1
|
Mueller CA, Leão CCBDP, Atherley KR, Campos N, Eme J. Embryos and Tadpoles of the Eurythermal Baja California Chorus Frog ( Pseudacris hypochondriaca) Show Subtle Phenotypic Changes in Response to Daily Cycling Temperatures. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:354-370. [PMID: 39946730 DOI: 10.1086/733827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
AbstractEnvironmental thermal fluctuations influence fitness-related organismal traits. Investigations of ectothermic physiology must include cycling thermal regimes because such fluctuations are increasing with environmental change. We used the eurythermal Baja California chorus frog (Pseudacris hypochondriaca) to examine developmental responses to daily temperature cycles informed by recorded field conditions (15°C constant and cycles of 12.5°C⟷17.5°C and 10°C⟷20°C) and an extreme daily cycle (15°C⟷25°C). We measured survival, development rate, mass, and oxygen consumption rate (V̇o2) upon hatch. The 15°C⟷25°C daily cycle decreased time to hatch, produced larger hatchlings, and reduced mass-specific V̇o2. Lower mass-specific V̇o2 in 12.5°C⟷17.5°C hatchlings indicated a minor effect of daily temperature cycles with a common mean temperature (15°C). We also measured size, thermal tolerance, V̇o2, and swim speed at a common tadpole stage (hindlimb toe differentiation), with V̇o2 and swim speed measured at 10°C, 15°C, 20°C, and 25°C. The 15°C⟷25°C tadpoles were smaller but showed higher thermal tolerance, mass-specific V̇o2 at 25°C, and length-corrected sustained swim speed than the 15°C constant and 12.5°C⟷17.5°C tadpoles. The 15°C⟷25°C treatment with a higher mean temperature (∼20°C) drove most phenotypic differences in hatchlings and tadpoles. Compared to tadpoles in the 15°C constant treatment, tadpoles in the 10°C⟷20°C treatment had significantly higher thermal tolerance and moderate but statistically indistinguishable increases in swim speed, illustrating subtle effects of daily temperature cycles on tadpole phenotypes. Developing chorus frogs function well at and above maximum temperatures experienced naturally, and our results indicate a subtle "warmer is better" acclimation response for physiological traits in response to substantial daily thermal cycles.
Collapse
|
2
|
Brown S, Rivard GR, Gibson G, Currie S. Warming, stochastic diel thermal fluctuations affect physiological performance and gill plasticity in an amphibious mangrove fish. J Exp Biol 2024; 227:jeb246726. [PMID: 38904077 DOI: 10.1242/jeb.246726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Natural temperature variation in many marine ecosystems is stochastic and unpredictable, and climate change models indicate that this thermal irregularity is likely to increase. Temperature acclimation may be more challenging when conditions are highly variable and stochastic, and there is a need for empirical physiological data in these thermal environments. Using the hermaphroditic, amphibious mangrove rivulus (Kryptolebias marmoratus), we hypothesized that compared with regular, warming diel thermal fluctuations, stochastic warm fluctuations would negatively affect physiological performance. To test this, we acclimated fish to: (1) non-stochastic and (2) stochastic thermal fluctuations with a similar thermal load (27-35°C), and (3) a stable/consistent control temperature at the low end of the cycle (27°C). We determined that fecundity was reduced in both cycles, with reproduction ceasing in stochastic thermal environments. Fish acclimated to non-stochastic thermal cycles had growth rates lower than those of control fish. Exposure to warm, fluctuating cycles did not affect emersion temperature, and only regular diel cycles modestly increased critical thermal tolerance. We predicted that warm diel cycling temperatures would increase gill surface area. Notably, fish acclimated to either thermal cycle had a reduced gill surface area and increased intralamellar cell mass when compared with control fish. This decreased gill surface area with warming contrasts with what is observed for exclusively aquatic fish and suggests a preparatory gill response for emersion in these amphibious fish. Collectively, our data reveal the importance of considering stochastic thermal variability when studying the effects of temperature on fishes.
Collapse
Affiliation(s)
- Sarah Brown
- Department of Biology, Acadia University, Nova Scotia, B4P 2R6, Canada
| | - Gabrielle R Rivard
- Department of Biology, Acadia University, Nova Scotia, B4P 2R6, Canada
- Department of Biological Sciences, University of New Brunswick Saint John, New Brunswick, E2L 4L5, Canada
| | - Glenys Gibson
- Department of Biology, Acadia University, Nova Scotia, B4P 2R6, Canada
| | - Suzanne Currie
- Department of Biology, Acadia University, Nova Scotia, B4P 2R6, Canada
| |
Collapse
|
3
|
Burggren WW, Mendez-Sanchez JF. "Bet hedging" against climate change in developing and adult animals: roles for stochastic gene expression, phenotypic plasticity, epigenetic inheritance and adaptation. Front Physiol 2023; 14:1245875. [PMID: 37869716 PMCID: PMC10588650 DOI: 10.3389/fphys.2023.1245875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Animals from embryos to adults experiencing stress from climate change have numerous mechanisms available for enhancing their long-term survival. In this review we consider these options, and how viable they are in a world increasingly experiencing extreme weather associated with climate change. A deeply understood mechanism involves natural selection, leading to evolution of new adaptations that help cope with extreme and stochastic weather events associated with climate change. While potentially effective at staving off environmental challenges, such adaptations typically occur very slowly and incrementally over evolutionary time. Consequently, adaptation through natural selection is in most instances regarded as too slow to aid survival in rapidly changing environments, especially when considering the stochastic nature of extreme weather events associated with climate change. Alternative mechanisms operating in a much shorter time frame than adaptation involve the rapid creation of alternate phenotypes within a life cycle or a few generations. Stochastic gene expression creates multiple phenotypes from the same genotype even in the absence of environmental cues. In contrast, other mechanisms for phenotype change that are externally driven by environmental clues include well-understood developmental phenotypic plasticity (variation, flexibility), which can enable rapid, within-generation changes. Increasingly appreciated are epigenetic influences during development leading to rapid phenotypic changes that can also immediately be very widespread throughout a population, rather than confined to a few individuals as in the case of favorable gene mutations. Such epigenetically-induced phenotypic plasticity can arise rapidly in response to stressors within a generation or across a few generations and just as rapidly be "sunsetted" when the stressor dissipates, providing some capability to withstand environmental stressors emerging from climate change. Importantly, survival mechanisms resulting from adaptations and developmental phenotypic plasticity are not necessarily mutually exclusive, allowing for classic "bet hedging". Thus, the appearance of multiple phenotypes within a single population provides for a phenotype potentially optimal for some future environment. This enhances survival during stochastic extreme weather events associated with climate change. Finally, we end with recommendations for future physiological experiments, recommending in particular that experiments investigating phenotypic flexibility adopt more realistic protocols that reflect the stochastic nature of weather.
Collapse
Affiliation(s)
- Warren W. Burggren
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Jose Fernando Mendez-Sanchez
- Laboratorio de Ecofisiología Animal, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
4
|
Azzolini JL, Roderick TB, DeNardo DF. Dehydrated snakes reduce postprandial thermophily. J Exp Biol 2023; 226:jeb245925. [PMID: 37455645 DOI: 10.1242/jeb.245925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Transient thermophily in ectothermic animals is a common response during substantial physiological events. For example, ectotherms often elevate body temperature after ingesting a meal. In particular, the increase in metabolism during the postprandial response of pythons - known as specific dynamic action - is supported by a concurrent increase in preferred temperature. The objective of this study was to determine whether hydration state influences digestion-related behavioral thermophily. Sixteen (8 male and 8 female) Children's pythons (Antaresia childreni) with surgically implanted temperature data loggers were housed individually and provided with a thermal gradient of 25-45°C. Body temperature was recorded hourly beginning 6 days prior to feeding and for 18 days post-feeding, thus covering pre-feeding, postprandial and post-absorptive stages. Each snake underwent this 24 day trial twice, once when hydrated and once when dehydrated. Our results revealed a significant interaction between temperature preference, digestive stage and hydration state. Under both hydrated and dehydrated conditions, snakes similarly increased their body temperature shortly after consuming a meal, but during the later days of the postprandial stage, snakes selected significantly lower (∼1.5°C) body temperature when they were dehydrated compared with when they were hydrated. Our results demonstrate a significant effect of hydration state on postprandial thermophily, but the impact of this dehydration-induced temperature reduction on digestive physiology (e.g. passage time, energy assimilation) is unknown and warrants further study.
Collapse
Affiliation(s)
- Jill L Azzolini
- School of Life Sciences, Arizona State University, Tempe, AZ 85281-4501, USA
| | - Travis B Roderick
- School of Life Sciences, Arizona State University, Tempe, AZ 85281-4501, USA
| | - Dale F DeNardo
- School of Life Sciences, Arizona State University, Tempe, AZ 85281-4501, USA
| |
Collapse
|
5
|
Nancollas SJ, Todgham AE. The influence of stochastic temperature fluctuations in shaping the physiological performance of the California mussel, Mytilus californianus. J Exp Biol 2022; 225:276100. [PMID: 35749162 DOI: 10.1242/jeb.243729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/20/2022] [Indexed: 11/20/2022]
Abstract
Climate change is forecasted to increase temperature variability and stochasticity. Most of our understanding of thermal physiology of intertidal organisms has come from laboratory experiments that acclimate organisms to submerged conditions and steady-state increases in temperatures. For organisms experiencing the ebb and flow of tides with unpredictable low tide aerial temperatures, the reliability of reported tolerances and thus predicted responses to climate change requires incorporation of environmental complexity into empirical studies. Using the mussel Mytilus californianus, our study examined how stochasticity of the thermal regime influences physiological performance. Mussels were acclimated to either submerged conditions or a tidal cycle that included either predictable, unpredictable or no thermal stress during daytime low tide. Physiological performance was measured through anaerobic metabolism, energy stores and cellular stress mechanisms just before low tide, and cardiac responses during a thermal ramp. Both air exposure and stochasticity of temperature change were important in determining thermal performance. Glycogen content was highest in the mussels from the unpredictable treatment, but there was no difference in the expression of heat shock proteins between thermal treatments, suggesting that mussels prioritise energy reserves to deal with unpredictable low tide conditions. Mussels exposed to fluctuating thermal regimes had lower gill anaerobic metabolism, which could reflect increased metabolic capacity. Our results suggest that while thermal magnitude plays an important role in shaping physiological performance, other key elements of the intertidal environment complexity such as stochasticity, thermal variability, and thermal history are also important considerations for determining how species will respond to climate warming.
Collapse
Affiliation(s)
- Sarah J Nancollas
- Department of Animal Science, University of California Davis, Davis, CA USA
| | - Anne E Todgham
- Department of Animal Science, University of California Davis, Davis, CA USA
| |
Collapse
|
6
|
Moyen NE, Somero GN, Denny MW. Effects of heat acclimation on cardiac function in the intertidal mussel Mytilus californianus: can laboratory-based indices predict survival in the field? J Exp Biol 2022; 225:275332. [PMID: 35388895 PMCID: PMC9163446 DOI: 10.1242/jeb.243050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 03/22/2022] [Indexed: 12/30/2022]
Abstract
Thermal performance curves are commonly used to investigate the effects of heat acclimation on thermal tolerance and physiological performance. However, recent work indicates that the metrics of these curves heavily depend on experimental design and may be poor predictors of animal survival during heat events in the field. In intertidal mussels, cardiac thermal performance (CTP) tests have been widely used as indicators of animals' acclimation or acclimatization state, providing two indices of thermal responses: critical temperature (Tcrit; the temperature above which heart rate abruptly declines) and flatline temperature (Tflat; the temperature where heart rate ceases). Despite the wide use of CTP tests, it remains largely unknown how Tcrit and Tflat change within a single individual after heat acclimation, and whether changes in these indices can predict altered survival in the field. Here, we addressed these issues by evaluating changes in CTP indices in the same individuals before and after heat acclimation. For control mussels, merely reaching Tcrit was not lethal, whereas remaining at Tcrit for ≥10 min was lethal. Heat acclimation significantly increased Tcrit only in mussels with an initially low Tcrit (<35°C), but improved their survival time above Tcrit by 20 min on average. Tflat increased by ∼1.6°C with heat acclimation, but it is unlikely that increased Tflat improves survival in the field. In summary, Tcrit and Tflat per se may fall short of providing quantitative indices of thermal tolerance in mussels; instead, a combination of Tcrit and tolerance time at temperatures ≥Tcrit better defines changes in thermal tolerance with heat acclimation.
Collapse
|
7
|
McKenzie DJ, Zhang Y, Eliason EJ, Schulte PM, Claireaux G, Blasco FR, Nati JJH, Farrell AP. Intraspecific variation in tolerance of warming in fishes. JOURNAL OF FISH BIOLOGY 2021; 98:1536-1555. [PMID: 33216368 DOI: 10.1111/jfb.14620] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/09/2020] [Accepted: 11/17/2020] [Indexed: 05/12/2023]
Abstract
Intraspecific variation in key traits such as tolerance of warming can have profound effects on ecological and evolutionary processes, notably responses to climate change. The empirical evidence for three primary elements of intraspecific variation in tolerance of warming in fishes is reviewed. The first is purely mechanistic that tolerance varies across life stages and as fishes become mature. The limited evidence indicates strongly that this is the case, possibly because of universal physiological principles. The second is intraspecific variation that is because of phenotypic plasticity, also a mechanistic phenomenon that buffers individuals' sensitivity to negative impacts of global warming in their lifetime, or to some extent through epigenetic effects over successive generations. Although the evidence for plasticity in tolerance to warming is extensive, more work is required to understand underlying mechanisms and to reveal whether there are general patterns. The third element is intraspecific variation based on heritable genetic differences in tolerance, which underlies local adaptation and may define long-term adaptability of a species in the face of ongoing global change. There is clear evidence of local adaptation and some evidence of heritability of tolerance to warming, but the knowledge base is limited with detailed information for only a few model or emblematic species. There is also strong evidence of structured variation in tolerance of warming within species, which may have ecological and evolutionary significance irrespective of whether it reflects plasticity or adaptation. Although the overwhelming consensus is that having broader intraspecific variation in tolerance should reduce species vulnerability to impacts of global warming, there are no sufficient data on fishes to provide insights into particular mechanisms by which this may occur.
Collapse
Affiliation(s)
- David J McKenzie
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Yangfan Zhang
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guy Claireaux
- Université de Bretagne Occidentale, LEMAR (UMR 6539), Centre Ifremer de Bretagne, Plouzané, France
| | - Felipe R Blasco
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
- Joint Graduate Program in Physiological Sciences, Federal University of São Carlos - UFSCar/São Paulo State University, UNESP Campus Araraquara, Araraquara, Brazil
| | - Julie J H Nati
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Thermal tolerance and routine oxygen consumption of convict cichlid, Archocentrus nigrofasciatus, acclimated to constant temperatures (20 °C and 30 °C) and a daily temperature cycle (20 °C → 30 °C). J Comp Physiol B 2021; 191:479-491. [PMID: 33590285 DOI: 10.1007/s00360-021-01341-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/09/2020] [Accepted: 01/13/2021] [Indexed: 01/21/2023]
Abstract
Organismal temperature tolerance and metabolic responses are correlated to recent thermal history, but responses to thermal variability are less frequently assessed. There is great interest in whether organisms that experience greater thermal variability can gain metabolic or tolerance advantages through phenotypic plasticity. We compared thermal tolerance and routine aerobic metabolism of Convict cichlid acclimated for 2 weeks to constant 20 °C, constant 30 °C, or a daily cycle of 20 → 30 °C (1.7 °C/h). Acute routine mass-specific oxygen consumption ([Formula: see text]O2) and critical thermal maxima/minima (CTMax/CTMin) were compared between groups, with cycle-acclimated fish sampled from the daily minimum (20 °C, 0900 h) and maximum (30 °C, 1600 h). Cycle-acclimated fish demonstrated statistically similar CTMax at the daily minimum and maximum (39.0 °C, 38.6 °C) but distinct CTMin values, with CTMin 2.4 °C higher for fish sampled from the daily 30 °C maximum (14.8 °C) compared to the daily 20 °C minimum (12.4 °C). Measured acutely at 30 °C, [Formula: see text]O2 decreased with increasing acclimation temperature; 20 °C acclimated fish had an 85% higher average [Formula: see text]O2 than 30 °C acclimated fish. Similarly, acute [Formula: see text]O2 at 20 °C was 139% higher in 20 °C acclimated fish compared to 30 °C acclimated fish. Chronic [Formula: see text]O2 was measured in separate fish continually across the 20 → 30 °C daily cycle for all 3 acclimation groups. Chronic [Formula: see text]O2 responses were very similar between groups between average individual hourly values, as temperatures increased or decreased (1.7 °C/h). Acute [Formula: see text]O2 and thermal tolerance responses highlight "classic" trends, but dynamic, chronic trials suggest acclimation history has little effect on the relative change in oxygen consumption during a thermal cycle. Our results strongly suggest that the minimum and maximum temperatures experienced more strongly influence fish physiology, rather than the thermal cycle itself. This research highlights the importance of collecting data in both cycling and static (constant) thermal conditions, and further research should seek to understand whether ectotherm metabolism does respond uniquely to fluctuating temperatures.
Collapse
|
9
|
Moyen NE, Crane RL, Somero GN, Denny MW. A single heat-stress bout induces rapid and prolonged heat acclimation in the California mussel, Mytilus californianus. Proc Biol Sci 2020; 287:20202561. [PMID: 33290677 DOI: 10.1098/rspb.2020.2561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Climate change is not only causing steady increases in average global temperatures but also increasing the frequency with which extreme heating events occur. These extreme events may be pivotal in determining the ability of organisms to persist in their current habitats. Thus, it is important to understand how quickly an organism's heat tolerance can be gained and lost relative to the frequency with which extreme heating events occur in the field. We show that the California mussel, Mytilus californianus-a sessile intertidal species that experiences extreme temperature fluctuations and cannot behaviourally thermoregulate-can quickly (in 24-48 h) acquire improved heat tolerance after exposure to a single sublethal heat-stress bout (2 h at 30 or 35°C) and then maintain this improved tolerance for up to three weeks without further exposure to elevated temperatures. This adaptive response improved survival rates by approximately 75% under extreme heat-stress bouts (2 h at 40°C). To interpret these laboratory findings in an ecological context, we evaluated 4 years of mussel body temperatures recorded in the field. The majority (approx. 64%) of consecutive heat-stress bouts were separated by 24-48 h, but several consecutive heat bouts were separated by as much as 22 days. Thus, the ability of M. californianus to maintain improved heat tolerance for up to three weeks after a single sublethal heat-stress bout significantly improves their probability of survival, as approximately 33% of consecutive heat events are separated by 3-22 days. As a sessile animal, mussels likely evolved the capability to rapidly gain and slowly lose heat tolerance to survive the intermittent, and often unpredictable, heat events in the intertidal zone. This adaptive strategy will likely prove beneficial under the extreme heat events predicted with climate change.
Collapse
Affiliation(s)
- Nicole E Moyen
- Hopkins Marine Station, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Rachel L Crane
- Hopkins Marine Station, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - George N Somero
- Hopkins Marine Station, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Mark W Denny
- Hopkins Marine Station, Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Burggren WW. Phenotypic Switching Resulting From Developmental Plasticity: Fixed or Reversible? Front Physiol 2020; 10:1634. [PMID: 32038303 PMCID: PMC6987144 DOI: 10.3389/fphys.2019.01634] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022] Open
Abstract
The prevalent view of developmental phenotypic switching holds that phenotype modifications occurring during critical windows of development are "irreversible" - that is, once produced by environmental perturbation, the consequent juvenile and/or adult phenotypes are indelibly modified. Certainly, many such changes appear to be non-reversible later in life. Yet, whether animals with switched phenotypes during early development are unable to return to a normal range of adult phenotypes, or whether they do not experience the specific environmental conditions necessary for them to switch back to the normal range of adult phenotypes, remains an open question. Moreover, developmental critical windows are typically brief, early periods punctuating a much longer period of overall development. This leaves open additional developmental time for reversal (correction) of a switched phenotype resulting from an adverse environment early in development. Such reversal could occur from right after the critical window "closes," all the way into adulthood. In fact, examples abound of the capacity to return to normal adult phenotypes following phenotypic changes enabled by earlier developmental plasticity. Such examples include cold tolerance in the fruit fly, developmental switching of mouth formation in a nematode, organization of the spinal cord of larval zebrafish, camouflage pigmentation formation in larval newts, respiratory chemosensitivity in frogs, temperature-metabolism relations in turtles, development of vascular smooth muscle and kidney tissue in mammals, hatching/birth weight in numerous vertebrates,. More extreme cases of actual reversal (not just correction) occur in invertebrates (e.g., hydrozoans, barnacles) that actually 'backtrack' along normal developmental trajectories from adults back to earlier developmental stages. While developmental phenotypic switching is often viewed as a permanent deviation from the normal range of developmental plans, the concept of developmental phenotypic switching should be expanded to include sufficient plasticity allowing subsequent correction resulting in the normal adult phenotype.
Collapse
Affiliation(s)
- Warren W. Burggren
- Developmental Integrative Biology, Department of Biological Sciences, University of North Texas, Denton, TX, United States
| |
Collapse
|
11
|
Bautista NM, Burggren WW. Parental stressor exposure simultaneously conveys both adaptive and maladaptive larval phenotypes through epigenetic inheritance in the zebrafish ( Danio rerio). ACTA ACUST UNITED AC 2019; 222:jeb.208918. [PMID: 31416900 DOI: 10.1242/jeb.208918] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/06/2019] [Indexed: 12/27/2022]
Abstract
Genomic modifications occur slowly across generations, whereas short-term epigenetic inheritance of adaptive phenotypes may be immediately beneficial to large numbers of individuals, acting as a bridge for survival when adverse environments occur. In the present study, crude oil was used as an example of an environmental stressor. Adult zebrafish (P0) were dietarily exposed for 3 weeks to no, low, medium or high concentrations of crude oil. The F1 offspring obtained from the P0 groups were then assessed for transgenerational epigenetic transfer of oil-induced phenotypes. The exposure did not alter body length, body and organ mass or condition factor in the P0 groups. However, the P0 fecundity of both sexes decreased in proportion to the amount of oil fed. The F1 larvae from each P0 were then exposed from 3 hpf to 5 dpf to oil in their ambient water. Remarkably, F1 larvae derived from oil-exposed parents, when reared in oiled water, showed a 30% enhanced survival compared with controls (P<0.001). Unexpectedly, from day 3 to 5 of exposure, F1 larvae from oil-exposed parents showed poorer survival in clean water (up to 55% decreased survival). Additionally, parental oil exposure induced bradycardia (presumably maladaptive) in F1 larvae in both clean and oiled water. We conclude that epigenetic transgenerational inheritance can lead to an immediate and simultaneous inheritance of both beneficial and maladaptive traits in a large proportion of the F1 larvae. The adaptive responses may help fish populations survive when facing transient environmental stressors.
Collapse
Affiliation(s)
- Naim M Bautista
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA
| | - Warren W Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA
| |
Collapse
|
12
|
Fabrício-Neto A, Madelaire CB, Gomes FR, Andrade DV. Exposure to fluctuating temperatures leads to reduced immunity and to stress response in rattlesnakes. J Exp Biol 2019; 222:jeb.208645. [DOI: 10.1242/jeb.208645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/23/2019] [Indexed: 01/17/2023]
Abstract
Ectothermic organisms often experience considerable variation in their body temperature throughout the circadian cycle. However, studies focusing on the measurement of physiological traits are usually performed under constant temperature regimes. This mismatch between thermal exposure in the field and experimental conditions could act as a stressor agent, since physiological functions are strongly influenced by temperature. Herein, we asked the question whether constant thermal regimes would cause a stress response and impact the immunity of the South American rattlesnake (Crotalus durissus) when compared to a fluctuating thermal regime. We addressed this question by determining heterophil:lymphocyte ratio (H:L), plasma bacteria killing ability (BKA) and corticosterone levels (CORT) in snakes kept under a constant temperature regime at 30°C, and under a fluctuating regime that oscillated between 25°C at nighttime to 35°C at daytime. The experiments had a mirrored design, in which half of the snakes were subjected to a fluctuating-to-constant treatment, while the other half was exposed to a constant-to-fluctuating treatment. The shift from constant to fluctuating thermal regime was accompanied by an increase in plasma CORT levels indicating the activation of a stress response. Exposure to a fluctuating thermal regime at the onset of the experiments induced a decrease in the BKA of rattlesnakes. H:L was not affected by treatments and, therefore, the shift between thermal regimes seems to have acted as a low intensity stressor. Our results suggest that the removal from temperatures close to the snakés preferred body temperature triggers a stress response in rattlesnakes.
Collapse
Affiliation(s)
- Ailton Fabrício-Neto
- Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista, 13506-900, Rio Claro, São Paulo, Brazil
| | - Carla B. Madelaire
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, São Paulo, Brazil
| | - Fernando R. Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, São Paulo, Brazil
| | - Denis V. Andrade
- Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista, 13506-900, Rio Claro, São Paulo, Brazil
| |
Collapse
|