1
|
Devasia AG, Ramasamy A, Leo CH. Current Therapeutic Landscape for Metabolic Dysfunction-Associated Steatohepatitis. Int J Mol Sci 2025; 26:1778. [PMID: 40004240 PMCID: PMC11855529 DOI: 10.3390/ijms26041778] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
In recent years, "metabolic dysfunction-associated steatotic liver disease" (MASLD) has been proposed to better connect liver disease to metabolic dysfunction, which is the most common chronic liver disease worldwide. MASLD affects more than 30% of individuals globally, and it is diagnosed by the combination of hepatic steatosis and obesity, type 2 diabetes, or two metabolic risk factors. MASLD begins with the buildup of extra fat, often greater than 5%, within the liver, causing liver hepatocytes to become stressed. This can proceed to a more severe form, metabolic dysfunction-associated steatohepatitis (MASH), in 20-30% of people, where inflammation in the liver causes tissue fibrosis, which limits blood flow over time. As fibrosis worsens, MASH may lead to cirrhosis, liver failure, or even liver cancer. While the pathophysiology of MASLD is not fully known, the current "multiple-hits" concept proposes that dietary and lifestyle factors, metabolic factors, and genetic or epigenetic factors contribute to elevated oxidative stress and inflammation, causing liver fibrosis. This review article provides an overview of the pathogenesis of MASLD and evaluates existing therapies as well as pharmacological drugs that are currently being studied in clinical trials for MASLD or MASH.
Collapse
Affiliation(s)
- Arun George Devasia
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore;
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), 60 Biopolis Street, Singapore 138672, Singapore;
| | - Adaikalavan Ramasamy
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), 60 Biopolis Street, Singapore 138672, Singapore;
| | - Chen Huei Leo
- Department of Biomedical Engineering, College of Design & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| |
Collapse
|
2
|
Zhao X, Cao Y, Gao Q, Han X, Zhang H, Mu H, Zhang S, Wang X, Li Y, Yuan Y. Relaxin-2 Exhibits a Beneficial Role in Energy Metabolism to Alleviate Atrial Fibrillation Susceptibility. ACS Pharmacol Transl Sci 2025; 8:368-379. [PMID: 39974648 PMCID: PMC11833732 DOI: 10.1021/acsptsci.4c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/14/2024] [Accepted: 12/23/2024] [Indexed: 02/21/2025]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia, with energy metabolic disorder leading to severe clinical courses. Relaxin-2 (RLX), a peptide hormone, has been identified to activate crucial enzymes involved in cellular energy metabolism. However, whether relaxin-2 can improve the energy metabolism of atrial myocytes to inhibit AF pathogenesis remains unknown. Male New Zealand rabbits were randomly separated into sham, right atrial tachypacing (RAP), and RAP with a human recombinant relaxin-2 treatment (0.5 mg/kg) group for 2 weeks, and programmed intracardiac stimulation was performed to assess AF susceptibility. Ultrahigh-performance liquid chromatography (UHPLC) was performed to explore potential metabolic profiles in rabbit atria. Histology, transmission electron microscopy (TEM), Western blot, qRT-PCR, and Seahorse assays were used to explain the molecular mechanisms. The downregulated relaxin family peptide receptor 1 (RXFP1) protein was found in the atria of AF patients and rabbits, as well as in tachypacing HL-1 cells. RLX protected against RAP-induced AF with decreased atrial fibrosis and electrical remodeling in rabbits. UHPLC revealed that RLX improved fatty acid and glucose metabolism by activating the PPAR signaling pathway in rabbit atria. Mechanistically, RLX enhanced peroxisome proliferator-activated receptor-γ (PPARγ) expression via regulating RXFP1, which restored mitochondrial respiration and ATP production, along with reduced mitochondrial reactive oxygen species in both rabbit atria and HL-1 cells. Moreover, overexpression of PPARγ in tachypacing HL-1 cells prevented mitochondrial damage and alleviated energy metabolic disorder. Besides, we found that upregulated serum relaxin-2 levels with altered metabolites, including 13S-hydroxyoctadecadienoic acid, prostaglandin E2, glyceric acid, and deoxyribose 1-phosphate, were correlated with AF occurrence in patients. Our study reveals that relaxin-2 attenuates atrial energy metabolic remodeling to prevent AF pathogenesis, which could be considered a potential therapeutic approach in the clinic.
Collapse
Affiliation(s)
- Xinbo Zhao
- Department
of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yukai Cao
- Department
of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Qiang Gao
- Department
of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Xuejie Han
- Department
of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Hang Zhang
- Department
of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Hongyuan Mu
- Department
of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Song Zhang
- Department
of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Xiaoyu Wang
- Department
of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yue Li
- Department
of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
- NHC
Key Laboratory of Cell Transplantation, Harbin Medical University, Heilongjiang 150001, China
- Key
Laboratory of Hepatosplenic Surgery, Harbin
Medical University, Ministry of Education, Harbin 150001, China
- Heilongjiang
Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular
Diseases, Harbin 150081, China
- Key
Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin 150001, China
| | - Yue Yuan
- Department
of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| |
Collapse
|
3
|
Oner F, Kantarci A. Periodontal response to nonsurgical accelerated orthodontic tooth movement. Periodontol 2000 2025. [PMID: 39840535 DOI: 10.1111/prd.12623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/23/2025]
Abstract
Tooth movement is a complex process involving the vascularization of the tissues, remodeling of the bone cells, and periodontal ligament fibroblasts under the hormonal and neuronal regulation mechanisms in response to mechanical force application. Therefore, it will inevitably impact periodontal tissues. Prolonged treatment can lead to adverse effects on teeth and periodontal tissues, prompting the development of various methods to reduce the length of orthodontic treatment. These methods are surgical or nonsurgical interventions applied simultaneously within the orthodontic treatment. The main target of nonsurgical approaches is modulating the response of the periodontal tissues to the orthodontic force. They stimulate osteoclasts and osteoclastic bone resorption in a controlled manner to facilitate tooth movement. Among various nonsurgical methods, the most promising clinical results have been achieved with photobiomodulation (PBM) therapy. Clinical data on electric/magnetic stimulation, pharmacologic administrations, and vibration forces indicate the need for further studies to improve their efficiency. This growing field will lead to a paradigm shift as we understand the biological response to these approaches and their adoption in clinical practice. This review will specifically focus on the impact of nonsurgical methods on periodontal tissues, providing a comprehensive understanding of this significant and understudied aspect of orthodontic care.
Collapse
Affiliation(s)
- Fatma Oner
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Periodontology, Faculty of Dentistry, Istinye University, Istanbul, Turkey
| | - Alpdogan Kantarci
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Silvano A, Ammar O, Parenti A, Strambi N, Seravalli V, Bani D, Di Tommaso M. Relationship between relaxin-2 levels in serum and mode of conception in twin gestations: A prospective cohort study. J Obstet Gynaecol Res 2025; 51:e16190. [PMID: 39716018 PMCID: PMC11666884 DOI: 10.1111/jog.16190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/08/2024] [Indexed: 12/25/2024]
Abstract
AIM Relaxin is a peptide hormone commonly associated with pregnancy when it is thought to play a role in modulating various physiological processes to optimize maternal-fetal adaptation. In twin pregnancies these adaptive requirements are higher than in singleton pregnancies, therefore it is important to understand how circulating relaxin behaves in such conditions. This prospective cohort study aims to determine the serum relaxin-2 levels throughout gestation in twin pregnancies and to investigate its association with the mode of conception. METHODS Blood samples were collected during each trimester of gestation from 26 women with twin pregnancies obtained through spontaneous conception (SC, n = 18) or assisted reproductive technologies, specifically through intracytoplasmic sperm injection (ART, n = 8). Serum relaxin-2 levels were measured by a highly sensitive ELISA method. RESULTS The results indicated that serum relaxin-2 level peaks in the first trimester (491.05 ± 207.41 pg/mL), then decreases in the second trimester (446.27 ± 180.4 pg/mL; p < 0.057) and in the third trimester (422.19 ± 194.30 pg/mL; p < 0.025). Interestingly, the serum relaxin-2 level was higher in the spontaneous conception group with respect to the assisted reproductive technologies group (p < 0.001), when measured at each trimester of gestation. In addition, the multivariate regression analysis showed that only the assisted reproductive technologies had a significant impact on serum levels of relaxin-2 (p < 0.001), and no significant association was found with other women's clinical and demographic characteristics. CONCLUSIONS These findings extend the current knowledge about the pattern of circulating relaxin-2 throughout gestation in twin pregnancies, providing a sensitive measurement of serum relaxin-2 levels and a description of its putative physiological roles in humans.
Collapse
Affiliation(s)
- Angela Silvano
- Department of Health Sciences, Division of Obstetrics and GynecologyCareggi Hospital, University of FlorenceFlorenceItaly
| | - Oumaima Ammar
- Department of Health Sciences, Division of Obstetrics and GynecologyCareggi Hospital, University of FlorenceFlorenceItaly
| | - Astrid Parenti
- Department of Health SciencesClinical Pharmacology and Oncology Section, University of FlorenceFlorenceItaly
| | - Noemi Strambi
- Department of Health Sciences, Division of Obstetrics and GynecologyCareggi Hospital, University of FlorenceFlorenceItaly
| | - Viola Seravalli
- Department of Health Sciences, Division of Obstetrics and GynecologyCareggi Hospital, University of FlorenceFlorenceItaly
| | - Daniele Bani
- Department of Clinical and Experimental MedicineResearch Unit of Human Histology & Embryology, University of FlorenceFlorenceItaly
| | - Mariarosaria Di Tommaso
- Department of Health Sciences, Division of Obstetrics and GynecologyCareggi Hospital, University of FlorenceFlorenceItaly
| |
Collapse
|
5
|
Ajay A, Biju P, Ajay H, Tripathi R, Lip GYH, Sankaranarayanan R. Relaxin agonists under preclinical and early clinical investigation for the treatment of heart failure. Expert Opin Investig Drugs 2024; 33:1209-1218. [PMID: 39641766 DOI: 10.1080/13543784.2024.2438663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION Acute failure is a critical condition, encompassed by the sudden or progressive onset of symptoms or signs of congestion. The treatment strategies available are mainly supportive and do not improve mortality or long-term outcomes. Therefore, there is a need for alternative novel treatment strategies. In this narrative review, we explore the role of relaxin agonist as a potential therapeutic strategy in acute heart failure. AREAS COVERED We aim to provide an overview of the evidence of preclinical and clinical studies on relaxin as a treatment strategy for acute heart failure. Papers collected in this review are from original research and systematic reviews which have been filtered following Medline and Cochrane Library searches. EXPERT OPINION Relaxin has shown great potential in both preclinical and clinical studies due to its antifibrotic, anti-inflammatory, and vasodilatory effect on the heart. However, there has been mixed evidence from clinical trials involving relaxin which could be due to patient groups, investigation sites, trial design, and chance. Further studies should focus on developing biomarkers to identify specific population groups who are most likely to benefit from relaxin.
Collapse
Affiliation(s)
- Ashwin Ajay
- Cardiology, Wirral University Teaching Hospital NHS Foundation Trust, Liverpool, UK
- Cardiology, Arrowe Park Hospital, Birkenhead, Wirral, UK
| | - Priyanga Biju
- Internal Medicine, Countess of Chester Hospital NHS Foundation Trust, Chester, UK
- Intermal medicine, Countess of Chester Health Park, Chester, UK
| | - Hanan Ajay
- Internal Medicine, Mersey and West Lancashire Teaching Hospitals, Southport, UK
- Internal medicine, Southport Hospital, Southport, UK
| | - Rajiv Tripathi
- Internal Medicine, Countess of Chester Hospital NHS Foundation Trust, Chester, UK
- Intermal medicine, Countess of Chester Health Park, Chester, UK
| | - Gregory Y H Lip
- Cardiology, Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool, UK
- Cardiology, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Rajiv Sankaranarayanan
- Cardiology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
- Cardiology, Liverpool Centre for Cardiovascular Science and University of Liverpool, Liverpool, UK
| |
Collapse
|
6
|
Devasia AG, Shanmugham M, Ramasamy A, Bellanger S, Parry LJ, Leo CH. Therapeutic potential of relaxin or relaxin mimetics in managing cardiovascular complications of diabetes. Biochem Pharmacol 2024; 229:116507. [PMID: 39182735 DOI: 10.1016/j.bcp.2024.116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Diabetes mellitus is a metabolic disease with an escalating global prevalence. Despite the abundance and relative efficacies of current therapeutic approaches, they primarily focus on attaining the intended glycaemic targets, but patients ultimately still suffer from various diabetes-associated complications such as retinopathy, nephropathy, cardiomyopathy, and atherosclerosis. There is a need to explore innovative and effective diabetic treatment strategies that not only address the condition itself but also combat its complications. One promising option is the reproductive hormone relaxin, an endogenous ligand of the RXFP1 receptor. Relaxin is known to exert beneficial actions on the cardiovascular system through its vasoprotective, anti-inflammatory and anti-fibrotic effects. Nevertheless, the native relaxin peptide exhibits a short biological half-life, limiting its therapeutic potential. Recently, several relaxin mimetics and innovative delivery technologies have been developed to extend its biological half-life and efficacy. The current review provides a comprehensive landscape of the cardiovascular effects of relaxin, focusing on its potential therapeutic applications in managing complications associated with diabetes. The latest advancements in the development of relaxin mimetics and delivery methods for the treatment of cardiometabolic disorders are also discussed.
Collapse
Affiliation(s)
- Arun George Devasia
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore; Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Meyammai Shanmugham
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore; A*STAR Skin Research Labs (A*SRL), Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Adaikalavan Ramasamy
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Sophie Bellanger
- A*STAR Skin Research Labs (A*SRL), Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Laura J Parry
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Chen Huei Leo
- Department of Biomedical Engineering, College of Design & Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
7
|
Tripathy S, Nagari A, Chiu SP, Nandu T, Camacho CV, Mahendroo M, Kraus WL. Relaxin Modulates the Genomic Actions and Biological Effects of Estrogen in the Myometrium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589654. [PMID: 38659934 PMCID: PMC11042280 DOI: 10.1101/2024.04.15.589654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Estradiol (E2) and relaxin (Rln) are steroid and polypeptide hormones, respectively, with important roles in the female reproductive tract, including myometrium. Some actions of Rln, which are mediated by its membrane receptor RXFP1, require or are augmented by E2 signaling through its cognate nuclear steroid receptor, estrogen receptor alpha (ERα). In contrast, other actions of Rln act in opposition to the effects of E2. Here we explored the molecular and genomic mechanisms that underlie the functional interplay between E2 and Rln in the myometrium. We used both ovariectomized female mice and immortalized human myometrial cells expressing wild-type or mutant ERα (hTERT-HM-ERα cells). Our results indicate that Rln modulates the genomic actions and biological effects of estrogen in the myometrium and myometrial cells by reducing phosphorylation of ERα on serine 118 (S118), as well as by reducing the E2-dependent binding of ERα across the genome. These effects were associated with changes in the hormone-regulated transcriptome, including a decrease in the E2-dependent expression of some genes and enhanced expression of others. The inhibitory effects of Rln cotreatment on the E2-dependent phosphorylation of ERα required the nuclear dual-specificity phosphatases DUSP1 and DUSP5. Moreover, the inhibitory effects of Rln were reflected in a concomitant inhibition of the E2-dependent contraction of myometrial cells. Collectively, our results identify a pathway that integrates Rln/RXFP1 and E2/ERα signaling, resulting in a convergence of membrane and nuclear signaling pathways to control genomic and biological outcomes.
Collapse
Affiliation(s)
- Sudeshna Tripathy
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Laboratory of Cervical Remodeling and Preterm Birth, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Section of Laboratory Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anusha Nagari
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Computational Core Facility, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shu-Ping Chiu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tulip Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Computational Core Facility, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cristel V. Camacho
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Section of Laboratory Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mala Mahendroo
- Laboratory of Cervical Remodeling and Preterm Birth, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Section of Laboratory Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W. Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Section of Laboratory Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
8
|
Wei Y, Zhou XL, Chen P, Liu TH, Lu C, Pan MH. Matrix metalloproteinase 2 degrades collagen I to regulate ovarian development by association with an insulin-like peptide. INSECT SCIENCE 2024; 31:1090-1106. [PMID: 37846892 DOI: 10.1111/1744-7917.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/18/2023]
Abstract
The ovary generally undergoes tissue remodeling during larval to pupal transition, which includes membrane degeneration and ovariole growth. At the same time, the hormones produced by insects significantly change during metamorphosis. However, the regulatory mechanism for ovarian development and hormones is not fully understood in insects. Herein, we found that matrix metalloproteinase 2 (MMP2) was highly expressed in the ovarian capsules and ovarioles, and the development was abnormal after knocking out MMP2 in Bombyx mori. The process of abnormal degradation of collagen I due to MMP2 deletion, which resulted in abnormal development of ovarioles and eggs, was analyzed in detail. The proteomics of ovaries in the MMP2-knock out and wild type strains showed a critically significant difference in the expression of a protein, insulin-like peptide (ILP). Additional analysis revealed significant alteration of ILP during ovarian development, and abnormal expression of ILP significantly affected ovarian development in vivo and MMP2 expression in vitro and in vivo. These results showed that MMP2 regulation of ovarian tissue remodeling is closely related to ILP expression. Our study provides new insights into the regulatory mechanism of MMP2 and ovarian development in B. mori.
Collapse
Affiliation(s)
- Yi Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, China
| | - Xiao-Lin Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Tai-Hang Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Almeida-Pinto N, Dschietzig TB, Brás-Silva C, Adão R. Cardiovascular effects of relaxin-2: therapeutic potential and future perspectives. Clin Res Cardiol 2024; 113:1137-1150. [PMID: 37721595 PMCID: PMC11269324 DOI: 10.1007/s00392-023-02305-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023]
Abstract
The hormone relaxin-2 has emerged as a promising player in regulating the physiology of the cardiovascular system. Through binding to the relaxin family peptide receptor 1 (RXFP1), this hormone elicits multiple physiological responses including vasodilation induction, reduction of inflammation and oxidative stress, and angiogenesis stimulation. The role of relaxin-2, or its recombinant human form known as serelaxin, has been investigated in preclinical and clinical studies as a potential therapy for cardiovascular diseases, especially heart failure, whose current therapy is still unoptimized. However, evidence from past clinical trials has been inconsistent and further research is needed to fully understand the potential applications of relaxin-2. This review provides an overview of serelaxin use in clinical trials and discusses future directions in the development of relaxin-2 mimetics, which may offer new therapeutic options for patients with heart failure.
Collapse
Affiliation(s)
- Nísia Almeida-Pinto
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | | | - Carmen Brás-Silva
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Rui Adão
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.
- CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain.
| |
Collapse
|
10
|
Kornfield MS, Gurley SB, Vrooman LA. Increased Risk of Preeclampsia with Assisted Reproductive Technologies. Curr Hypertens Rep 2023; 25:251-261. [PMID: 37303020 DOI: 10.1007/s11906-023-01250-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 06/13/2023]
Abstract
PURPOSE OF REVIEW We summarized recent available data to assess the association between assisted reproductive technology (ART) and risk for preeclampsia. RECENT FINDINGS The majority of clinical studies supporting the association of preeclampsia and ART are retrospective. Published data from both clinical and pre-clinical studies suggest specific ART procedures may contribute to the increased risk, including in vitro embryo handling and development, hormone stimulation, transfer cycle types, and use of donor oocytes/embryos. Potential mechanisms include epigenetic aberrations leading to abnormal placentation, absence of factors secreted by the corpus luteum, and immunologic responses to allogenic gametes. There is an increased risk of preeclampsia following ART. Treatment plans that favor reduced preeclampsia risk should be considered for ART pregnancies. To make ART pregnancies safer, additional clinical and animal model studies are needed to elucidate the underpinnings of this risk association.
Collapse
Affiliation(s)
- Molly S Kornfield
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Susan B Gurley
- Division of Nephrology & Hypertension, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Lisa A Vrooman
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave, Beaverton, OR, USA.
| |
Collapse
|
11
|
Yamanokuchi E, Kitahara G, Kanemaru K, Hemmi K, Kobayashi I, Yamaguchi R, Osawa T. Inflammatory Changes and Composition of Collagen during Cervical Ripening in Cows. Animals (Basel) 2022; 12:ani12192646. [PMID: 36230388 PMCID: PMC9559414 DOI: 10.3390/ani12192646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022] Open
Abstract
Dystocia and stillbirths in cows pose a high risk of loss of both dams and fetuses, thereby resulting in high economic losses. One of the causes of these problems is birth canal abnormalities. Thus, to prevent these occurrences, it is necessary to understand the mechanisms underlying cervical ripening. Although physiological inflammatory responses and changes in collagen composition have been reported in humans and mice, related information is scarce for cows. We observed inflammatory changes and changes in the collagen composition in the cervix from late pregnancy to parturition to clarify some of the physiological changes associated with cervical ripening during normal calving in cows. Cervical mucus and tissue samples were collected from 41 Japanese Black cows at 200, 230, and 260 days of gestation and at 7-day intervals thereafter until parturition. The percentage of polymorphonuclear neutrophils (PMN%) in the mucus was calculated, and interleukin (IL)-8 concentration was determined by enzyme-linked immunosorbent assay. Blood samples were collected from the jugular vein, and leukocyte counts were determined. Picrosirius red-stained cervical tissue specimens were observed under a polarizing microscope, and the percentage of type I and type III collagen areas in the cervical tissue were calculated. The PMN% in cervical mucus was lowest at 200 days gestation (12−13 weeks before delivery), significantly increased 5 weeks before (21.7 ± 0.04), and was highest 1 week before calving (50.9 ± 0.04). IL-8 levels were increased at 295 days compared with those at 200 days of pregnancy (p < 0.05). No significant changes were observed in the white blood cell counts. The percentage of type I collagen in the cervical tissue reached a maximum (91.4 ± 0.02%) on day 200, significantly decreased after 274 days (3 weeks before calving), and continued to decrease thereafter until the week of parturition. There was no significant change in type III collagen levels. The results suggest that cervical ripening progresses when PMNs begin to infiltrate the cervix at around 260 days of gestation (5−4 weeks before parturition), IL-8, which increases at the end of pregnancy, mobilizes PMNs, and enhances inflammation, and that type I collagen changes are useful as an indicator of cervical ripening.
Collapse
Affiliation(s)
- Eigo Yamanokuchi
- Laboratory of Theriogenology, Department of Veterinary Sciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Go Kitahara
- Laboratory of Theriogenology, Department of Veterinary Sciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Kazuyuki Kanemaru
- Laboratory of Theriogenology, Department of Veterinary Sciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Koichiro Hemmi
- Sumiyoshi Livestock Science Station, Field Science Center, Faculty of Agriculture, University of Miyazaki, Miyazaki 880-0121, Japan
| | - Ikuo Kobayashi
- Sumiyoshi Livestock Science Station, Field Science Center, Faculty of Agriculture, University of Miyazaki, Miyazaki 880-0121, Japan
| | - Ryoji Yamaguchi
- Laboratory of Veterinary Pathology, Department of Veterinary Sciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Takeshi Osawa
- Laboratory of Theriogenology, Department of Veterinary Sciences, University of Miyazaki, Miyazaki 889-2192, Japan
- Correspondence: ; Tel.: +81-985-58-7787
| |
Collapse
|
12
|
Differential Expression of the Androgen Receptor, Splice Variants and Relaxin 2 in Renal Cancer. Life (Basel) 2021; 11:life11080731. [PMID: 34440475 PMCID: PMC8402134 DOI: 10.3390/life11080731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 12/09/2022] Open
Abstract
Background: The role of the androgen receptor (AR) in renal cell carcinoma (RCC) is unclear. We aimed to analyze the expression of AR and its splice variants (SVs) and their correlation with relaxin 2 (RLN2) and cytokines in RCC. Methods: We investigated the expression of RLN2 and AR variants in 25 clear cell RCC (ccRCC) and 9 papillary (pRCC) tumor tissues and the corresponding controls using quantitative PCR and serum RLN2, testosterone and cytokine levels in matched samples using ELISA and chemiluminescent immunometric assay, respectively. Results: ccRCC tissues but not pRCC tissues more frequently expressed AR and the SVs than did normal tissues. All pRCC samples expressed more AR than did ccRCC samples. The highest expression of all AR variants except AR-V12 was found in low-stage tumors, with dominant expression of AR-V7. In males in the ccRCC cohort, the expression of AR-FL, AR-V1 and AR-V3 was significantly correlated with that of RLN2. The secretion pattern of proinflammatory IL-6 was higher in ccRCC than in pRCC. Conclusions: The results highlight additional molecular differences between ccRCC and pRCC, suggesting the influence of external factors on the whole kidney or genetic predispositions to developing certain types of renal cancer, and may support further pathological analysis and studies of targeted hormone therapy.
Collapse
|
13
|
Dai X, Zeng Y, Zhang H, Gu Z, Gong Q, Luo K. Advances on Nanomedicines for Diagnosis and Theranostics of Hepatic Fibrosis. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Xinghang Dai
- Huaxi MR Research Center (HMRRC) Department of Radiology Functional and molecular imaging Key Laboratory of Sichuan Province West China Hospital Sichuan University Chengdu 610041 China
- West China School of Medicine Sichuan University Chengdu 610041 China
| | - Yujun Zeng
- Huaxi MR Research Center (HMRRC) Department of Radiology Functional and molecular imaging Key Laboratory of Sichuan Province West China Hospital Sichuan University Chengdu 610041 China
| | - Hu Zhang
- Huaxi MR Research Center (HMRRC) Department of Radiology Functional and molecular imaging Key Laboratory of Sichuan Province West China Hospital Sichuan University Chengdu 610041 China
- Amgen Bioprocessing Centre Keck Graduate Institute CA 91711 USA
| | - Zhongwei Gu
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC) Department of Radiology Functional and molecular imaging Key Laboratory of Sichuan Province West China Hospital Sichuan University Chengdu 610041 China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC) Department of Radiology Functional and molecular imaging Key Laboratory of Sichuan Province West China Hospital Sichuan University Chengdu 610041 China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| |
Collapse
|
14
|
Pereira MM, Mainigi M, Strauss JF. Secretory products of the corpus luteum and preeclampsia. Hum Reprod Update 2021; 27:651-672. [PMID: 33748839 PMCID: PMC8222764 DOI: 10.1093/humupd/dmab003] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Despite significant advances in our understanding of the pathophysiology of preeclampsia (PE), there are still many unknowns and controversies in the field. Women undergoing frozen-thawed embryo transfer (FET) to a hormonally prepared endometrium have been found to have an unexpected increased risk of PE compared to women who receive embryos in a natural FET cycle. The differences in risk have been hypothesized to be related to the absence or presence of a functioning corpus luteum (CL). OBJECTIVE AND RATIONALE To evaluate the literature on secretory products of the CL that could be essential for a healthy pregnancy and could reduce the risk of PE in the setting of FET. SEARCH METHODS For this review, pertinent studies were searched in PubMed/Medline (updated June 2020) using common keywords applied in the field of assisted reproductive technologies, CL physiology and preeclampsia. We also screened the complete list of references in recent publications in English (both animal and human studies) on the topics investigated. Given the design of this work as a narrative review, no formal criteria for study selection or appraisal were utilized. OUTCOMES The CL is a major source of multiple factors regulating reproduction. Progesterone, estradiol, relaxin and vasoactive and angiogenic substances produced by the CL have important roles in regulating its functional lifespan and are also secreted into the circulation to act remotely during early stages of pregnancy. Beyond the known actions of progesterone and estradiol on the uterus in early pregnancy, their metabolites have angiogenic properties that may optimize implantation and placentation. Serum levels of relaxin are almost undetectable in pregnant women without a CL, which precludes some maternal cardiovascular and renal adaptations to early pregnancy. We suggest that an imbalance in steroid hormones and their metabolites and polypeptides influencing early physiologic processes such as decidualization, implantation, angiogenesis and maternal haemodynamics could contribute to the increased PE risk among women undergoing programmed FET cycles. WIDER IMPLICATIONS A better understanding of the critical roles of the secretory products of the CL during early pregnancy holds the promise of improving the efficacy and safety of ART based on programmed FET cycles.
Collapse
Affiliation(s)
- María M Pereira
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Monica Mainigi
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Centre for Research on Reproduction and Women’s Health, University of Pennsylvania, Philadelphia, PA,19104 USA
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Centre for Research on Reproduction and Women’s Health, University of Pennsylvania, Philadelphia, PA,19104 USA
| |
Collapse
|
15
|
Pereira MM, Torrado J, Sosa C, Zócalo Y, Bia D. Role of arterial impairment in preeclampsia: should the paradigm shift? Am J Physiol Heart Circ Physiol 2021; 320:H2011-H2030. [PMID: 33797272 DOI: 10.1152/ajpheart.01005.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Preeclampsia is a worldwide pregnancy complication with serious short- and long-term maternal and neonatal consequences. Our understanding of preeclampsia pathophysiology has significantly evolved over the last decades with the recognition that impaired arterial function and structure may occur early in the course of pregnancy, preceding the clinic-humoral syndrome and driving long-term cardiovascular disease risk in the future of these patients. Although an early abnormal placentation may be the inciting event for a large proportion of cases, there is growing evidence that challenges the placental hypothesis in all affected women, since placental histopathology lesions thought to be characteristic are neither sensitive nor specific markers for the disorder. Recent hemodynamic investigations and studies on left ventricular function and structure in women with preeclampsia further challenge this universal paradigm and propose that placental dysfunction could be secondary to a maternal cardiovascular maladaptation to pregnancy in certain patients. Supporting this hypothesis, certain vascular features, which are characteristically enhanced in normal pregnancy allowing a healthy vascular adaptation, are absent in preeclampsia and comparable to the nonpregnant population. However, arterial biomechanics in preeclampsia may only not cope with hemodynamic demands of pregnancy but also impose additional detrimental loads to the maternal heart ("impaired left-ventricle-aorta coupling") and transmit pressure and flow disturbances into the fetoplacental circulation ("impaired large arteries-microcirculation coupling"). In this review, we analyze the major role of the arterial dysfunction in the cardiovascular maladaptation hypothesis of preeclampsia, shed light on its potential etiopathogenic link, and discuss the complementary nature of the placental and cardiovascular theories.
Collapse
Affiliation(s)
- María M Pereira
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Juan Torrado
- Jacobi Medical Center, Department of Internal Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Claudio Sosa
- Department of Obstetrics and Gynecology "C", Pereira-Rossell Hospital, School of Medicine, Republic University, Montevideo, Uruguay
| | - Yanina Zócalo
- Centro Universitario de Investigación, Innovación y Diagnóstico Arterial, Department of Physiology, School of Medicine, Republic University, Montevideo, Uruguay
| | - Daniel Bia
- Centro Universitario de Investigación, Innovación y Diagnóstico Arterial, Department of Physiology, School of Medicine, Republic University, Montevideo, Uruguay
| |
Collapse
|
16
|
Binder U, Skerra A. PASylated Thymosin α1: A Long-Acting Immunostimulatory Peptide for Applications in Oncology and Virology. Int J Mol Sci 2020; 22:ijms22010124. [PMID: 33374407 PMCID: PMC7795856 DOI: 10.3390/ijms22010124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022] Open
Abstract
Thymosin α1 (Tα1) is an immunostimulatory peptide for the treatment of hepatitis B virus (HBV) and hepatitis C virus (HCV) infections and used as an immune enhancer, which also offers prospects in the context of COVID-19 infections and cancer. Manufacturing of this N-terminally acetylated 28-residue peptide is demanding, and its short plasma half-life limits in vivo efficacy and requires frequent dosing. Here, we combined the PASylation technology with enzymatic in situ N-acetylation by RimJ to produce a long-acting version of Tα1 in Escherichia coli at high yield. ESI-MS analysis of the purified fusion protein indicated the expected composition without any signs of proteolysis. SEC analysis revealed a 10-fold expanded hydrodynamic volume resulting from the fusion with a conformationally disordered Pro/Ala/Ser (PAS) polypeptide of 600 residues. This size effect led to a plasma half-life in rats extended by more than a factor 8 compared to the original synthetic peptide due to retarded kidney filtration. Our study provides the basis for therapeutic development of a next generation thymosin α1 with prolonged circulation. Generally, the strategy of producing an N-terminally protected PASylated peptide solves three major problems of peptide drugs: (i) instability in the expression host, (ii) rapid degradation by serum exopeptidases, and (iii) low bioactivity because of fast renal clearance.
Collapse
Affiliation(s)
- Uli Binder
- XL-protein GmbH, Lise-Meitner-Str. 30, 85354 Freising, Germany
- Correspondence: (U.B.); (A.S.)
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
- Correspondence: (U.B.); (A.S.)
| |
Collapse
|
17
|
Abstract
Maternal cardiovascular changes during pregnancy include an expansion of plasma volume, increased cardiac output, decreased peripheral resistance, and increased uteroplacental blood flow. These adaptations facilitate the progressive increase in uteroplacental perfusion that is required for normal fetal growth and development, prevent the development of hypertension, and provide a reserve of blood in anticipation of the significant blood loss associated with parturition. Each woman's genotype and phenotype determine her ability to adapt in response to molecular signals that emanate from the fetoplacental unit. Here, we provide an overview of the major hemodynamic and cardiac changes and then consider regional changes in the splanchnic, renal, cerebral, and uterine circulations in terms of endothelial and vascular smooth muscle cell plasticity. Although consideration of gestational disease is beyond the scope of this review, aberrant signaling and/or maternal responsiveness contribute to the etiology of several common gestational diseases such as preeclampsia, intrauterine growth restriction, and gestational diabetes.
Collapse
Affiliation(s)
- George Osol
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA;
| | - Nga Ling Ko
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA;
| | - Maurizio Mandalà
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| |
Collapse
|
18
|
Hampel U, Chinnery HR, Garreis F, Paulsen F, de Iongh R, Bui BV, Nguyen C, Parry L, Huei Leo C. Ocular Phenotype of Relaxin Gene Knockout (Rln -/-) Mice. Curr Eye Res 2020; 45:1211-1221. [PMID: 32141786 DOI: 10.1080/02713683.2020.1737714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose: To test if relaxin deficiency affects ocular structure and function we investigated expression of relaxin (Rln) and RXFP receptors (Rxfp1, Rxfp2), and compared ocular phenotypes in relaxin gene knockout (Rln-/- ) and wild type (Rln+/+ ) mice. Materials and Methods: Rln, Rxfp1 and Rxfp2 mRNA expression was detected in ocular tissues of Rln+/+ mice using RT-PCR. The eyes of 11 Rln-/- and 5 Rln+/+ male mice were investigated. Corneal and retinal thickness was assessed using optical coherence tomography. Intraocular pressure was measured using a rebound tonometer. Retinal, choroidal and sclera morphology and thickness were evaluated histologically. Eyes were collected and fixed for immunofluorescence staining or used for RNA extraction to evaluate mRNA expression using real-time PCR. Results: Rln mRNA was expressed only in the retina, whereas Rxfp1 transcripts were detected in the retina, cornea and sclera/choroid. Rxfp2 was only present in the cornea. None of these genes were expressed in the lacrimal gland, eyelid or lens. Intraocular pressure was higher and central cornea of Rln-/- mice was significantly thicker and had significantly larger endothelial cells and a lower endothelial cell density than Rln+/+ mice. Immunohistochemistry demonstrated no significant difference in AQP3 and AQP5 staining in the cornea or other regions between wildtype and Rln-/- mice. mRNA expression of Aqp4 was significantly higher in Rln-/- than in Rln+/+ corneas, whereas Col1a2, Mmp9, Timp1 and Timp2 were significantly decreased. Expression of Aqp1, Aqp4, Aqp5, Vim and Tjp1 was significantly decreased in Rln-/- compared to Rln+/+ uvea. No significant differences in these genes were detected in the retina. Retinal, choroidal and scleral thicknesses were not different and morphology appeared normal. Conclusion: The findings indicate that loss of Rln affects expression of several genes in the uvea and cornea and results in thicker corneas with altered endothelial cells. Many of the gene changes suggest alterations in extracellular matrix and fluid transport between cells.
Collapse
Affiliation(s)
- Ulrike Hampel
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz , Mainz, Germany.,Department of Anatomy II, Friedrich-Alexander University Erlangen-Nürnberg (FAU) , Erlangen, Germany
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne , Parkville, Australia
| | - Fabian Garreis
- Department of Anatomy II, Friedrich-Alexander University Erlangen-Nürnberg (FAU) , Erlangen, Germany
| | - Friedrich Paulsen
- Department of Anatomy II, Friedrich-Alexander University Erlangen-Nürnberg (FAU) , Erlangen, Germany.,Department of Topographic Anatomy and Operative Surgery, Sechenov University , Moscow, Russia
| | - Robb de Iongh
- Ocular Development Laboratory, Anatomy & Neuroscience, University of Melbourne , Parkville, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, The University of Melbourne , Parkville, Australia
| | - Christine Nguyen
- Department of Optometry and Vision Sciences, The University of Melbourne , Parkville, Australia
| | - Laura Parry
- School of BioSciences, The University of Melbourne , Parkville, Australia
| | - Chen Huei Leo
- School of BioSciences, The University of Melbourne , Parkville, Australia.,Science & Math, Singapore University of Technology & Design , Singapore
| |
Collapse
|
19
|
The Novel Small-molecule Annexin-A1 Mimetic, Compound 17b, Elicits Vasoprotective Actions in Streptozotocin-induced Diabetic Mice. Int J Mol Sci 2020; 21:ijms21041384. [PMID: 32085666 PMCID: PMC7073122 DOI: 10.3390/ijms21041384] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/11/2022] Open
Abstract
The formyl peptide receptor (FPR) family are a group of G-protein coupled receptors that play an important role in the regulation of inflammatory processes. It is well-established that activation of FPRs can have cardioprotective properties. Recently, more stable small-molecule FPR1/2 agonists have been described, including both Compound 17b (Cmpd17b) and Compound 43 (Cmpd43). Both agonists activate a range of signals downstream of FPR1/2 activation in human-engineered FPR-expressing cells, including ERK1/2 and Akt. Importantly, Cmpd17b (but not Cmpd43) favours bias away from intracellular Ca2+ mobilisation in this context, which has been associated with greater cardioprotection in response to Cmpd17b over Cmpd43. However, it is unknown whether these FPR agonists impact vascular physiology and/or elicit vasoprotective effects in the context of diabetes. First, we localized FPR1 and FPR2 receptors predominantly in vascular smooth muscle cells in the aortae of male C57BL/6 mice. We then analysed the vascular effects of Cmpd17b and Cmpd43 on the aorta using wire-myography. Cmpd17b but not Cmpd43 evoked a concentration-dependent relaxation of the mouse aorta. Removal of the endothelium or blockade of endothelium-derived relaxing factors using pharmacological inhibitors had no effect on Cmpd17b-evoked relaxation, demonstrating that its direct vasodilator actions were endothelium-independent. In aortae primed with elevated K+ concentration, increasing concentrations of CaCl2 evoked concentration-dependent contraction that is abolished by Cmpd17b, suggesting the involvement of the inhibition of Ca2+ mobilisation via voltage-gated calcium channels. Treatment with Cmpd17b for eight weeks reversed endothelial dysfunction in STZ-induced diabetic aorta through the upregulation of vasodilator prostanoids. Our data indicate that Cmpd17b is a direct endothelium-independent vasodilator, and a vasoprotective molecule in the context of diabetes.
Collapse
|
20
|
Leo CH, Ng HH, Marshall SA, Jelinic M, Rupasinghe T, Qin C, Roessner U, Ritchie RH, Tare M, Parry LJ. Relaxin reduces endothelium-derived vasoconstriction in hypertension: Revealing new therapeutic insights. Br J Pharmacol 2019; 177:217-233. [PMID: 31479151 DOI: 10.1111/bph.14858] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Endothelium-derived vasoconstriction is a hallmark of vascular dysfunction in hypertension. In some cases, an overproduction of endothelium-derived prostacyclin (PGI2 ) can cause contraction rather than relaxation. Relaxin is well known for its vasoprotective actions, but the possibility that this peptide could also reverse endothelium-derived vasoconstriction has never been investigated. We tested the hypothesis that short-term relaxin treatment mitigates endothelium-derived vasoconstriction in spontaneously hypertensive rats (SHR). EXPERIMENTAL APPROACH Male Wistar Kyoto rats (WKY) and SHR were subcutaneously infused with either vehicle (20 mmol·L-1 sodium acetate) or relaxin (13.3 μg·kg-1 ·hr-1 ) using osmotic minipumps for 3 days. Vascular reactivity to the endothelium-dependent agonist ACh was assessed in vitro by wire myography. Quantitative PCR and LC-MS were used to identify changes in gene expression of prostanoid pathways and PG production, respectively. KEY RESULTS Relaxin treatment ameliorated hypertension-induced endothelial dysfunction by increasing NO-dependent relaxation and reducing endothelium-dependent contraction. Notably, short-term relaxin treatment up-regulated mesenteric PGI2 receptor (IP) expression, permitting PGI2 -IP-mediated vasorelaxation. In the aorta, reversal of contraction was accompanied by suppression of the hypertension-induced increase in prostanoid-producing enzymes and reduction in PGI2 -evoked contractions. CONCLUSIONS AND IMPLICATIONS Relaxin has region-dependent vasoprotective actions in hypertension. Specifically, relaxin has distinct effects on endothelium-derived contracting factors and their associated vasoconstrictor pathways in mesenteric arteries and the aorta. Taken together, these observations reveal the potential of relaxin as a new therapeutic agent for vascular disorders that are associated with endothelium-derived vasoconstriction including hypertension.
Collapse
Affiliation(s)
- Chen Huei Leo
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Hooi Hooi Ng
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia.,Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Sarah A Marshall
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Maria Jelinic
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Thusitha Rupasinghe
- Metabolomics Australia, School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Chengxue Qin
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, VIC, Australia
| | - Ute Roessner
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia.,Metabolomics Australia, School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Department of Diabetes, Monash University, Clayton, VIC, Australia
| | - Marianne Tare
- Monash Rural Health, Monash University, Churchill, VIC, Australia.,Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Laura J Parry
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
21
|
Hoare BL, Kocan M, Bruell S, Scott DJ, Bathgate RAD. Using the novel HiBiT tag to label cell surface relaxin receptors for BRET proximity analysis. Pharmacol Res Perspect 2019; 7:e00513. [PMID: 31384473 PMCID: PMC6667744 DOI: 10.1002/prp2.513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/04/2022] Open
Abstract
Relaxin family peptide 1 (RXFP1) is the receptor for relaxin a peptide hormone with important therapeutic potential. Like many G protein-coupled receptors (GPCRs), RXFP1 has been reported to form homodimers. Given the complex activation mechanism of RXFP1 by relaxin, we wondered whether homodimerization may be explicitly required for receptor activation, and therefore sought to determine if there is any relaxin-dependent change in RXFP1 proximity at the cell surface. Bioluminescence resonance energy transfer (BRET) between recombinantly tagged receptors is often used in GPCR proximity studies. RXFP1 targets poorly to the cell surface when overexpressed in cell lines, with the majority of the receptor proteins sequestered within the cell. Thus, any relaxin-induced changes in RXFP1 proximity at the cell surface may be obscured by BRET signal originating from intracellular compartments. We therefore, utilized the newly developed split luciferase system called HiBiT to specifically label the extracellular terminus of cell surface RXFP1 receptors in combination with mCitrine-tagged receptors, using the GABAB heterodimer as a positive control. This demonstrated that the BRET signal detected from RXFP1-RXFP1 proximity at the cell surface does not appear to be due to stable physical interactions. The fact that there is also no relaxin-mediated change in RXFP1-RXFP1 proximity at the cell surface further supports these conclusions. This work provides a basis by which cell surface GPCR proximity and expression levels can be specifically studied using a facile and homogeneous labeling technique such as HiBiT.
Collapse
Affiliation(s)
- Bradley L. Hoare
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental HealthParkvilleVictoriaAustralia
| | - Martina Kocan
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental HealthParkvilleVictoriaAustralia
| | - Shoni Bruell
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Department of Biochemistry and Molecular BiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Daniel J. Scott
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Department of Biochemistry and Molecular BiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Ross A. D. Bathgate
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Department of Biochemistry and Molecular BiologyThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
22
|
Zhou L, Sun H, Cheng R, Fan X, Lai S, Deng C. ELABELA, as a potential diagnostic biomarker of preeclampsia, regulates abnormally shallow placentation via APJ. Am J Physiol Endocrinol Metab 2019; 316:E773-E781. [PMID: 30860880 DOI: 10.1152/ajpendo.00383.2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Preeclampsia (PE) is a major cause of maternal mortality and morbidity worldwide. Although there has been great progress in the understanding of PE, the exact cause for the disease development is still unclear. Recently, studies showed that genetic deletion of ELABELA (ELA, also known as APELA) could induce PE-like symptoms in mice. However, the role of ELA in the disease development of PE remains elusive. Our objective was to measure the changes of ELA levels in maternal serum, urine, and placenta from preeclamptic pregnant women and healthy pregnant women and evaluate the correlation between ELA levels and the occurrence of PE. Additionally, we investigated the effect of ELA on the migration and proliferation of human trophoblast cells. ELA levels are significantly decreased in late-onset PE pregnancies compared with normal pregnancies. The mRNA and protein expressions of ELA and the apelin receptor (APLNR or APJ) in late-onset PE placental tissues are also decreased. Furthermore, our in vitro study showed that the addition of ELA significantly increased the invasion ability and proliferation of trophoblast cells, which were inhibited by the APJ-specific antagonist ML221. Our study identified ELA as significantly decreased in late-onset PE; therefore, it might play an important role in the pathogenesis of late-onset PE.
Collapse
Affiliation(s)
- Lu Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University , Nanjing , China
- Department of Obstetrics and Gynecology, Maternal and Child Healthcare Hospital of Shenzhen City, Southern Medical University , Shenzhen , China
| | - Hang Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University , Nanjing , China
| | - Ran Cheng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University , Nanjing , China
| | - Xiujun Fan
- Laboratory for Reproductive Health, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , China
| | - Shanshan Lai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University , Nanjing , China
| | - Cheng Deng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University , Nanjing , China
| |
Collapse
|
23
|
Recent developments in relaxin mimetics as therapeutics for cardiovascular diseases. Curr Opin Pharmacol 2019; 45:42-48. [PMID: 31048209 DOI: 10.1016/j.coph.2019.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/23/2019] [Accepted: 04/01/2019] [Indexed: 01/02/2023]
Abstract
Cardiovascular disease is the most common cause of mortality worldwide, accounting for almost 50% of all deaths globally. Vascular endothelial dysfunction and fibrosis are critical in the pathophysiology of cardiovascular disease. Relaxin, an insulin-like peptide, is known to have beneficial actions in the cardiovascular system through its vasoprotective and anti-fibrotic effects. However, relaxin has several limitations of peptide-based drugs such as poor oral bioavailability, laborious, and expensive to synthesize. This review will focus on recent developments in relaxin mimetics, their pharmacology, associated signalling mechanisms, and their therapeutic potential for the management and treatment of cardiovascular disease.
Collapse
|