1
|
Watashi K, Shionoya K, Kobayashi C, Morita T. Hepatitis B and D virus entry. Nat Rev Microbiol 2025; 23:318-331. [PMID: 39572840 DOI: 10.1038/s41579-024-01121-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 04/17/2025]
Abstract
Hepatitis B virus (HBV) entry is the initial step of viral infection, leading to the formation of covalently closed circular DNA, which is a molecular reservoir of viral persistence and a key obstacle for HBV cure. The restricted entry of HBV into specific cell types determines the nature of HBV, which has a narrow host range in tissues and species. Hepatitis D virus (HDV) shares viral surface antigens with HBV and thus follows a similar entry mechanism at its early stages. In late 2012, sodium taurocholate cotransporting polypeptide was discovered as an HBV and HDV entry receptor. Since then, the mechanisms of HBV and HDV entry have been extensively analysed. These analyses have expanded our understanding of HBV and HDV host tropism and have provided new strategies for the development of antiviral agents. Notably, the structures of sodium taurocholate cotransporting polypeptide and its interaction with the 2-48 amino acid region of viral preS1 have been recently solved. These findings will stimulate further entry studies. In this Review, we summarize current understanding of HBV and HDV entry and future perspectives.
Collapse
Affiliation(s)
- Koichi Watashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan.
| | - Kaho Shionoya
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Chisa Kobayashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Takeshi Morita
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
2
|
Shionoya K, Park JH, Ekimoto T, Takeuchi JS, Mifune J, Morita T, Ishimoto N, Umezawa H, Yamamoto K, Kobayashi C, Kusunoki A, Nomura N, Iwata S, Muramatsu M, Tame JRH, Ikeguchi M, Park SY, Watashi K. Structural basis for hepatitis B virus restriction by a viral receptor homologue. Nat Commun 2024; 15:9241. [PMID: 39455604 PMCID: PMC11511851 DOI: 10.1038/s41467-024-53533-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Macaque restricts hepatitis B virus (HBV) infection because its receptor homologue, NTCP (mNTCP), cannot bind preS1 on viral surface. To reveal how mNTCP loses the viral receptor function, we here solve the cryo-electron microscopy structure of mNTCP. Superposing on the human NTCP (hNTCP)-preS1 complex structure shows that Arg158 of mNTCP causes steric clash to prevent preS1 from embedding onto the bile acid tunnel of NTCP. Cell-based mutation analysis confirms that only Gly158 permitted preS1 binding, in contrast to robust bile acid transport among mutations. As the second determinant, Asn86 on the extracellular surface of mNTCP shows less capacity to restrain preS1 from dynamic fluctuation than Lys86 of hNTCP, resulting in unstable preS1 binding. Additionally, presence of long-chain conjugated-bile acids in the tunnel induces steric hindrance with preS1 through their tailed-chain. This study presents structural basis in which multiple sites in mNTCP constitute a molecular barrier to strictly restrict HBV.
Collapse
Affiliation(s)
- Kaho Shionoya
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Graduate School of Science and Technology, Tokyo University of Science, Chiba, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Jae-Hyun Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Toru Ekimoto
- Computational Life Science Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Junko S Takeuchi
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Junki Mifune
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takeshi Morita
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naito Ishimoto
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Haruka Umezawa
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Kenichiro Yamamoto
- Computational Life Science Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Chisa Kobayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Graduate School of Science and Technology, Tokyo University of Science, Chiba, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Atsuto Kusunoki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Norimichi Nomura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- RIKEN SPring-8 Center, Hyogo, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Infectious Disease Research, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Jeremy R H Tame
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Mitsunori Ikeguchi
- Computational Life Science Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
- HPC- and AI-driven Drug Development Platform Division, Center for Computational Science, RIKEN, Kanagawa, Japan
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan.
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.
- Graduate School of Science and Technology, Tokyo University of Science, Chiba, Japan.
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
3
|
Zhu Y, Zhang Q, Pan J, Li T, Wang H, Liu J, Qian L, Zhu T, Pang Y, Li Q, Chi Y. Evolutionary analysis of SLC10 family members and insights into function and expression regulation of lamprey NTCP. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1109-1122. [PMID: 38429619 DOI: 10.1007/s10695-024-01324-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/14/2024] [Indexed: 03/03/2024]
Abstract
The Na ( +)-taurocholate cotransporting polypeptide (NTCP) is a member of the solute carrier family 10 (SLC10), which consists of 7 members (SLC10a1-SLC10a7). NTCP is a transporter localized to the basolateral membrane of hepatocytes and is primarily responsible for the absorption of bile acids. Although mammalian NTCP has been extensively studied, little is known about the lamprey NTCP (L-NTCP). Here we show that L-NTCP follows the biological evolutionary history of vertebrates, with conserved domain, motif, and similar tertiary structure to higher vertebrates. L-NTCP is localized to the cell surface of lamprey primary hepatocytes by immunofluorescence analysis. HepG2 cells overexpressing L-NTCP also showed the distribution of L-NTCP on the cell surface. The expression profile of L-NTCP showed that the expression of NTCP is highest in lamprey liver tissue. L-NTCP also has the ability to transport bile acids, consistent with its higher vertebrate orthologs. Finally, using a farnesoid X receptor (FXR) antagonist, RT-qPCR and flow cytometry results showed that L-NTCP is negatively regulated by the nuclear receptor FXR. This study is important for understanding the adaptive mechanisms of bile acid metabolism after lamprey biliary atresia based on understanding the origin, evolution, expression profile, biological function, and expression regulation of L-NTCP.
Collapse
Affiliation(s)
- Yingying Zhu
- College of Life Sciences, Liaoning Normal University, Dalian116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Qipeng Zhang
- College of Life Sciences, Liaoning Normal University, Dalian116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Jilong Pan
- College of Life Sciences, Liaoning Normal University, Dalian116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Tiesong Li
- College of Life Sciences, Liaoning Normal University, Dalian116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Hao Wang
- College of Life Sciences, Liaoning Normal University, Dalian116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Jindi Liu
- College of Life Sciences, Liaoning Normal University, Dalian116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Lei Qian
- The Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ting Zhu
- College of Life Sciences, Liaoning Normal University, Dalian116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Yan Chi
- College of Life Sciences, Liaoning Normal University, Dalian116081, China.
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
4
|
Halkias C, Darby WG, Feltis BN, McIntyre P, Macrides TA, Wright PFA. Marine Bile Natural Products as Agonists of the TGR5 Receptor. JOURNAL OF NATURAL PRODUCTS 2021; 84:1507-1514. [PMID: 33904732 DOI: 10.1021/acs.jnatprod.0c01327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Agonism of the G protein-coupled bile acid receptor "Takeda G-protein receptor 5" (TGR5) aids in attenuating cholesterol accumulation due to atherosclerotic progression. Although mammalian bile compounds can activate TGR5, they are generally weak agonists, and more effective compounds need to be identified. In this study, two marine bile compounds (5β-scymnol and its sulfate) were compared with mammalian bile compounds deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA) using an in vitro model of TGR5 agonism. The response profiles of human embryonic kidney 293 cells (HEK293) transfected to overexpress TGR5 (HEK293-TGR5) and incubated with subcytotoxic concentrations of test compounds were compared to nontransfected HEK293 control cells using the specific calcium-binding fluorophore Fura-2AM to measure intracellular calcium [Ca2+]i release. Scymnol and scymnol sulfate caused a sustained increase in [Ca2+]i within TGR5 cells only, which was abolished by a specific inhibitor for Gαq protein (UBO-QIC). Sustained increases in [Ca2+]i were seen in both cell types with DCA exposure; this was unaffected by UBO-QIC, indicating that TGR5 activation was not involved. Exposure to UDCA did not alter [Ca2+]i, suggesting a lack of TGR5 bioactivity. These findings demonstrated that both scymnol and scymnol sulfate are novel agonists of TGR5 receptors, showing therapeutic potential for treating atherosclerosis.
Collapse
Affiliation(s)
- Christopher Halkias
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - William G Darby
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Bryce N Feltis
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Peter McIntyre
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
| | - Theodore A Macrides
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Paul F A Wright
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| |
Collapse
|