimulated immediately upon the start of contraction and, in working muscles, its contribution is crucial to maintaining excitation and resisting fatigue. Here, we show that α2 activity is determined in part by the K+ concentration in the T-tubules, through its K+ substrate affinity. Apparent K+ affinity was determined from measurements of the K1/2 for K+ activation of pump current in intact, voltage-clamped mouse flexor digitorum brevis muscle fibers. Pump current generated by the α2 Na,K-ATPase, Ip, was identified as the outward current activated by K+ and inhibited by micromolar ouabain. Ip was outward at all potentials studied (−90 to −30 mV) and increased with depolarization in the subthreshold range, −90 to −50 mV. The Q10 was 2.1 over the range of 22–37°C. The K1/2,K of Ip was 4.3 ± 0.3 mM at −90 mV and was relatively voltage independent. This K+ affinity is lower than that reported for other cell types but closely matches the dynamic range of extracellular K+ concentrations in the T-tubules. During muscle contraction, T-tubule luminal K+ increases in proportion to the frequency and duration of action potential firing. This K1/2,K predicts a low fractional occupancy of K+ substrate sites at the resting extracellular K+ concentration, with occupancy increasing in proportion to the frequency of membrane excitation. The stimulation of preexisting pumps by greater K+ site occupancy thus provides a rapid mechanism for increasing α2 activity in working muscles.
Collapse
Affiliation(s)
- Marino DiFranco
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Hesamedin Hakimjavadi
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Jerry B Lingrel
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Judith A Heiny
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| |
Collapse
|
9
|
Wyckelsma VL, McKenna MJ, Serpiello FR, Lamboley CR, Aughey RJ, Stepto NK, Bishop DJ, Murphy RM. Single-fiber expression and fiber-specific adaptability to short-term intense exercise training of Na+-K+-ATPase α- and β-isoforms in human skeletal muscle. J Appl Physiol (1985) 2015; 118:699-706. [PMID: 25614596 DOI: 10.1152/japplphysiol.00419.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Na(+)-K(+)-ATPase (NKA) plays a key role in muscle excitability, but little is known in human skeletal muscle about fiber-type-specific differences in NKA isoform expression or adaptability. A vastus lateralis muscle biopsy was taken in 17 healthy young adults to contrast NKA isoform protein relative abundance between type I and IIa fibers. We further investigated muscle fiber-type-specific NKA adaptability in eight of these adults following 4-wk repeated-sprint exercise (RSE) training, comprising three sets of 5 × 4-s sprints, 3 days/wk. Single fibers were separated, and myosin heavy chain (I and IIa) and NKA (α1-3 and β1-3) isoform abundance were determined via Western blotting. All six NKA isoforms were expressed in both type I and IIa fibers. No differences between fiber types were found for α1-, α2-, α3-, β1-, or β3-isoform abundances. The NKA β2-isoform was 27% more abundant in type IIa than type I fibers (P < 0.05), with no other fiber-type-specific trends evident. RSE training increased β1 in type IIa fibers (pretraining 0.70 ± 0.25, posttraining 0.84 ± 0.24 arbitrary units, 42%, P < 0.05). No training effects were found for other NKA isoforms. Thus human skeletal muscle expresses all six NKA isoforms and not in a fiber-type-specific manner; this points to their different functional roles in skeletal muscle cells. Detection of elevated NKA β1 after RSE training demonstrates the sensitivity of the single-fiber Western blotting technique for fiber-type-specific intervention effects.
Collapse
Affiliation(s)
- V L Wyckelsma
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia; and
| | - M J McKenna
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia; and
| | - F R Serpiello
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia; and
| | - C R Lamboley
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia; and
| | - R J Aughey
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia; and
| | - N K Stepto
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia; and
| | - D J Bishop
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia; and
| | - R M Murphy
- Department of Biochemistry, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Aerobic exercise affects myostatin expression in aged rat skeletal muscles: a possibility of antiaging effects of aerobic exercise related with pelvic floor muscle and urethral rhabdosphincter. Int Neurourol J 2014; 18:77-85. [PMID: 24987560 PMCID: PMC4076484 DOI: 10.5213/inj.2014.18.2.77] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/30/2014] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Aging-induced loss of muscle mass and subsequent reduction of strength is a fundamental cause of frailty, functional decline, and disability. And this may lead to muscular dysfunction, voiding dysfunction, or urinary incontinence due to pelvic muscle weakness induced by aging. Physical exercise has been recommended for the prevention and the treatment of these age-related frail states. We investigated the effects of treadmill exercise on muscle strength, myostatin mRNA and protein expression, and gastrocnemius myocytes proliferation in aged rats to investigate the possible antiaging effects of aerobic exercise on skeletal muscles such as pelvic floor muscles and urethral rhabdosphincter muscle. METHODS In this study, 5-month-old male Sprague-Dawley rats were used as the young-age group (n=20) and 24-month-old rats were used as the old-age group (n=20). Each group was randomly divided into two groups (n=10 in each group): the sedentary and the treadmill exercise group. The rats in the exercise groups were forced to run on a motorized treadmill for 30 minutes, once a day, for 6 weeks. For this study, a weight load test, hematoxylin and eosin staining, real-time and reverse transcription polymerase chain reaction for myostatin mRNA, myostatin western blot, and 5-bromo-2'-deoxyuridine immunohistochemistry were performed in the gastrocnemius muscle. RESULTS The age-induced reduction of muscle mass and strength was associated with a decrease in myocyte proliferation and an increase in myostatin mRNA and protein expression in the gastrocnemius. However, treadmill exercise improved muscle mass and strength through suppression of myostatin mRNA and protein expression, and myocyte proliferation increase in the gastrocnemius against the aging process. CONCLUSIONS Aerobic exercise is a useful strategy for enhancing muscle function against aging-induced loss of skeletal muscle mass and functions.
Collapse
|
11
|
McKenna MJ, Perry BD, Serpiello FR, Caldow MK, Levinger P, Cameron-Smith D, Levinger I. Unchanged [3H]ouabain binding site content but reduced Na+-K+ pump α2-protein abundance in skeletal muscle in older adults. J Appl Physiol (1985) 2012; 113:1505-11. [DOI: 10.1152/japplphysiol.01032.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aging is associated with reduced muscle mass, weakness, and increased fatigability. In skeletal muscle, the Na+-K+ pump (NKA) is important in regulating Na+-K+ gradients, membrane excitability, and thus contractility, but the effects of aging on muscle NKA are unclear. We investigated whether aging is linked with reduced muscle NKA by contrasting muscle NKA isoform gene expression and protein abundance, and NKA total content in 17 Elderly (66.8 ± 6.4 yr, mean ± SD) and 16 Young adults (23.9 ± 2.2 yr). Participants underwent peak oxygen consumption assessment and a vastus lateralis muscle biopsy, which was analyzed for NKA α1-, α2-, α3-, β1-, β2-, and β3-isoform gene expression (real-time RT-PCR), protein abundance (immunoblotting), and NKA total content ([3H]ouabain binding sites). The Elderly had lower peak oxygen consumption (−36.7%, P = 0.000), strength (−36.3%, P = 0.001), NKA α2- (−24.4%, 11.9 ± 4.4 vs. 9.0 ± 2.7 arbitrary units, P = 0.049), and NKA β3-protein abundance (−23.0%, P = 0.041) than Young. The β3-mRNA was higher in Elderly compared with Young ( P = 0.011). No differences were observed between groups for other NKA isoform mRNA or protein abundance, or for [3H]ouabain binding site content. Thus skeletal muscle in elderly individuals was characterized by decreased NKA α2- and β3-protein abundance, but unchanged α1 abundance and [3H]ouabain binding. The latter was likely caused by reduced α2 abundance with aging, preventing an otherwise higher [3H]ouabain binding that might occur with a greater membrane density in smaller muscle fibers. Further study is required to verify reduced muscle NKA α2 with aging and possible contributions to impaired exercise capability and daily living activities.
Collapse
Affiliation(s)
- Michael J. McKenna
- Institute of Sport, Exercise and Active Living (ISEAL), Muscle, Ions and Exercise Group, Victoria University, Melbourne, Victoria, Australia
| | - Ben D. Perry
- Institute of Sport, Exercise and Active Living (ISEAL), Muscle, Ions and Exercise Group, Victoria University, Melbourne, Victoria, Australia
- School of Sport and Exercise Science, Muscle, Ions and Exercise Group, Victoria University, Melbourne, Victoria, Australia
| | - Fabio R. Serpiello
- Institute of Sport, Exercise and Active Living (ISEAL), Muscle, Ions and Exercise Group, Victoria University, Melbourne, Victoria, Australia
- School of Sport and Exercise Science, Muscle, Ions and Exercise Group, Victoria University, Melbourne, Victoria, Australia
- Facolta' di Scienze Motorie, Universita' degli Studi di Verona, Verona, Italy
| | - Marissa K. Caldow
- School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Victoria, Australia; and
| | - Pazit Levinger
- Institute of Sport, Exercise and Active Living (ISEAL), Muscle, Ions and Exercise Group, Victoria University, Melbourne, Victoria, Australia
| | | | - Itamar Levinger
- Institute of Sport, Exercise and Active Living (ISEAL), Muscle, Ions and Exercise Group, Victoria University, Melbourne, Victoria, Australia
- School of Sport and Exercise Science, Muscle, Ions and Exercise Group, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Rasmussen MK, Juel C, Nordsborg NB. Exercise-induced regulation of muscular Na+-K+ pump, FXYD1, and NHE1 mRNA and protein expression: importance of training status, intensity, and muscle type. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1209-20. [PMID: 21325644 DOI: 10.1152/ajpregu.00635.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is investigated if exercise-induced mRNA changes cause similar protein expression changes of Na(+)-K(+) pump isoforms (α(1), α(2), β(1), β(2)), FXYD1, and Na(+)/K(+) exchanger (NHE1) in rat skeletal muscle. Expression was evaluated (n = 8 per group) in soleus and extensor digutorum longus after 1 day, 3 days, and 3 wk (5 sessions/wk) of either sprint (4 × 3-min sprint + 1-min rest) or endurance (20 min) running. Two hours after exercise on day 1, no change in protein expression was apparent in either training group or muscle, whereas sprint exercise increased the mRNA of soleus α(2) (4.9 ± 0.8-fold; P < 0.05), β(2) (13.2 ± 4.4-fold; P < 0.001), and NHE1 (12.0 ± 3.1-fold; P < 0.01). Two hours after sprint exercise, protein expression normalized to control samples was higher on day 3 than day 1 for soleus α(1) (41 ± 18% increase vs. 15 ± 8% reduction; P < 0.05), α(2) (64 ± 35% increase vs. 37 ± 12% reduction; P < 0.05), β(1) (17 ± 21% increase vs. 14 ± 29% reduction; P < 0.05), and FXYD1 (35 ± 16% increase vs. 13 ± 10% reduction; P < 0.05). In contrast, on day 3, soleus α(1) (0.1 ± 0.1-fold; P < 0.001), α(2) (0.2 ± 0.1-fold; P < 0.001), β(1) (0.4 ± 0.1-fold; P < 0.05), and β(2)-mRNA (2.9 ± 1.7-fold; P < 0.001) expression was lower than after exercise on day 1. After 3 wk of training, no change in protein expression relative to control existed. In conclusion, increased expression of Na(+)-K(+) pump subunits, FXYD1 and NHE1 after 3 days exercise training does not appear to be an effect of increased constitutive mRNA levels. Importantly, sprint exercise can reduce mRNA expression concomitant with increased protein expression.
Collapse
Affiliation(s)
- Martin Krøyer Rasmussen
- Dept. of Exercise and Sport Sciences, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark
| | | | | |
Collapse
|
13
|
Rigoard P, Chaillou M, Fares M, Sottejeau Y, Giot JP, Honfo-Ga C, Rohan J, Lapierre F, Maixent JM. [Energetic applications: Na+/K+-ATPase and neuromuscular transmission]. Neurochirurgie 2009; 55 Suppl 1:S92-103. [PMID: 19230940 DOI: 10.1016/j.neuchi.2008.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 06/05/2008] [Indexed: 11/29/2022]
Abstract
Na/K-ATPase electrogenic activity and its indispensable role in maintaining gradients suggest that the modifications in isoform distribution and the functioning of the sodium pump have a major influence on both the neuronal functions, including excitability, and motor efficiency. This article proposes to clarify the involvement of Na/K-ATPase in the transmission of nerve influx within the peripheral nerve and then in the genesis, the maintenance, and the physiology of muscle contraction by comparing the data found in the literature with our work on neuron and muscle characterization of Na/K-ATPase activity and isoforms.
Collapse
Affiliation(s)
- P Rigoard
- Service de neurochirurgie, CHU La Milétrie, 2, rue de La Milétrie, BP 577, 86021 Poitiers cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Green HJ, Duhamel TA, Stewart RD, Tupling AR, Ouyang J. Dissociation between changes in muscle Na+-K+-ATPase isoform abundance and activity with consecutive days of exercise and recovery. Am J Physiol Endocrinol Metab 2008; 294:E761-7. [PMID: 18230697 DOI: 10.1152/ajpendo.00751.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The early plasticity of vastus lateralis Na(+)-K(+)-ATPase to the abrupt onset of prolonged submaximal cycling was studied in 12 untrained participants (Vo(2 peak) 44.8 +/- 2.0 ml x kg(-1) x min(-1), mean +/- SE) using a 6-day protocol (3 days of exercise plus 3 days of recovery). Tissue samples were extracted prior to (Pre) and following exercise (Post) on day 1 (E1) and day 3 (E3) and on each day of recovery (R1, R2, R3) and analyzed for changes in maximal protein (beta(max)) (vanadate-facilitated [(3)H]ouabain binding), alpha- and beta-isoform concentration (quantitative immunoblotting) and maximal Na(+)-K(+)-ATPase activity (V(max)) (3-O-methylfluorescein K(+)-stimulated phosphatase assay). For beta(max) (pmol/g wet wt), an increase (P < 0.05) of 11.8% was observed at R1 compared with E1-Pre (340 +/- 14 vs 304 +/- 17). For the alpha-isoforms alpha(1), alpha(2), and alpha(3), increases (P < 0.05) of 46, 42, and 31% were observed at R1, respectively. For the beta-isoform, beta(1) and beta(2) increased (P < 0.05) by 19 and 28% at R1, whereas beta(3) increased (P < 0.05) by 18% at R2. With the exception of alpha(2) and alpha(3), the increases in the isoforms persisted at R3. Exercise resulted in an average decrease (P < 0.05) in V(max) by 14.3%. No differences were observed in V(max) at E1 - Pre and E3 - Pre or between R1, R2, and R3. It is concluded that 3 days of prolonged exercise is a powerful stimulus for the rapid upregulation of the Na(+)-K(+)-ATPase subunit isoforms. Contrary to our hypothesis, the increase in subunit expression is not accompanied by increases in the maximal catalytic activity.
Collapse
Affiliation(s)
- H J Green
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1.
| | | | | | | | | |
Collapse
|
15
|
Betik AC, Baker DJ, Krause DJ, McConkey MJ, Hepple RT. Exercise training in late middle-aged male Fischer 344 x Brown Norway F1-hybrid rats improves skeletal muscle aerobic function. Exp Physiol 2008; 93:863-71. [PMID: 18356556 DOI: 10.1113/expphysiol.2008.042069] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Fischer 344 x Brown Norway F1-hybrid (F344BN) rat has become an increasingly popular and useful strain for studying age-related declines in skeletal muscle function because this strain lives long enough to experience significant declines in muscle mass. Since exercise is often considered a mechanism to combat age-related declines in muscle function, determining the utility of this strain of rat for studying the effects of exercise on the ageing process is necessary. The purpose of this study was to evaluate the plasticity of skeletal muscle aerobic function in late middle-aged male rats following 7 weeks of treadmill exercise training. Training consisted of 60 min per day, 5 days per week with velocity gradually increasing over the training period according to the capabilities of individual rats. The final 3 weeks involved 2 min high-intensity intervals to increase the training stimulus. We used in situ skeletal muscle aerobic metabolic responses and in vitro assessment of muscle mitochondrial oxidative capacity to describe the adaptations of aerobic function from the training. Training increased running endurance from 11.3 +/- 0.6 to 15.5 +/- 0.8 min, an improvement of approximately 60%. Similarly, distal hindlimb muscles from trained rats exhibited a higher maximal oxygen consumption in situ (23.2 +/- 1.3 versus 19.7 +/- 0.8 mumol min(-1) for trained versus sedentary rats, respectively) and greater citrate synthase and complex IV enzyme activities in gastrocnemius (29 and 19%, respectively) and plantaris muscles (24 and 28%, respectively) compared with age-matched sedentary control animals. Our results demonstrate that skeletal muscles from late middle-aged rats adapt to treadmill exercise by improving skeletal muscle aerobic function and mitochondrial enzyme activities. This rat strain seems suitable for further investigations using exercise as an intervention to combat ageing-related declines of skeletal muscle aerobic function.
Collapse
Affiliation(s)
- Andrew C Betik
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4.
| | | | | | | | | |
Collapse
|
16
|
Green HJ, Duhamel TA, Holloway GP, Moule JW, Ouyang J, Ranney D, Tupling AR. Muscle Na+-K+-ATPase response during 16 h of heavy intermittent cycle exercise. Am J Physiol Endocrinol Metab 2007; 293:E523-30. [PMID: 17488808 DOI: 10.1152/ajpendo.00004.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the effects of a 16-h protocol of heavy intermittent exercise on the intrinsic activity and protein and isoform content of skeletal muscle Na(+)-K(+)-ATPase. The protocol consisted of 6 min of exercise performed once per hour at approximately 91% peak aerobic power (Vo(2 peak)) with tissue sampling from vastus lateralis before (B) and immediately after repetitions 1 (R1), 2 (R2), 9 (R9), and 16 (R16). Eleven untrained volunteers with a Vo(2 peak) of 44.3 +/- 2.3 ml x kg(-1) x min(-1) participated in the study. Maximal Na(+)-K(+)-ATPase activity (V(max), in nmol x mg protein(-1) x h(-1)) as measured by the 3-O-methylfluorescein K(+)-stimulated phosphatase assay was reduced (P < 0.05) by approximately 15% with exercise regardless of the number of repetitions performed. In addition, V(max) at R9 and R16 was lower (P < 0.05) than at R1 and R2. Vanadate-facilitated [(3)H]ouabain determination of Na(+)-K(+)-ATPase content (maximum binding capacity, pmol/g wet wt), although unaltered by exercise, increased (P < 0.05) 8.3% by R9 with no further increase observed at R16. Assessment of relative changes in isoform abundance measured at B as determined by quantitative immunoblotting showed a 26% increase (P < 0.05) in the alpha(2)-isoform by R2 and a 29% increase in alpha(3) by R9. At R16, beta(3) was lower (P < 0.05) than at R2 and R9. No changes were observed in alpha(1), beta(1), or beta(2). It is concluded that repeated sessions of heavy exercise, although resulting in increases in the alpha(2)- and alpha(3)-isoforms and decreases in beta(3)-isoform, also result in depression in maximal catalytic activity.
Collapse
Affiliation(s)
- H J Green
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
17
|
Zhang L, Ng YC. Fiber specific differential phosphorylation of the alpha1-subunit of the Na(+),K (+)-ATPase in rat skeletal muscle: the effect of aging. Mol Cell Biochem 2007; 303:231-7. [PMID: 17457517 DOI: 10.1007/s11010-007-9479-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 04/03/2007] [Indexed: 11/29/2022]
Abstract
In skeletal muscle, the Na(+),K(+)-ATPase maintains the Na(+) and K(+) gradients and modulates contractile functions. The different fibers of the skeletal muscle possess diverse properties and functions, and thus, the demands for the Na-pump activity might be different. Because phosphorylation of the alpha1-subunit of the Na(+),K(+)-ATPase appears to serve a regulatory role in the activity of Na(+),K(+)-ATPase, we postulated that a difference in the phosphorylation of the alpha1-subunit may be found among the fibers. We utilized two well-characterized specific antibodies for the alpha1-subunit, namely the McK1 and alpha6F, to determine, by immunofluorescence, if the alpha1-subunit in rat skeletal muscle fiber is differentially phosphorylated. McK1 has the unique property that its binding to the alpha1-subunit is greatly reduced when Ser-18 is phosphorylated. Our data show that, in red gastrocnemius muscle, only a small number of the fibers were stained on the sarcolemmal membrane by McK1, while other fibers were almost completely devoid of any staining. By contrast, the staining pattern by McK1 in the white gastrocnemius muscle was mostly uniform. Immunostaining of serial sections using the alpha6F antibody showed that the alpha1-subunit is expressed in all fibers. Dephosphorylation of the tissue sections by phosphatase partially restored immunostaining of the alpha1-subunit by McK1. Fiber typing results showed that, in red gastrocnemius, those fibers stained positive for alpha1-subunit by McK1 are the Type I fibers, whereas those stained negative are the Type IIA, IID, and IIB fibers. With age, the number of fibers in red gastrocnemius stained positive for McK1 increased markedly in 30-month old rats compared to 6-month old rats. In conclusion, our result suggests that, in rats, the alpha1-subunit of the Na(+),K(+)-ATPase is differentially phosphorylated in the fibers of the red gastrocnemius muscle. Furthermore, advanced age is associated with an apparent decrease in the phosphorylation of the alpha1-subunit, in addition to the previously demonstrated increase in the levels of expression of the subunit.
Collapse
Affiliation(s)
- Lianqin Zhang
- Department of Pharmacology, The Milton S Hershey Medical Center, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | | |
Collapse
|
18
|
Zhang L, Morris KJ, Ng YC. Fiber type-specific immunostaining of the Na+,K+-ATPase subunit isoforms in skeletal muscle: age-associated differential changes. Biochim Biophys Acta Mol Basis Dis 2006; 1762:783-93. [PMID: 16979878 PMCID: PMC1761903 DOI: 10.1016/j.bbadis.2006.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 08/15/2006] [Accepted: 08/15/2006] [Indexed: 11/22/2022]
Abstract
The expression of the Na(+),K(+)-ATPase alpha and beta subunit isoforms in rat skeletal muscle and its age-associated changes have been shown to be muscle-type dependent. The cellular basis underlying these findings is not completely understood. In this study, we examined the expression of Na(+),K(+)-ATPase isoforms in individual fiber types and tested the hypothesis that, with age, the changes in the expression of the isoforms differ among individual fibers. We utilized immunohistochemical techniques to examine the expression of the subunit isoforms at the individual fiber levels. Immunofluorescence staining of the subunit isoforms in both white gastrocnemius (GW) and red gastrocnemius (GR) revealed a predominance of staining on the sarcolemmal membrane. Compared to the skeletal muscle of 6-month-old rats, there were substantial increases in the levels of alpha1, beta1, and beta3 subunit isoforms, and decreases in the levels of alpha2 and beta2 in 30-month-old rats. In addition, we found distinct patterns of staining for the alpha1, alpha2, beta1, and beta2 isoforms in tissue sections from young and aged rats. Muscle fiber-typing was performed to correlate the pattern of staining with specific fiber types. Staining for alpha1 and alpha2 isoforms in the skeletal muscle of young rats was generally evenly distributed among the fibers of GW and GR, with the exception of higher alpha1 levels in slow-twitch oxidative Type I fibers of GR. By contrast, staining for the beta1 and beta2 isoforms in the mostly oxidative fibers and the mostly glycolytic fibers, respectively, was almost mutually exclusive. With age, there was a fiber-type selective qualitative decrease of alpha2 and beta2 in Type IIB fibers, and increase of beta1 in Type IIB fibers and beta2 in Type IID fibers of white gastrocnemius. These results provide, at the individual fiber level, a cellular basis for the differential expression of the Na(+),K(+)-ATPase subunit isoforms in the muscle groups. The data further indicate that the aged-associated changes in expression of the subunit isoforms occur in both a fiber-type specific as well as an across fiber-type manner. Because of the differing biochemical properties of the subunit isoforms, these changes add another layer of complexity in our understanding of the adaptation of the Na-pump in skeletal muscle with advancing age.
Collapse
Affiliation(s)
- Lianqin Zhang
- Department of Pharmacology, The Milton S. Hershey Medical Center, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania 17033
| | - Keith J. Morris
- Cell Biology Division, Institute of Ophthalmology, University College London, London, United Kingdom, EC1V 9EL
| | - Yuk-Chow Ng
- Department of Pharmacology, The Milton S. Hershey Medical Center, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania 17033
| |
Collapse
|
19
|
Li J, Sinoway LI, Ng YC. Aging augments interstitial K+concentrations in active muscle of rats. J Appl Physiol (1985) 2006; 100:1158-63. [PMID: 16322369 DOI: 10.1152/japplphysiol.00639.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle performance declines with advancing age, and the underlying mechanism is not completely understood. A large body of convincing evidence has demonstrated a crucial role for interstitial K+concentration ([K+]o) in modulating contractile function of skeletal muscle. The present study tested the hypothesis that during muscle contraction there is a greater accumulation of [K+]oin aged compared with adult skeletal muscle. Twitch muscle contraction was induced by electrical stimulation of the sciatic nerves of 8- and 32-mo-old Fischer 344 × Brown Norway rats. Levels of [K+]owere measured continuously by a microdialysis technique with the probes inserted into the gastrocnemius muscle. Stimulation at 1, 3, and 5 Hz elevated muscle [K+]oby 52, 64, and 88% in adult rats, and by 78, 98, and 104% in aged rats, respectively, and the increase was significantly higher in aged than in adult rats. Recovery for [K+]o, as measured by the time for [K+]oto recover by 20 and 50% from peak response after stimulation, was slower in aged rats. Ouabain (5 mM), a specific inhibitor of the Na+-K+pump, was added in the perfusate to inhibit the reuptake of K+into the cells to assess the role of the pump in the overall K+balance. Ouabain elevated muscle [K+]oat rest, and the effect was significantly attenuated in aged animals. The present data demonstrated an augmented [K+]oin aged skeletal muscle compared with adult skeletal muscle, and the data suggested that an alteration in the function of the Na+-K+pump may contribute, in part, to the deficiency in K+balance in skeletal muscle of aged rats.
Collapse
Affiliation(s)
- Jianhua Li
- Division of Cardiology, Pennsylvania State College of Medicine, Milton S. Hershey Medical Center, 500 University Dr., Hershey, PA 17033, USA
| | | | | |
Collapse
|
20
|
Reis J, Zhang L, Cala S, Jew KN, Mace LC, Chung L, Moore RL, Ng YC. Expression of phospholemman and its association with Na+-K+-ATPase in skeletal muscle: effects of aging and exercise training. J Appl Physiol (1985) 2005; 99:1508-15. [PMID: 15961612 DOI: 10.1152/japplphysiol.00375.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phospholemman (PLM) is a recently identified accessory protein of the Na+-K+-ATPase (NKA), with a high level of expression in skeletal muscle. The objectives of this study are to characterize the PLM in skeletal muscle and to test the hypothesis that, as an accessory protein of NKA, expression of PLM and its association with the α-subunits of NKA is regulated during aging and with exercise training. PLM was characterized in skeletal muscle of 6- and 16-mo-old sedentary middle-aged rats (Ms), and the effects of aging and exercise training were studied in Ms, 29-mo-old sedentary senescent, and 29-mo-old treadmill-exercised senescent rats. Expression of PLM was muscle-type dependent, and immunofluorescence study showed that PLM distributed predominantly on the sarcolemmal membrane of the muscle fibers. Anti-PLM antibody reduced activity of NKA, and thus PLM appears to be required for NKA to express its full activity in skeletal muscle. Expression of PLM was not altered with aging but increased after exercise training. Coimmunoprecipitation studies demonstrated that PLM associates with both the α1- and α2-subunit isoforms of NKA. Compared with Ms rats, levels of PLM-associated α1-subunit increased in 29-mo-old sedentary senescent rats, and treadmill exercise has a tendency to partially reverse it. There was no significant change in PLM-associated α2-subunit with age, and exercise training has a tendency to increase that level. It is concluded that, in skeletal muscle, PLM appears to be a protein integral to the NKA complex and that PLM has the potential to modulate NKA in an isoform-specific and muscle type-dependent manner in aging and after exercise training.
Collapse
Affiliation(s)
- Justin Reis
- Deparment of Pharmacology, The Milton S. Hershey Medical Center, College of Medicine, The Pennsylvania State University, 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Barr DJ, Green HJ, Lounsbury DS, Rush JWE, Ouyang J. Na+-K+-ATPase properties in rat heart and skeletal muscle 3 mo after coronary artery ligation. J Appl Physiol (1985) 2005; 99:656-64. [PMID: 15817721 DOI: 10.1152/japplphysiol.00343.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This study was designed to determine whether chronic heart failure (CHF) results in changes in Na(+)-K(+)-ATPase properties in heart and skeletal muscles of different fiber-type composition. Adult rats were randomly assigned to a control (Con; n = 8) or CHF (n = 8) group. CHF was induced by ligation of the left main coronary artery. Examination of Na(+)-K(+)-ATPase activity (means +/- SE) 12 wk after the ligation measured, using the 3-O-methylfluorescein phosphatase assay (3-O-MFPase), indicated higher (P < 0.05) levels in soleus (Sol) (250 +/- 13 vs. 179 +/- 18 nmol.mg protein(-1).h(-1)) and lower (P < 0.05) levels in diaphragm (Dia) (200 +/- 12 vs. 272 +/- 27 nmol.mg protein(-1).h(-1)) and left ventricle (LV) (760 +/- 62 vs. 992 +/- 16 nmol.mg protein(-1).h(-1)) in CHF compared with Con, respectively. Na(+)-K(+)-ATPase protein content, measured by the [(3)H]ouabain binding technique, was higher (P < 0.05) in white gastrocnemius (WG) (166 +/- 12 vs. 135 +/- 7.6 pmol/g wet wt) and lower (P < 0.05) in Sol (193 +/- 20 vs. 260 +/- 8.6 pmol/g wet wt) and LV (159 +/- 10 vs. 221 +/- 10 pmol/g wet wt) in CHF compared with Con, respectively. Isoform content in CHF, measured by Western blot techniques, showed both increases (WG; P < 0.05) and decreases (Sol; P < 0.05) in alpha(1). For alpha(2), only increases [red gastrocnemius (RG), Sol, and Dia; P < 0.05] occurred. The beta(2)-isoform was decreased (LV, Sol, RG, and WG; P < 0.05) in CHF, whereas the beta(1) was both increased (WG and Dia; P < 0.05) and decreased (Sol and LV; P < 0.05). For beta(3), decreases (P < 0.05) in RG were observed in CHF, whereas no differences were found in Sol and WG between CHF and Con. It is concluded that CHF results in alterations in Na(+)-K(+)-ATPase that are muscle specific and property specific. Although decreases in Na(+)-K(+)-ATPase content would appear to explain the lower 3-O-MFPase in the LV, such does not appear to be the case in skeletal muscles where a dissociation between these properties was observed.
Collapse
Affiliation(s)
- D J Barr
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | |
Collapse
|
22
|
Green HJ, Barr DJ, Fowles JR, Sandiford SD, Ouyang J. Malleability of human skeletal muscle Na+-K+-ATPase pump with short-term training. J Appl Physiol (1985) 2004; 97:143-8. [PMID: 15220317 DOI: 10.1152/japplphysiol.00559.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To investigate the hypothesis that short-term submaximal training would result in changes in Na+-K+-ATPase content, activity, and isoform distribution in skeletal muscle, seven healthy, untrained men [peak aerobic power (peak oxygen consumption; V̇o2 peak) = 45.6 ml·kg−1·min−1 (SE 5.4)] cycled for 2 h/day at 60–65% V̇o2 peak for 6 days. Muscle tissue, sampled from the vastus lateralis before training (0 days) and after 3 and 6 days of training and analyzed for Na+-K+-ATPase content, as assessed by the vanadate facilitated [3H]ouabain-binding technique, was increased ( P < 0.05) at 3 days (294 ± 8.6 pmol/g wet wt) and 6 days (308 ± 15 pmol/g wet wt) of training compared with 0 days (272 ± 9.7 pmol/g wet wt). Maximal Na+-K+-ATPase activity as evaluated by the 3- O-methylfluorescein phosphatase assay was increased ( P < 0.05) by 6 days (53.4 ± 5.9 nmol·h−1·mg protein−1) but not by 3 days (35.9 ± 4.5 nmol·h−1·mg protein−1) compared with 0 days (37.8 ± 3.7 nmol·h−1·mg protein−1) of training. Relative isoform distribution, measured by Western blot techniques, indicated increases ( P < 0.05) in α2-content by 3 days and β1-content by 6 days of training. These results indicate that prolonged aerobic exercise represents a potent stimulus for the rapid adaptation of Na+-K+-ATPase content, isoform, and activity characteristics.
Collapse
Affiliation(s)
- H J Green
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| | | | | | | | | |
Collapse
|
23
|
Mace LC, Palmer BM, Brown DA, Jew KN, Lynch JM, Glunt JM, Parsons TA, Cheung JY, Moore RL. Influence of age and run training on cardiac Na+/Ca2+ exchange. J Appl Physiol (1985) 2003; 95:1994-2003. [PMID: 12882992 DOI: 10.1152/japplphysiol.00551.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Effects of age and training on myocardial Na+/Ca2+ exchange were examined in young sedentary (YS; 14-15 mo), aged sedentary (AS; 27-31 mo), and aged trained (AT; 8- to 11-wk treadmill run training) male Fischer Brown Norway rats. Whole heart performance and isolated cardiocyte Na+/Ca2+ exchange characteristics were measured. At the whole heart level, a small but significant slowing of late isovolumic left ventricular (LV) relaxation, which may be indicative of altered Na+/Ca2+ exchange activity, was seen in hearts from AS rats. This subtle impairment in relaxation was not observed in hearts from AT rats. At the single-cardiocyte level, late action potential duration was prolonged, resting membrane potential was more positive, and overshoot potential was greater in cardiocytes from AS rats than from YS rats (P < 0.05). Training did not influence any of these age-related action potential characteristics. In electrically paced cardiocytes, neither shortening nor intracellular Ca2+ concentration ([Ca2+]i) dynamics was influenced by age or training. Similarly, neither age nor training influenced the rate of [Ca2+]i clearance via forward (Nain+ /Caout2+) Na+/Ca2+ exchange after caffeine-induced Ca2+ release from the sarcoplasmic reticulum or cardiac Na+/Ca2+ exchanger protein (NCX1) expression. However, when whole cell patch-clamp techniques combined with fluorescence microscopy were used to evaluate the ability of Na+/Ca2+ exchange to alter cytosolic [Ca2+] ([Ca2+]c) under conditions where membrane potential (Vm) and internal and external [Na+] and [Ca2+] could be controlled, we observed age-associated increases in forward Na+/Ca2+ exchange-mediated [Ca2+]c clearance (P < 0.05) that were not influenced by training. The age-related increase in forward Na+/Ca2+ exchange activity provides a hypothetical explanation for the late action potential prolongation observed in this study.
Collapse
Affiliation(s)
- Lisa C Mace
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, Colorado 80309-0354, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Clausen T. Effects of age and exercise training on Na+-K+ pumps in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2003; 285:R720-1. [PMID: 12959916 DOI: 10.1152/ajpregu.00357.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|