1
|
Christensen RD, Bahr TM, Ward DM. Iron deficiency in newborn infants: global rewards for recognizing and treating this silent malady. NEWBORN (CLARKSVILLE, MD.) 2022; 1:97-103. [PMID: 35949271 PMCID: PMC9361392 DOI: 10.5005/jp-journals-11002-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Robert D Christensen
- Divisions of Neonatology and Hematology, Department of Pediatrics, and Division of Microbiology and Immunology, Department of Pathology, and the Center for Iron and Heme Disorders, University of Utah Health, and Women and Newborn's Research, Intermountain Healthcare, Salt Lake City, Utah, USA
| | - Timothy M Bahr
- Divisions of Neonatology and Hematology, Department of Pediatrics, and Division of Microbiology and Immunology, Department of Pathology, and the Center for Iron and Heme Disorders, University of Utah Health, and Women and Newborn's Research, Intermountain Healthcare, Salt Lake City, Utah, USA
| | - Diane M Ward
- Divisions of Neonatology and Hematology, Department of Pediatrics, and Division of Microbiology and Immunology, Department of Pathology, and the Center for Iron and Heme Disorders, University of Utah Health, and Women and Newborn's Research, Intermountain Healthcare, Salt Lake City, Utah, USA
| |
Collapse
|
2
|
Navarrete-Perea J, Guerra-Moreno A, Van Vranken J, Isasa M, Paulo JA, Gygi SP. Iron Deficiency and Recovery in Yeast: A Quantitative Proteomics Approach. J Proteome Res 2021; 20:2751-2761. [PMID: 33797912 DOI: 10.1021/acs.jproteome.1c00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Iron is an essential element for life, as it is critical for oxygen transport, cellular respiration, DNA synthesis, and metabolism. Disruptions in iron metabolism have been associated with several complex diseases like diabetes, cancer, infection susceptibility, neurodegeneration, and others; however, the molecular mechanisms linking iron metabolism with these diseases are not fully understood. A commonly used model to study iron deficiency (ID) is yeast, Saccharomyces cerevisiae. Here, we used quantitative (phospho)proteomics to explore the early (4 and 6 h) and late (12 h) response to ID. We showed that metabolic pathways like the Krebs cycle, amino acid, and ergosterol biosynthesis were affected by ID. In addition, during the late response, several proteins related to the ubiquitin-proteasome system and autophagy were upregulated. We also explored the proteomic changes during a recovery period after 12 h of ID. Several proteins recovered their steady-state levels, but some others, such as cytochromes, did not recover during the time tested. Additionally, we showed that autophagy is active during ID, and some of the degraded proteins during ID can be rescued using KO strains for several key autophagy genes. Our results highlight the complex proteome changes occurring during ID and recovery. This study constitutes a valuable data set for researchers interested in iron biology, offering a temporal proteomic data set for ID, as well as a compendium the proteomic changes associated with episodes of iron recovery.
Collapse
Affiliation(s)
- Jose Navarrete-Perea
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02155, United States
| | | | - Jonathan Van Vranken
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02155, United States
| | - Marta Isasa
- C4 Therapeutics, Cambridge, Massachusetts 02142, United States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02155, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02155, United States
| |
Collapse
|
3
|
Guo R, Neumann D, Lafferty M, Boelig R, Bell-Carey B, Edwards C, Greenspan JS, Derman R, Aghai ZH. Prevalence and Utility of Low Mean Corpuscular Volume in Infants Admitted to the Neonatal Intensive Care Unit. J Pediatr 2020; 227:108-113.e2. [PMID: 32702426 DOI: 10.1016/j.jpeds.2020.07.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To determine the prevalence of low mean corpuscular volume (MCV) in newborn infants admitted to the neonatal intensive care unit and to assess low MCV as a diagnostic test for alpha thalassemia. STUDY DESIGN Retrospective analysis of all infants admitted to the neonatal intensive care unit between January 2010 and October 2018 for which a complete blood count was performed during the first 3 postnatal days. Infants with a low MCV were compared with those with a normal MCV. Infants with positive hemoglobin Bart (Hb Bart) were compared with those withnegative Hb Bart. Low MCV was also evaluated as a diagnostic test for alpha thalassemia. RESULTS A total of 3851 infants (1386 preterm, 2465 term) met the inclusion criteria and 853 (22.2%) had a low MCV. A low MCV was more common in term (25%) compared with preterm infants (17.1%, P < .001). Hb Bart positive newborn screening was identified in 133 infants (3.5%). Hb Bart was positive in 11.1% of infants with low MCV compared with 1.3% with normal MCV (P < .001). The sensitivity, specificity, positive predictive value, and negative predictive value of low MCV for the diagnosis of alpha thalassemia were 71.4%, 79.6%, 11.3%, and 98.7%, respectively. CONCLUSIONS As Hb Bart positive newborn screens were seen in only 11.1% of infants with microcytosis, further diagnostic investigation may be warranted in individual infants. Further research to correlate microcytosis with iron status in infants and mothers is needed as well as studies using DNA analysis for the evaluation of alpha thalassemia variants.
Collapse
Affiliation(s)
- Rose Guo
- Department of Pediatrics, Division of Neonatology, Thomas Jefferson University Hospital/Nemours, Philadelphia, PA
| | - Dana Neumann
- Department of Pediatrics, Division of Neonatology, Thomas Jefferson University Hospital/Nemours, Philadelphia, PA
| | - Margaret Lafferty
- Department of Pediatrics, Division of Neonatology, Thomas Jefferson University Hospital/Nemours, Philadelphia, PA
| | - Rupsa Boelig
- Department of Obstetrics and Gynecology, Maternal Fetal Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Brandi Bell-Carey
- Department of Pediatrics, Division of Neonatology, Thomas Jefferson University Hospital/Nemours, Philadelphia, PA
| | - Caroline Edwards
- Department of Pediatrics, Division of Neonatology, Thomas Jefferson University Hospital/Nemours, Philadelphia, PA
| | - Jay S Greenspan
- Department of Pediatrics, Division of Neonatology, Thomas Jefferson University Hospital/Nemours, Philadelphia, PA
| | - Richard Derman
- Department of Obstetrics and Gynecology, Maternal Fetal Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Zubair H Aghai
- Department of Pediatrics, Division of Neonatology, Thomas Jefferson University Hospital/Nemours, Philadelphia, PA.
| |
Collapse
|
4
|
Bastian TW, Rao R, Tran PV, Georgieff MK. The Effects of Early-Life Iron Deficiency on Brain Energy Metabolism. Neurosci Insights 2020; 15:2633105520935104. [PMID: 32637938 PMCID: PMC7324901 DOI: 10.1177/2633105520935104] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Iron deficiency (ID) is one of the most prevalent nutritional deficiencies in the world. Iron deficiency in the late fetal and newborn period causes abnormal cognitive performance and emotional regulation, which can persist into adulthood despite iron repletion. Potential mechanisms contributing to these impairments include deficits in brain energy metabolism, neurotransmission, and myelination. Here, we comprehensively review the existing data that demonstrate diminished brain energetic capacity as a mechanistic driver of impaired neurobehavioral development due to early-life (fetal-neonatal) ID. We further discuss a novel hypothesis that permanent metabolic reprogramming, which occurs during the period of ID, leads to chronically impaired neuronal energetics and mitochondrial capacity in adulthood, thus limiting adult neuroplasticity and neurobehavioral function. We conclude that early-life ID impairs energy metabolism in a brain region- and age-dependent manner, with particularly strong evidence for hippocampal neurons. Additional studies, focusing on other brain regions and cell types, are needed.
Collapse
Affiliation(s)
- Thomas W Bastian
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Raghavendra Rao
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Phu V Tran
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Michael K Georgieff
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Pino JMV, Nishiduka ES, da Luz MHM, Silva VF, Antunes HKM, Tashima AK, Guedes PLR, de Souza AAL, Lee KS. Iron-deficient diet induces distinct protein profile related to energy metabolism in the striatum and hippocampus of adult rats. Nutr Neurosci 2020; 25:207-218. [PMID: 32183604 DOI: 10.1080/1028415x.2020.1740862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Iron deficiency is a public health problem that affects all age groups. Its main consequence is anemia, but it can also affect cognitive functions. Although the negative effects of iron deficiency on cognitive function have been extensively described, the underlying mechanism has not been fully investigated. Thus, to gain an unbiased insight into the effects of iron deficiency (ID) on discrete brain regions, we performed a proteomic analysis of the striatum and hippocampus of adult rats subjected to an iron restricted (IR) diets for 30 days. We found that an IR diet caused major alterations in proteins related to glycolysis and lipid catabolism in the striatum. In the hippocampus, a larger portion of proteins related to oxidative phosphorylation and neurodegenerative diseases were altered. These alterations in the striatum and hippocampus occurred without a reduction in local iron levels, although there was a drastic reduction in liver iron and ferritin. Moreover, the IR group showed higher fasting glycaemia than the control group. These results suggest that brain iron content is preserved during acute iron deficiency, but the alterations of other systemic metabolites such as glucose may trigger distinct metabolic adaptations in each brain region. Abnormal energy metabolism precedes and persists in many neurological disorders. Thus, altered energy metabolism can be one of the mechanisms by which iron deficiency affects cognitive functions.
Collapse
Affiliation(s)
- Jessica M V Pino
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Erika S Nishiduka
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Márcio H M da Luz
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vitória F Silva
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Hanna K M Antunes
- Departamento de Biociência, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alexandre K Tashima
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Pedro L R Guedes
- Departamento de Biociência, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Altay A L de Souza
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Kil S Lee
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Cord Blood-Derived Exosomal CNTN2 and BDNF: Potential Molecular Markers for Brain Health of Neonates at Risk for Iron Deficiency. Nutrients 2019; 11:nu11102478. [PMID: 31623079 PMCID: PMC6835945 DOI: 10.3390/nu11102478] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 01/18/2023] Open
Abstract
Maternal iron deficiency anemia, obesity, and diabetes are prevalent during pregnancy. All are associated with neonatal brain iron deficiency (ID) and neurodevelopmental impairment. Exosomes are extracellular vesicles involved in cell–cell communication. Contactin-2 (CNTN2), a neural-specific glycoprotein, and brain-derived neurotrophic factor (BDNF) are important in neurodevelopment and found in exosomes. We hypothesized that exosomal CNTN2 and BDNF identify infants at risk for brain ID. Umbilical cord blood samples were measured for iron status. Maternal anemia, diabetes, and body mass index (BMI) were recorded. Cord blood exosomes were isolated and validated for the exosomal marker CD81 and the neural-specific exosomal marker CNTN2. Exosomal CNTN2 and BDNF levels were quantified by ELISA. Analysis of CNTN2 and BDNF levels as predictors of cord blood iron indices showed a direct correlation between CNTN2 and ferritin in all neonates (n = 79, β = 1.75, p = 0.02). In contrast, BDNF levels inversely correlated with ferritin (β = −1.20, p = 0.03), with stronger association in female neonates (n = 37, β = −1.35, p = 0.06), although there is no evidence of a sex-specific effect. Analysis of maternal risk factors for neonatal brain ID as predictors of exosomal CNTN2 and BDNF levels showed sex-specific relationships between infants of diabetic mothers (IDMs) and CNTN2 levels (Interaction p = 0.0005). While male IDMs exhibited a negative correlation (n = 42, β = −0.69, p = 0.02), female IDMs showed a positive correlation (n = 37, β = 0.92, p = 0.01) with CNTN2. A negative correlation between BNDF and maternal BMI was found with stronger association in female neonates (per 10 units BMI, β = −0.60, p = 0.04). These findings suggest CNTN2 and BNDF are respective molecular markers for male and female neonates at risk for brain ID. This study supports the potential of exosomal markers to assess neonatal brain status in at-risk infants.
Collapse
|
7
|
Ennis K, Felt B, Georgieff MK, Rao R. Early-Life Iron Deficiency Alters Glucose Transporter-1 Expression in the Adult Rodent Hippocampus. J Nutr 2019; 149:1660-1666. [PMID: 31162576 PMCID: PMC6736205 DOI: 10.1093/jn/nxz100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/26/2018] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Early-life iron deficiency (ID) impairs hippocampal energy production. Whether there are changes in glucose transporter (GLUT) expression is not known. OBJECTIVE The aim of this study was to investigate whether early-life ID and the treatment iron dose alter brain regional GLUT expression in adult rats and mice. METHODS In Study 1, ID was induced in male and female Sprague Dawley rat pups by feeding dams a 3-mg/kg iron diet during gestation and the first postnatal week, followed by treatment using low-iron [3-10 mg/kg; formerly iron-deficient (FID)-10 group], standard-iron (40-mg/kg; FID-40 group), or high-iron (400-mg/kg; FID-400 group) diets until weaning. The control group received the 40 mg/kg iron diet. GLUT1, GLUT3, hypoxia-inducible factor (HIF)-1α, and prolyl-hydroxylase-2 (PHD2) mRNA and protein expression in the cerebral cortex, hippocampus, striatum, cerebellum, and hypothalamus were determined at adulthood. In Study 2, the role of hippocampal ID in GLUT expression was examined by comparing the Glut1, Glut3, Hif1α, and Phd2 mRNA expression in adult male and female wild-type (WT) and nonanemic hippocampal iron-deficient and iron-replete dominant negative transferrin receptor 1 (DNTfR1-/-) transgenic mice. RESULTS In Study 1, Glut1, Glut3, and Hif1α mRNA, and GLUT1 55-kDa protein expression was upregulated 20-33% in the hippocampus of the FID-10 group but not the FID-40 group, relative to the control group. Hippocampal Glut1 mRNA (-39%) and GLUT1 protein (-30%) expression was suppressed in the FID-400 group, relative to the control group. Glut1 and Glut3 mRNA expression was not altered in the other brain regions in the 3 FID groups. In Study 2, hippocampal Glut1 (+14%) and Hif1α (+147%) expression was upregulated in the iron-deficient DNTfR1-/- mice, but not in the iron-replete DNTfR1-/- mice, relative to the WT mice (P < 0.05, all). CONCLUSIONS Early-life ID is associated with altered hippocampal GLUT1 expression in adult rodents. The mouse study suggests that tissue ID is potentially responsible.
Collapse
Affiliation(s)
- Kathleen Ennis
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Barbara Felt
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Michael K Georgieff
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA,Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN, USA
| | - Raghavendra Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA,Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN, USA,Address correspondence to RR (e-mail: )
| |
Collapse
|
8
|
Barks AK, Beeson MM, Matveeva T, Gale JJ, Rao R, Tran PV. Perinatal Ischemia Alters Global Expression of Synaptosomal Proteins Critical for Neural Plasticity in the Developing Mouse Brain. Dev Neurosci 2019; 40:1-13. [PMID: 31207599 DOI: 10.1159/000499126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/25/2019] [Indexed: 11/19/2022] Open
Abstract
Ischemic perinatal stroke (IPS) affects 1 in 2,300-5,000 live births. Despite a survival rate >95%, approximately 60% of IPS infants develop motor and cognitive impairments. Given the importance of axonal growth and synaptic plasticity in neurocognitive development, our objective was to identify the molecular pathways underlying IPS-associated synaptic dysfunction using a mouse model. IPS was induced by unilateral ligation of the common carotid artery of postnatal day 10 (P10) mice. Five days after ischemia, sensorimotor and motor functions were assessed by vibrissae-evoked forepaw placement and the tail suspension test respectively, showing evidence of greater impairments in male pups than in female pups. Twenty-four hours after ischemia, both hemispheres were collected and synaptosomal proteins then prepared for quantification, using isobaric tags for relative and absolute quantitation. Seventy-two of 1,498 qualified proteins were altered in the ischemic hemisphere. Ingenuity Pathway Analysis was used to map these proteins onto molecular networks indicative of reduced neuronal proliferation, survival, and synaptic plasticity, accompanied by reduced PKCα signaling in male, but not female, pups. These effects also occurred in the non-ischemic hemisphere when compared with sham controls. The altered signaling effects may contribute to the sex-specific neurodevelopmental dysfunction following IPS, highlighting potential pathways for targeting during treatment.
Collapse
Affiliation(s)
- Amanda K Barks
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Montana M Beeson
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tatyana Matveeva
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jonathan J Gale
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Raghavendra Rao
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Phu V Tran
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA,
| |
Collapse
|
9
|
Orchard PJ, Markowski TW, Higgins L, Raymond GV, Nascene DR, Miller WP, Pierpont EI, Lund TC. Association between APOE4 and biomarkers in cerebral adrenoleukodystrophy. Sci Rep 2019; 9:7858. [PMID: 31133696 PMCID: PMC6536544 DOI: 10.1038/s41598-019-44140-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 05/09/2019] [Indexed: 12/26/2022] Open
Abstract
Cerebral adrenoleukodystrophy (cALD) is an inflammatory neurodegenerative disease associated with mutation of the ABCD1 gene. Proteomic analysis of cerebral spinal fluid (CSF) from young males with active cALD revealed markers of inflammation including APOE4. APOE4 genotype has been associated with an inferior prognosis following acute and chronic neurologic injury. We assessed APOE4 inheritance among 83 consecutive young males with cALD prior to hematopoietic cell transplant and its association with markers of cerebral disease. The allele frequency of APOE4 was not significantly different from that of the general population at 17%. Young males with cALD that were APOE4 carriers had similar CSF protein and chitotriosidase activity to that of non-carriers. In contrast, APOE4 carriers had an increased burden of cerebral disease involvement as determined by MRI severity score (10.5 vs 7.0 points, p = 0.01), higher gadolinium intensity score (2.0 vs 1.3 points, p = 0.007), inferior neurologic function (neurologic function score 2.4 vs 1.0, p = 0.001), and elevated CSF MMP2 levels compared to that of non-carriers (13168 vs 9472 pg/mL, p = 0.01). These are the first data showing that APOE4 is associated with increased severity of cerebral disease in cALD and suggest it may be a modifier of disease.
Collapse
Affiliation(s)
- Paul J Orchard
- University of Minnesota, Division of Pediatric Blood and Marrow Transplantation, 55455, Minneapolis, USA
| | - Todd W Markowski
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, 55455, Minneapolis, USA
| | - LeeAnn Higgins
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, 55455, Minneapolis, USA
| | | | - David R Nascene
- University of Minnesota, Department of Diagnostic Radiology, 55455, Minneapolis, USA
| | - Weston P Miller
- University of Minnesota, Division of Pediatric Blood and Marrow Transplantation, 55455, Minneapolis, USA
| | - Elizabeth I Pierpont
- University of Minnesota, Division of Clinical Behavioral Neuroscience, 55455, Minneapolis, USA
| | - Troy C Lund
- University of Minnesota, Division of Pediatric Blood and Marrow Transplantation, 55455, Minneapolis, USA.
| |
Collapse
|
10
|
Georgieff MK, Tran PV, Carlson ES. Atypical fetal development: Fetal alcohol syndrome, nutritional deprivation, teratogens, and risk for neurodevelopmental disorders and psychopathology. Dev Psychopathol 2018; 30:1063-1086. [PMID: 30068419 PMCID: PMC6074054 DOI: 10.1017/s0954579418000500] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Accumulating evidence indicates that the fetal environment plays an important role in brain development and sets the brain on a trajectory across the life span. An abnormal fetal environment results when factors that should be present during a critical period of development are absent or when factors that should not be in the developing brain are present. While these factors may acutely disrupt brain function, the real cost to society resides in the long-term effects, which include important mental health issues. We review the effects of three factors, fetal alcohol exposure, teratogen exposure, and nutrient deficiencies, on the developing brain and the consequent risk for developmental psychopathology. Each is reviewed with respect to the evidence found in epidemiological and clinical studies in humans as well as preclinical molecular and cellular studies that explicate mechanisms of action.
Collapse
Affiliation(s)
| | - Phu V Tran
- University of Minnesota School of Medicine
| | | |
Collapse
|
11
|
Farrelly L, Rosato-Siri MV, Föcking M, Codagnone M, Reines A, Dicker P, Wynne K, Farrell M, Cannon M, Cagney G, Pasquini JM, Cotter DR. The Effects of Prenatal Iron Deficiency and Risperidone Treatment on the Rat Frontal Cortex: A Proteomic Analysis. Proteomics 2017; 17. [PMID: 28762254 DOI: 10.1002/pmic.201600407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 06/12/2017] [Indexed: 11/11/2022]
Abstract
Prenatal iron deficiency (pID) has been described to increase the risk for neurodevelopmental disorders such as autism and schizophrenia; however, the precise molecular mechanisms are still unknown. Here, we utilized high-throughput MS to examine the proteomic effects of pID in adulthood on the rat frontal cortex area (FCA). In addition, the FCA proteome was examined in adulthood following risperidone treatment in adolescence to see if these effects could be prevented. We identified 1501 proteins of which 100 were significantly differentially expressed in the FCA at postnatal day 90. Pathway analysis of proteins affected by pID revealed changes in metabolic processes, including the tricyclic acid cycle, mitochondrial dysfunction, and P13K/Akt signaling. Interestingly, most of these protein changes were not present in the adult pID offspring who received risperidone in adolescence. Considering the link between pID and several neurodevelopmental disorders such as autism and schizophrenia these presented results bring new perspectives to understand the role of iron in metabolic pathways and provide novel biomarkers for future studies of pID.
Collapse
Affiliation(s)
- Lorna Farrelly
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Maria Victoria Rosato-Siri
- Department of Biological Chemistry, IQUIFIB, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Melanie Föcking
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Martin Codagnone
- De Robertis Institute, University of Buenos Aires, Buenos Aires, Argentina
| | - Analia Reines
- De Robertis Institute, University of Buenos Aires, Buenos Aires, Argentina
| | - Patrick Dicker
- Departments of Epidemiology & Public Health, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kieran Wynne
- School of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Ireland
| | - Michael Farrell
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - Mary Cannon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Gerard Cagney
- School of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Ireland
| | - Juana Maria Pasquini
- Department of Biological Chemistry, IQUIFIB, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - David R Cotter
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
12
|
Schlegel RN, Spiers JG, Moritz KM, Cullen CL, Björkman ST, Paravicini TM. Maternal hypomagnesemia alters hippocampal NMDAR subunit expression and programs anxiety-like behaviour in adult offspring. Behav Brain Res 2017; 328:39-47. [PMID: 28389335 DOI: 10.1016/j.bbr.2017.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/24/2017] [Accepted: 04/03/2017] [Indexed: 02/05/2023]
Abstract
It is well established that maternal undernutrition and micronutrient deficiencies can lead to altered development and behaviour in offspring. However, few studies have explored the implications of maternal Mg deficiency and programmed behavioural and neurological outcomes in offspring. We used a model of Mg deficiency (prior to and during pregnancy and lactation) in CD1 mice to investigate if maternal Mg deficiency programmed changes in behaviour and NMDAR subunit expression in offspring. Hippocampal tissue was collected at postnatal day 2 (PN2), PN8, PN21 and 6 months, and protein expression of NMDAR subunits GluN1, GluN2A and GluN2B was determined. At 6 months of age, offspring were subject to behavioural tasks testing aspects of anxiety-like behaviour, memory, and neophobia. Maternal hypomagnesemia was associated with increased GluN1, GluN2A and GluN2B subunit expression in female offspring at 6 months, but decreased GluN1 and GluN2A expression in males. The GluN2B:GluN2A expression ratio was increased in both sexes. Male (but not female) offspring from Mg-deficient dams showed anxiety-like behaviour, with reduced head dips (Suok test), and reduced exploration of open arms (elevated plus maze). Both male and female offspring from Mg-deficient dams also showed impaired recognition memory (novel object test). These findings suggest that maternal Mg deficiency can result in behavioural deficits in adult life, and that these changes may be related to alterations in hippocampal NMDA receptor expression.
Collapse
Affiliation(s)
- R N Schlegel
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - J G Spiers
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - K M Moritz
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - C L Cullen
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia; Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - S T Björkman
- University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - T M Paravicini
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia; School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.
| |
Collapse
|
13
|
MacQueen BC, Christensen RD, Ward DM, Bennett ST, O’Brien EA, Sheffield MJ, Baer VL, Snow GL, Lewis KAW, Fleming RE, Kaplan J. The iron status at birth of neonates with risk factors for developing iron deficiency: a pilot study. J Perinatol 2017; 37:436-440. [PMID: 27977019 PMCID: PMC5389916 DOI: 10.1038/jp.2016.234] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/25/2016] [Accepted: 11/07/2016] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Small-for-gestational-age (SGA) neonates, infants of diabetic mothers (IDM) and very-low-birth weight premature neonates (VLBW) are reported to have increased risk for developing iron deficiency and possibly associated neurocognitive delays. STUDY DESIGN We conducted a pilot study to assess iron status at birth in at-risk neonates by measuring iron parameters in umbilical cord blood from SGA, IDM, VLBW and comparison neonates. RESULTS Six of the 50 infants studied had biochemical evidence of iron deficiency at birth. Laboratory findings consistent with iron deficiency were found in one SGA, one IDM, three VLBW, and one comparison infant. None of the infants had evidence of iron deficiency anemia. CONCLUSIONS Evidence of biochemical iron deficiency at birth was found in 17% of screened neonates. Studies are needed to determine whether these infants are at risk for developing iron-limited erythropoiesis, iron deficiency anemia or iron-deficient neurocognitive delay.
Collapse
Affiliation(s)
- BC MacQueen
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - RD Christensen
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA,Women and Newborn’s Clinical Program, Intermountain Healthcare, Salt Lake City, UT, USA,Division of Hematology/Oncology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - DM Ward
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - ST Bennett
- Department of Pathology, Intermountain Medical Center, Murray, KY, USA
| | - EA O’Brien
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA,Women and Newborn’s Clinical Program, Intermountain Healthcare, Salt Lake City, UT, USA
| | - MJ Sheffield
- Women and Newborn’s Clinical Program, Intermountain Healthcare, Salt Lake City, UT, USA
| | - VL Baer
- Women and Newborn’s Clinical Program, Intermountain Healthcare, Salt Lake City, UT, USA
| | - GL Snow
- Statistical Data Center, LDS Hospital, Salt Lake City, UT, USA
| | - KA Weaver Lewis
- Women and Newborn’s Clinical Program, Intermountain Healthcare, Salt Lake City, UT, USA
| | - RE Fleming
- Department of Pediatrics and Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University, St Louis, MO, USA
| | - J Kaplan
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
14
|
Tang YS, Khan RA, Xiao S, Hansen DK, Stabler SP, Kusumanchi P, Jayaram HN, Antony AC. Evidence Favoring a Positive Feedback Loop for Physiologic Auto Upregulation of hnRNP-E1 during Prolonged Folate Deficiency in Human Placental Cells. J Nutr 2017; 147:482-498. [PMID: 28250194 PMCID: PMC5368577 DOI: 10.3945/jn.116.241364] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/07/2016] [Accepted: 01/11/2017] [Indexed: 12/27/2022] Open
Abstract
Background: Previously, we determined that heterogeneous nuclear ribonucleoprotein E1 (hnRNP-E1) functions as an intracellular physiologic sensor of folate deficiency. In this model, l-homocysteine, which accumulates intracellularly in proportion to the extent of folate deficiency, covalently binds to and thereby activates homocysteinylated hnRNP-E1 to interact with folate receptor-α mRNA; this high-affinity interaction triggers the translational upregulation of cell surface folate receptors, which enables cells to optimize folate uptake from the external milieu. However, integral to this model is the need for ongoing generation of hnRNP-E1 to replenish homocysteinylated hnRNP-E1 that is degraded.Objective: We searched for an interrelated physiologic mechanism that could also maintain the steady-state concentration of hnRNP-E1 during prolonged folate deficiency.Methods: A novel RNA-protein interaction was functionally characterized by using molecular and biochemical approaches in vitro and in vivo.Results: l-homocysteine triggered a dose-dependent high-affinity interaction between hnRNP-E1 and a 25-nucleotide cis element within the 5'-untranslated region of hnRNP-E1 mRNA; this led to a proportionate increase in these RNA-protein complexes, and translation of hnRNP-E1 both in vitro and within placental cells. Targeted perturbation of this RNA-protein interaction either by specific 25-nucleotide antisense oligonucleotides or mutation within this cis element or by small interfering RNA to hnRNP-E1 mRNA significantly reduced cellular biosynthesis of hnRNP-E1. Conversely, transfection of hnRNP-E1 mutant proteins that mimicked homocysteinylated hnRNP-E1 stimulated both cellular hnRNP-E1 and folate receptor biosynthesis. In addition, ferrous sulfate heptahydrate [iron(II)], which also binds hnRNP-E1, significantly perturbed this l-homocysteine-triggered RNA-protein interaction in a dose-dependent manner. Finally, folate deficiency induced dual upregulation of hnRNP-E1 and folate receptors in cultured human cells and tumor xenografts, and more selectively in various fetal tissues of folate-deficient dams.Conclusions: This novel positive feedback loop amplifies hnRNP-E1 during prolonged folate deficiency and thereby maximizes upregulation of folate receptors in order to restore folate homeostasis toward normalcy in placental cells. It will also functionally impact several other mRNAs of the nutrition-sensitive, folate-responsive posttranscriptional RNA operon that is orchestrated by homocysteinylated hnRNP-E1.
Collapse
Affiliation(s)
- Ying-Sheng Tang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Rehana A Khan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Suhong Xiao
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | | | - Sally P Stabler
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; and
| | - Praveen Kusumanchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | | | - Aśok C Antony
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN; .,Richard L Roudebush Veterans Affairs Medical Center, Indianapolis, IN
| |
Collapse
|
15
|
The impacts of maternal iron deficiency and being overweight during pregnancy on neurodevelopment of the offspring. Br J Nutr 2017; 118:533-540. [DOI: 10.1017/s0007114517002410] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractBoth maternal Fe deficiency (ID) and being overweight or obese (Ow/Ob, BMI≥25 kg/m2) may negatively affect offspring brain development. However, the two risk factors correlate and their independent effects on infant neurodevelopment are unclear. PREOBE is a prospective observational study that included 331 pregnant Spanish women, of whom 166 had pre-gestational Ow/Ob. Fe status was analysed at 34 weeks and at delivery, and babies were assessed using Bayley III scales of neurodevelopment at 18 months. In confounder-adjusted analyses, maternal ID at 34 weeks was associated with lower composite motor scores at 18 months (mean 113·3 (sd 9·9) v. 117·1 (sd 9·2), P=0·039). Further, the offspring of mothers with ID at delivery had lower cognitive scores (114·0 (sd 9·7) v. 121·5 (sd 10·9), P=0·039) and lower receptive, expressive and composite (99·5 (sd 8·6) v. 107·6 (sd 8·3), P=0·004) language scores. The negative associations between maternal ID at delivery and Bayley scores remained even when adjusting for maternal Ow/Ob and gestational diabetes. Similarly, maternal Ow/Ob correlated with lower gross motor scores in the offspring (12·3 (sd 2·0) v. 13·0 (sd 2·1), P=0·037), a correlation that remained when adjusting for maternal ID. In conclusion, maternal ID and pre-gestational Ow/Ob are both negatively associated with Bayley scores at 18 months, but independently and on different subscales. These results should be taken into account when considering Fe supplementation for pregnant women.
Collapse
|
16
|
Glucose Starvation Alters Heat Shock Response, Leading to Death of Wild Type Cells and Survival of MAP Kinase Signaling Mutant. PLoS One 2016; 11:e0165980. [PMID: 27870869 PMCID: PMC5117620 DOI: 10.1371/journal.pone.0165980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/20/2016] [Indexed: 12/31/2022] Open
Abstract
A moderate heat shock induces Neurospora crassa to synthesize large quantities of heat shock proteins that are protective against higher, otherwise lethal temperatures. However, wild type cells do not survive when carbohydrate deprivation is added to heat shock. In contrast, a mutant strain defective in a stress-activated protein kinase does survive the combined stresses. In order to understand the basis for this difference in survival, we have determined the relative levels of detected proteins in the mutant and wild type strain during dual stress, and we have identified gene transcripts in both strains whose quantities change in response to heat shock or dual stress. These data and supportive experimental evidence point to reasons for survival of the mutant strain. By using alternative respiratory mechanisms, these cells experience less of the oxidative stress that proves damaging to wild type cells. Of central importance, mutant cells recycle limited resources during dual stress by undergoing autophagy, a process that we find utilized by both wild type and mutant cells during heat shock. Evidence points to inappropriate activation of TORC1, the central metabolic regulator, in wild type cells during dual stress, based upon behavior of an additional signaling mutant and inhibitor studies.
Collapse
|
17
|
Drassinower D, Lavery JA, Friedman AM, Levin HI, Običan SG, Ananth CV. The effect of maternal haematocrit on offspring IQ at 4 and 7 years of age: a secondary analysis. BJOG 2016; 123:2087-2093. [DOI: 10.1111/1471-0528.14263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2016] [Indexed: 11/29/2022]
Affiliation(s)
- D Drassinower
- Division of Maternal-Fetal Medicine; Department of Obstetrics and Gynecology; College of Physicians and Surgeons; Columbia University; New York NY USA
| | - JA Lavery
- Biostatistics Coordinating Center; Department of Obstetrics and Gynecology; College of Physicians and Surgeons; Columbia University; New York NY USA
| | - AM Friedman
- Division of Maternal-Fetal Medicine; Department of Obstetrics and Gynecology; College of Physicians and Surgeons; Columbia University; New York NY USA
| | - HI Levin
- Division of Maternal-Fetal Medicine; Department of Obstetrics and Gynecology; College of Physicians and Surgeons; Columbia University; New York NY USA
| | - SG Običan
- Division of Maternal-Fetal Medicine; Department of Obstetrics and Gynecology; College of Physicians and Surgeons; Columbia University; New York NY USA
| | - CV Ananth
- Biostatistics Coordinating Center; Department of Obstetrics and Gynecology; College of Physicians and Surgeons; Columbia University; New York NY USA
- Department of Epidemiology; Joseph L. Mailman School of Public Health; Columbia University; New York NY USA
| |
Collapse
|
18
|
Reck J, Schauer AM, VanderWaal Mills K, Bower R, Tritschler D, Perrone CA, Porter ME. The role of the dynein light intermediate chain in retrograde IFT and flagellar function in Chlamydomonas. Mol Biol Cell 2016; 27:2404-22. [PMID: 27251063 PMCID: PMC4966982 DOI: 10.1091/mbc.e16-03-0191] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/26/2016] [Indexed: 12/28/2022] Open
Abstract
The assembly of cilia and flagella depends on the activity of two microtubule motor complexes, kinesin-2 and dynein-2/1b, but the specific functions of the different subunits are poorly defined. Here we analyze Chlamydomonas strains expressing different amounts of the dynein 1b light intermediate chain (D1bLIC). Disruption of D1bLIC alters the stability of the dynein 1b complex and reduces both the frequency and velocity of retrograde intraflagellar transport (IFT), but it does not eliminate retrograde IFT. Flagellar assembly, motility, gliding, and mating are altered in a dose-dependent manner. iTRAQ-based proteomics identifies a small subset of proteins that are significantly reduced or elevated in d1blic flagella. Transformation with D1bLIC-GFP rescues the mutant phenotypes, and D1bLIC-GFP assembles into the dynein 1b complex at wild-type levels. D1bLIC-GFP is transported with anterograde IFT particles to the flagellar tip, dissociates into smaller particles, and begins processive retrograde IFT in <2 s. These studies demonstrate the role of D1bLIC in facilitating the recycling of IFT subunits and other proteins, identify new components potentially involved in the regulation of IFT, flagellar assembly, and flagellar signaling, and provide insight into the role of D1bLIC and retrograde IFT in other organisms.
Collapse
Affiliation(s)
- Jaimee Reck
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 R&D Systems, Minneapolis, MN 55413
| | - Alexandria M Schauer
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| | - Kristyn VanderWaal Mills
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 Anoka Technical College, Anoka, MN 55303
| | - Raqual Bower
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Douglas Tritschler
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Catherine A Perrone
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 Medtronic, Minneapolis, MN 55432
| | - Mary E Porter
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
19
|
Kennedy BC, Dimova JG, Dakoji S, Yuan LL, Gewirtz JC, Tran PV. Deletion of novel protein TMEM35 alters stress-related functions and impairs long-term memory in mice. Am J Physiol Regul Integr Comp Physiol 2016; 311:R166-78. [PMID: 27170659 DOI: 10.1152/ajpregu.00066.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/04/2016] [Indexed: 12/20/2022]
Abstract
The mounting of appropriate emotional and neuroendocrine responses to environmental stressors critically depends on the hypothalamic-pituitary-adrenal (HPA) axis and associated limbic circuitry. Although its function is currently unknown, the highly evolutionarily conserved transmembrane protein 35 (TMEM35) is prominently expressed in HPA circuitry and limbic areas, including the hippocampus and amygdala. To investigate the possible involvement of this protein in neuroendocrine function, we generated tmem35 knockout (KO) mice to characterize the endocrine, behavioral, electrophysiological, and proteomic alterations caused by deletion of the tmem35 gene. While capable of mounting a normal corticosterone response to restraint stress, KO mice showed elevated basal corticosterone accompanied by increased anxiety-like behavior. The KO mice also displayed impairment of hippocampus-dependent fear and spatial memories. Given the intact memory acquisition but a deficit in memory retention in the KO mice, TMEM35 is likely required for long-term memory consolidation. This conclusion is further supported by a loss of long-term potentiation in the Schaffer collateral-CA1 pathway in the KO mice. To identify putative molecular pathways underlying alterations in plasticity, proteomic analysis of synaptosomal proteins revealed lower levels of postsynaptic molecules important for synaptic plasticity in the KO hippocampus, including PSD95 and N-methyl-d-aspartate receptors. Pathway analysis (Ingenuity Pathway Analysis) of differentially expressed synaptic proteins in tmem35 KO hippocampus implicated molecular networks associated with specific cellular and behavioral functions, including decreased long-term potentiation, and increased startle reactivity and locomotion. Collectively, these data suggest that TMEM35 is a novel factor required for normal activity of the HPA axis and limbic circuitry.
Collapse
Affiliation(s)
- Bruce C Kennedy
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; Center for Neurobehavioral Development, University of Minnesota, Minneapolis, Minnesota
| | - Jiva G Dimova
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Srikanth Dakoji
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota; and
| | - Li-Lian Yuan
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Jonathan C Gewirtz
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota; Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; Center for Neurobehavioral Development, University of Minnesota, Minneapolis, Minnesota
| | - Phu V Tran
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota; and Center for Neurobehavioral Development, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
20
|
Tran PV, Kennedy BC, Pisansky MT, Won KJ, Gewirtz JC, Simmons RA, Georgieff MK. Prenatal Choline Supplementation Diminishes Early-Life Iron Deficiency-Induced Reprogramming of Molecular Networks Associated with Behavioral Abnormalities in the Adult Rat Hippocampus. J Nutr 2016; 146:484-93. [PMID: 26865644 PMCID: PMC4763487 DOI: 10.3945/jn.115.227561] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/10/2015] [Accepted: 01/05/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Early-life iron deficiency is a common nutrient deficiency worldwide. Maternal iron deficiency increases the risk of schizophrenia and autism in the offspring. Postnatal iron deficiency in young children results in cognitive and socioemotional abnormalities in adulthood despite iron treatment. The rat model of diet-induced fetal-neonatal iron deficiency recapitulates the observed neurobehavioral deficits. OBJECTIVES We sought to establish molecular underpinnings for the persistent psychopathologic effects of early-life iron deficiency by determining whether it permanently reprograms the hippocampal transcriptome. We also assessed the effects of maternal dietary choline supplementation on the offspring's hippocampal transcriptome to identify pathways through which choline mitigates the emergence of long-term cognitive deficits. METHODS Male rat pups were made iron deficient (ID) by providing pregnant and nursing dams an ID diet (4 g Fe/kg) from gestational day (G) 2 through postnatal day (PND) 7 and an iron-sufficient (IS) diet (200 g Fe/kg) thereafter. Control pups were provided IS diet throughout. Choline (5 g/kg) was given to half the pregnant dams in each group from G11 to G18. PND65 hippocampal transcriptomes were assayed by next generation sequencing (NGS) and analyzed with the use of knowledge-based Ingenuity Pathway Analysis. Real-time polymerase chain reaction was performed to validate a subset of altered genes. RESULTS Formerly ID rats had altered hippocampal expression of 619 from >10,000 gene loci sequenced by NGS, many of which map onto molecular networks implicated in psychological disorders, including anxiety, autism, and schizophrenia. There were significant interactions between iron status and prenatal choline treatment in influencing gene expression. Choline supplementation reduced the effects of iron deficiency, including those on gene networks associated with autism and schizophrenia. CONCLUSIONS Fetal-neonatal iron deficiency reprograms molecular networks associated with the pathogenesis of neurologic and psychological disorders in adult rats. The positive response to prenatal choline represents a potential adjunctive therapeutic supplement to the high-risk group.
Collapse
Affiliation(s)
| | | | | | - Kyoung-Jae Won
- Institute for Diabetes, Obesity and Metabolism, Department of Genetics, and
| | - Jonathan C Gewirtz
- Graduate Program in Neuroscience, and Department of Psychology, University of Minnesota, Minneapolis, MN
| | - Rebecca A Simmons
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
21
|
Chawla D. Fetal Effects of Maternal Iron Deficiency. Indian J Pediatr 2015; 82:1080-1. [PMID: 26474990 DOI: 10.1007/s12098-015-1904-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/07/2015] [Indexed: 11/25/2022]
|
22
|
Burns M, Muthupalani S, Ge Z, Wang TC, Bakthavatchalu V, Cunningham C, Ennis K, Georgieff M, Fox JG. Helicobacter pylori Infection Induces Anemia, Depletes Serum Iron Storage, and Alters Local Iron-Related and Adult Brain Gene Expression in Male INS-GAS Mice. PLoS One 2015; 10:e0142630. [PMID: 26575645 PMCID: PMC4648568 DOI: 10.1371/journal.pone.0142630] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/23/2015] [Indexed: 01/25/2023] Open
Abstract
Iron deficiency anemia (IDA) affects > 500 million people worldwide, and is linked to impaired cognitive development and function in children. Helicobacter pylori, a class 1 carcinogen, infects about half of the world’s population, thus creating a high likelihood of overlapping risk. This study determined the effect of H. pylori infection on iron homeostasis in INS-GAS mice. Two replicates of INS-GAS/FVB male mice (n = 9-12/group) were dosed with H. pylori (Hp) strain SS1 or sham dosed at 6–9 weeks of age, and were necropsied at 27–29 weeks of age. Hematologic and serum iron parameters were evaluated, as was gene expression in gastric and brain tissues. Serum ferritin was lower in Hp SS1-infected mice than uninfected mice (p < 0.0001). Infected mice had a lower red blood cell count (p<0.0001), hematocrit (p < 0.001), and hemoglobin concentration (p <0.0001) than uninfected mice. Relative expression of gastric hepcidin antimicrobial peptide (Hamp) was downregulated in mice infected with Hp SS1 compared to sham-dosed controls (p<0.001). Expression of bone morphogenic protein 4 (Bmp4), a growth factor upstream of hepcidin, was downregulated in gastric tissue of Hp SS1-infected mice (p<0.001). Hp SS1-infected mice had downregulated brain expression of tyrosine hydroxylase (Th) (p = 0.02). Expression of iron-responsive genes involved in myelination (myelin basic protein (Mbp) and proteolipid protein 2 (Plp2)) was downregulated in infected mice (p = 0.001 and p = 0.02). Expression of synaptic plasticity markers (brain derived neurotrophic factor 3 (Bdnf3), Psd95 (a membrane associated guanylate kinase), and insulin-like growth factor 1 (Igf1)) was also downregulated in Hp SS1-infected mice (p = 0.09, p = 0.04, p = 0.02 respectively). Infection of male INS-GAS mice with Hp SS1, without concurrent dietary iron deficiency, depleted serum ferritin, deregulated gastric and hepatic expression of iron regulatory genes, and altered iron-dependent neural processes. The use of Hp SS1-infected INS-GAS mice will be an appropriate animal model for further study of the effects of concurrent H. pylori infection and anemia on iron homeostasis and adult iron-dependent brain gene expression.
Collapse
Affiliation(s)
- Monika Burns
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Timothy C. Wang
- Department of Medicine, Columbia University, New York, New York, United States of America
| | - Vasudevan Bakthavatchalu
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Catriona Cunningham
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Kathleen Ennis
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Michael Georgieff
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
23
|
Abstract
OBJECTIVE Pregnancies complicated by diabetes mellitus impair offspring memory functions during infancy and early childhood. The purpose of this study was to investigate the long-term consequences of such pregnancies on memory and memory-related brain regions in 10-year-old children. METHODS Nineteen children of diabetic mothers (CDMs) and 35 children of nondiabetic mothers participated in this 10-year follow-up study. Memory performance was assessed using a continuous recognition memory task during which children made old/new judgments in response to pictures of concrete and abstract objects presented after different lags or delays. In addition, the volume of the hippocampal formation (HF) was measured using high-resolution structural images. RESULTS At 10 years of age, recognition memory performance of CDMs did not differ from children of nondiabetic mothers. Similarly, the volume of the HF did not differ between groups. However, the size of the HF in CDMs predicted the time those children needed to provide accurate responses in the continuous recognition memory task. CONCLUSIONS CDMs do not show memory impairments by 10 years of age, despite evidence for such impairments early in life. However, subtle differences in underlying neural processes may still be present. These results have important implications for long-term cognitive development of CDMs.
Collapse
|
24
|
Tran PV, Kennedy BC, Lien YC, Simmons RA, Georgieff MK. Fetal iron deficiency induces chromatin remodeling at the Bdnf locus in adult rat hippocampus. Am J Physiol Regul Integr Comp Physiol 2014; 308:R276-82. [PMID: 25519736 DOI: 10.1152/ajpregu.00429.2014] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fetal and subsequent early postnatal iron deficiency causes persistent impairments in cognitive and affective behaviors despite prompt postnatal iron repletion. The long-term cognitive impacts are accompanied by persistent downregulation of brain-derived neurotrophic factor (BDNF), a factor critical for hippocampal plasticity across the life span. This study determined whether early-life iron deficiency epigenetically modifies the Bdnf locus and whether dietary choline supplementation during late gestation reverses these modifications. DNA methylation and histone modifications were assessed at the Bdnf-IV promoter in the hippocampus of rats [at postnatal day (PND) 65] that were iron-deficient (ID) during the fetal-neonatal period. Iron deficiency was induced in rat pups by providing pregnant and nursing dams an ID diet (4 mg/kg Fe) from gestational day (G) 2 through PND7, after which iron deficiency was treated with an iron-sufficient (IS) diet (200 mg/kg Fe). This paradigm resulted in about 60% hippocampal iron loss on PND15 with complete recovery by PND65. For choline supplementation, pregnant rat dams were given dietary choline (5 g/kg) from G11 through G18. DNA methylation was determined by quantitative sequencing of bisulfite-treated DNA, revealing a small alteration at the Bdnf-IV promoter. Chromatin immunoprecipitation analysis showed increased HDAC1 binding accompanied by reduced binding of RNA polymerase II and USF1 at the Bdnf-IV promoter in formerly ID rats. These changes were correlated with altered histone methylations. Prenatal choline supplementation reverses these epigenetic modifications. Collectively, the findings identify epigenetic modifications as a potential mechanism to explicate the long-term repression of Bdnf following fetal and early postnatal iron deficiency.
Collapse
Affiliation(s)
- Phu V Tran
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota; Center for Neurobehavioral Development, University of Minnesota, Minneapolis, Minnesota;
| | - Bruce C Kennedy
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota; Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota; and
| | - Yu-Chin Lien
- Children's Hospital Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rebecca A Simmons
- Children's Hospital Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael K Georgieff
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota; Center for Neurobehavioral Development, University of Minnesota, Minneapolis, Minnesota; Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota; and
| |
Collapse
|
25
|
Baldridge GD, Baldridge AS, Witthuhn BA, Higgins L, Markowski TW, Fallon AM. Proteomic profiling of a robust Wolbachia infection in an Aedes albopictus mosquito cell line. Mol Microbiol 2014; 94:537-56. [PMID: 25155417 DOI: 10.1111/mmi.12768] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2014] [Indexed: 01/22/2023]
Abstract
Wolbachia pipientis, a widespread vertically transmitted intracellular bacterium, provides a tool for insect control through manipulation of host-microbe interactions. We report proteomic characterization of wStr, a Wolbachia strain associated with a strong cytoplasmic incompatibility phenotype in its native host, Laodelphax striatellus. In the Aedes albopictus C/wStr1 mosquito cell line, wStr maintains a robust, persistent infection. MS/MS analyses of gel bands revealed a protein 'footprint' dominated by Wolbachia-encoded chaperones, stress response and cell membrane proteins, including the surface antigen WspA, a peptidoglycan-associated lipoprotein and a 73 kDa outer membrane protein. Functional classifications and estimated abundance levels of 790 identified proteins suggested that expression, stabilization and secretion of proteins predominate over bacterial genome replication and cell division. High relative abundances of cysteine desulphurase, serine/glycine hydroxymethyl transferase, and components of the α-ketoglutarate dehydrogenase complex in conjunction with above average abundances of glutamate dehydrogenase and proline utilization protein A support Wolbachia genome-based predictions for amino acid metabolism as a primary energy source. wStr expresses 15 Vir proteins of a Type IV secretion system and its transcriptional regulator. Proteomic characterization of a robust insect-associated Wolbachia strain provides baseline information that will inform further development of in vitro protocols for Wolbachia manipulation.
Collapse
Affiliation(s)
- Gerald D Baldridge
- Department of Entomology, University of Minnesota, 1980 Folwell Ave., St. Paul, MN, 55108, USA
| | | | | | | | | | | |
Collapse
|
26
|
Striking while the iron is hot: Understanding the biological and neurodevelopmental effects of iron deficiency to optimize intervention in early childhood. CURRENT PEDIATRICS REPORTS 2014; 2:291-298. [PMID: 25512881 DOI: 10.1007/s40124-014-0058-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Prenatal and early postnatal iron deficiency (ID) is associated with long-term neurobiological alterations and disruptions in cognitive, social, and behavioral development. Early life ID is particularly detrimental as this is a period of rapid neurodevelopment. Even after iron supplementation, cognitive and social disruptions often persist in formerly iron deficient individuals. Observational studies of the acute and long-term effects of early life ID yield different results based on the timing of ID. Further, intervention studies demonstrate some improvement for certain domains but still show residual effects years later, which are dependent on the timing of ID and treatment. This review will cover the effects of ID during infancy and early childhood on brain structure and function, cognition, and behavior in relation to preclinical models of ID and sensitive periods of human brain development.
Collapse
|