1
|
Jaffal S, Khalil R. Targeting nerve growth factor for pain relief: pros and cons. Korean J Pain 2024; 37:288-298. [PMID: 39322310 PMCID: PMC11450303 DOI: 10.3344/kjp.24235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
Nerve growth factor (NGF) is a neurotrophic protein that has crucial roles in survival, growth and differentiation. It is expressed in neuronal and non-neuronal tissues. NGF exerts its effects via two types of receptors including the high affinity receptor, tropomyosin receptor kinase A and the low affinity receptor p75 neurotrophin receptor highlighting the complex signaling pathways that underlie the roles of NGF. In pain perception and transmission, multiple studies shed light on the effects of NGF on different types of pain including inflammatory, neuropathic, cancer and visceral pain. Also, the binding of NGF to its receptors increases the availability of many nociceptive receptors such as transient receptor potential vanilloid 1, transient receptor potential ankyrin 1, N-methyl-D-aspartic acid, and P2X purinoceptor 3 as well as nociceptive transmitters such as substance P and calcitonin gene-related peptide. The role of NGF in pain has been documented in pre-clinical and clinical studies. This review aims to shed light on the role of NGF and its signaling in different types of pain.
Collapse
Affiliation(s)
- Sahar Jaffal
- Department of Biotechnology and Genetic Engineering, Faculty of Science, Philadelphia University, Amman, Jordan
| | - Raida Khalil
- Department of Biotechnology and Genetic Engineering, Faculty of Science, Philadelphia University, Amman, Jordan
| |
Collapse
|
2
|
Zhou JZ, Chen H, Xu WL, Fu Z, Zhou S, Zhu WJ, Zhang ZH. Auricular Vagal Nerve Stimulation Inhibited Central Nerve Growth Factor/Tropomyosin Receptor Kinase A/Phospholipase C-Gamma Signaling Pathway in Functional Dyspepsia Model Rats With Gastric Hypersensitivity. Neuromodulation 2024; 27:273-283. [PMID: 36801128 DOI: 10.1016/j.neurom.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 02/18/2023]
Abstract
OBJECTIVE Functional dyspepsia (FD), which has a complicated pathophysiologic process, is a common functional gastrointestinal disease. Gastric hypersensitivity is the key pathophysiological factor in patients with FD with chronic visceral pain. Auricular vagal nerve stimulation (AVNS) has the therapeutic effect of reducing gastric hypersensitivity by regulating the activity of the vagus nerve. However, the potential molecular mechanism is still unclear. Therefore, we investigated the effects of AVNS on the brain-gut axis through the central nerve growth factor (NGF)/ tropomyosin receptor kinase A (TrkA)/phospholipase C-gamma (PLC-γ) signaling pathway in FD model rats with gastric hypersensitivity. MATERIALS AND METHODS We established the FD model rats with gastric hypersensitivity by means of colon administration of trinitrobenzenesulfonic acid on ten-day-old rat pups, whereas the control rats were given normal saline. AVNS, sham AVNS, K252a (an inhibitor of TrkA, intraperitoneally), and K252a + AVNS were performed on eight-week-old model rats for five consecutive days. The therapeutic effect of AVNS on gastric hypersensitivity was determined by the measurement of abdominal withdrawal reflex response to gastric distention. NGF in gastric fundus and NGF, TrkA, PLC-γ, and transient receptor potential vanilloid 1 (TRPV1) in the nucleus tractus solitaries (NTS) were detected separately by polymerase chain reaction, Western blot, and immunofluorescence tests. RESULTS It was found that a high level of NGF in gastric fundus and an upregulation of the NGF/TrkA/PLC-γ signaling pathway in NTS were manifested in model rats. Meanwhile, both AVNS treatment and the administration of K252a not only decreased NGF messenger ribonucleic acid (mRNA) and protein expressions in gastric fundus but also reduced the mRNA expressions of NGF, TrkA, PLC-γ, and TRPV1 and inhibited the protein levels and hyperactive phosphorylation of TrkA/PLC-γ in NTS. In addition, the expressions of NGF and TrkA proteins in NTS were decreased significantly after the immunofluorescence assay. The K252a + AVNS treatment exerted a more sensitive effect on regulating the molecular expressions of the signal pathway than did the K252a treatment. CONCLUSION AVNS can regulate the brain-gut axis effectively through the central NGF/TrkA/PLC-γ signaling pathway in the NTS, which suggests a potential molecular mechanism of AVNS in ameliorating visceral hypersensitivity in FD model rats.
Collapse
Affiliation(s)
- Jing-Zhu Zhou
- Department of Acupuncture and Moxibustion, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| | - Huan Chen
- Department of Acupuncture and Moxibustion, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Wan-Li Xu
- Department of Acupuncture and Moxibustion, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Zhe Fu
- Department of Acupuncture and Moxibustion, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Shuai Zhou
- Department of Acupuncture and Moxibustion, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Wei-Jian Zhu
- Department of Acupuncture and Moxibustion, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Zhao-Hui Zhang
- Department of Acupuncture and Moxibustion, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Choi WG, Choi NR, Park EJ, Kim BJ. A study of the therapeutic mechanism of Jakyakgamcho-Tang about functional dyspepsia through network pharmacology research. Int J Med Sci 2022; 19:1824-1834. [PMID: 36438925 PMCID: PMC9682510 DOI: 10.7150/ijms.77451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/05/2022] [Indexed: 01/25/2023] Open
Abstract
Herbal medicines have traditionally been used as an effective digestive medicine. However, compared to the effectiveness of Herbal medicines, the treatment mechanism has not been fully identified. To solve this problem, a system-level treatment mechanism of Jakyakgamcho-Tang (JGT), which is used for the treatment of functional dyspepsia (FD), was identified through a network pharmacology study. The two components, paeoniae radix alba and licorice constituting JGT were analyzed based on broad information on chemical and pharmacological properties, confirming 84 active chemical compounds and 84 FD-related targets. The JGT target confirmed the relationship with the regulation of various biological movements as follows: cellular behaviors of muscle and cytokine, calcium ion concentration and homeostasis, calcium- and cytokine-mediated signalings, drug, inflammatory response, neuronal cells, oxidative stress and response to chemical. And the target is enriched in variety FD-related signaling as follows: MAPK, Toll-like receptor, NOD-like receptor, PI3K-Akt, Apoptosis and TNF signaling pathway. These data give a new approach to identifying the molecular mechanisms underlying the digestive effect of JGT.
Collapse
Affiliation(s)
- Woo-gyun Choi
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Na Ri Choi
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Eun-Jung Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
4
|
Jin X, Gharibani P, Yin J, Chen JDZ. Neuro-Immune Modulation Effects of Sacral Nerve Stimulation for Visceral Hypersensitivity in Rats. Front Neurosci 2021; 15:645393. [PMID: 34276280 PMCID: PMC8282909 DOI: 10.3389/fnins.2021.645393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/01/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Visceral hypersensitivity (VH) is one of the underlying pathophysiologies of irritable bowel syndrome. Mast cell overactivation has been found to be one of the main causes of VH. We investigated the effects and mechanisms of actions of sacral nerve stimulation (SNS) on visceral pain in a rodent model of VH. Methods: The VH was established by an intrarectal infusion of AA in 10-day-old pups. Rats were chronically implanted with electrodes for SNS and recording electromyogram (EMG) and electrocardiogram. The acute study was performed in 2-randomized sessions with SNS (14 Hz, 330 μs, 40% motor threshold or MT, 30 min) or sham-SNS. Later on, rats were randomized into SNS/sham-SNS groups and a chronic study was performed with 2 h-daily SNS or sham-SNS for 21 days. Visceromotor reflexes were assessed by abdominal EMG and withdrawal reflex (AWR). Colon tissues were collected to study colonic acetylcholine (ACh), the enteric neurons (ChAT, nNOS, and PGP9.5), mast cells activity [Tryptase, prostaglandins E2 (PGE2), and cyclooxygenases-2 (COX2)] and pain markers [nerve growth factor (NGF) and Sub-P]. Key Results: Sacral nerve stimulation significantly improved visceromotor reflexes assessed by the EMG and AWR, compared with sham-SNS. SNS normalized the protein expressions of ChAT and nNOS and regulated mast cells activity by downregulating Tryptase, COX2, and PGE2. Neonatal AA administration upregulated NGF and Sub-P; chronic SNS significantly decreased these pain biomarkers. Concurrently, chronic SNS increased ACh in colon tissues and vagal efferent activity. Conclusions: Sacral nerve stimulation reduces VH in rats and this ameliorating effect might be attributed to the suppression of mast cell overactivation in the colon tissue via the modulation of autonomic nervous system functions.
Collapse
Affiliation(s)
- Xue Jin
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Payam Gharibani
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jieyun Yin
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jiande D Z Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
Gao L, Feng A, Yue P, Liu Y, Zhou Q, Zang Q, Teng J. LncRNA BC083743 Promotes the Proliferation of Schwann Cells and Axon Regeneration Through miR-103-3p/BDNF After Sciatic Nerve Crush. J Neuropathol Exp Neurol 2021; 79:1100-1114. [PMID: 32888019 DOI: 10.1093/jnen/nlaa069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/28/2020] [Accepted: 06/18/2020] [Indexed: 01/10/2023] Open
Abstract
To investigate the underlying mechanism of lncRNA BC083743 in regulating the proliferation of Schwann cells (SCs) and axon regeneration after sciatic nerve crush (SNC), we used a rat model. Sciatic function index and the atrophy ratio of gastrocnemius muscle were evaluated. The relationship among BC083743, miR-103-3p, and brain-derived neurotrophic factor (BDNF) and their regulation mechanism in the repair of SNC were investigated using in vivo and in vitro experiments. The expression changes of BC083743 were positively associated with that of BDNF following SNC, but the expression changes of miR-103-3p were inversely associated with that of BDNF. The SC proliferation and BDNF expression could be promoted by overexpression of BC083743, while they were inhibited by a miR-103-3p mimic. In addition, BC083743 interacted with and regulated miR-103-3p, thereby promoting BDNF expression and SC proliferation. BC083743 overexpression also promoted axon regeneration through miR-103-3p. In vivo experiments also indicated that BC083743 overexpression promoted the repair of SNC. In conclusion, LncRNA BC083743 promotes SC proliferation and the axon regeneration through miR-103-3p/BDNF after SNC.
Collapse
Affiliation(s)
- Lin Gao
- Department of Neurological Intensive Care Unit
| | - Aiqin Feng
- Department of Clinical Medicine Laboratory, The Affiliated Huaihe Hospital of Henan University, Kaifeng, China
| | - Peijian Yue
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yue Liu
- Department of Neurological Intensive Care Unit
| | - Qiaoyu Zhou
- Department of Neurological Intensive Care Unit
| | | | | |
Collapse
|
6
|
Jiang L, Zhang N, Zhang S, Chen JD. Sacral nerve stimulation with optimized parameters improves visceral hypersensitivity in rats mediated via the autonomic pathway. Mol Pain 2020; 15:1744806919880651. [PMID: 31530213 PMCID: PMC6775554 DOI: 10.1177/1744806919880651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The purpose of this study was to determine effects and mechanisms of sacral nerve stimulation (SNS) on visceral hypersensitivity in rodent models of colonic hypersensitivity. SNS was performed with different sets of parameters for 30 min in six regular rats. Visceral sensitivity was assessed by the measurement of electromyogram and abdominal withdrawal reflex before and after SNS. Real/sham SNS with optimized parameters was performed in 8 restraint stress-induced visceral hypersensitivity rats and 10 neonatal acetic acid-treated colonic hypersensitivity rats; acute effect of SNS was assessed by comparing electromyogram and heart rate variability. Neonatal acetic acid-treated rats were treated by SNS (n = 10) or sham-SNS (n = 10) daily for seven days for the assessment of the chronic effect of SNS. (1) When the stimulation amplitude was reduced from 90% of motor threshold to 65% or 40% motor threshold, SNS with certain parameters showed an inhibitory effect on abdominal withdrawal reflex. The best stimulation parameters for SNS were “14 Hz, 330 µs, and 40% motor threshold.” (2) SNS significantly reduced visceral hypersensitivity and improved autonomic function in restraint stress-induced rats. The inhibitory effect was blocked by naloxone. (3)Acute and chronic SNS significantly reduced visceral hypersensitivity and improved autonomic function in acetic acid-treated rats. SNS with reduced stimulation strength may be used to treat colonic hypersensitivity and the best stimulation parameters seem to be “14 Hz, 330 µs and 40% motor threshold”. SNS with optimized parameters improved visceral hypersensitivity in rodent models of colonic hypersensitivity mediated via the autonomic and opioid mechanisms.
Collapse
Affiliation(s)
- Liuqin Jiang
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nina Zhang
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shengai Zhang
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiande Dz Chen
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Bulleyaconitine A Inhibits Visceral Nociception and Spinal Synaptic Plasticity through Stimulation of Microglial Release of Dynorphin A. Neural Plast 2020; 2020:1484087. [PMID: 32565774 PMCID: PMC7262664 DOI: 10.1155/2020/1484087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/14/2020] [Accepted: 03/11/2020] [Indexed: 12/20/2022] Open
Abstract
Background Visceral pain is one of the most common types of pain and particularly in the abdomen is associated with gastrointestinal diseases. Bulleyaconitine A (BAA), isolated from Aconitum bulleyanum, is prescribed in China to treat chronic pain. The present study is aimed at evaluating the mechanisms underlying BAA visceral antinociception. Methods The rat model of chronic visceral hypersensitivity was set up by colonic perfusion of 2,4,6-trinitrobenzene sulfonic acid (TNBS) on postnatal day 10 with coapplication of heterotypic intermittent chronic stress (HeICS). Results The rat model of chronic visceral hypersensitivity exhibited remarkable abdominal withdrawal responses and mechanical hyperalgesia in hind paws, which were dose-dependently attenuated by single subcutaneous of administration of BAA (30 and 90 μg/kg). Pretreatment with the microglial inhibitor minocycline, dynorphin A antiserum, and κ-opioid receptor antagonist totally blocked BAA-induced visceral antinociception and mechanical antihyperalgesia. Spontaneous excitatory postsynaptic currents (sEPSCs) in spinal dorsal horn lamina II neurons were recorded by using whole-cell patch clamp. Its frequency (but not amplitude) from TNBS-treated rats was remarkably higher than that from naïve rats. BAA (1 μM) significantly reduced the frequency of sEPSCs from TNBS-treated rats but not naïve rats. BAA-inhibited spinal synaptic plasticity was blocked by minocycline, the dynorphin A antiserum, and κ-opioid receptor antagonist. Dynorphin A also inhibited spinal synaptic plasticity in a κ-opioid receptor-dependent manner. Conclusions These results suggest that BAA produces visceral antinociception by stimulating spinal microglial release of dynorphin A, which activates presynaptic κ-opioid receptors in afferent neurons and inhibits spinal synaptic plasticity, highlighting a novel interaction mode between microglia and neurons.
Collapse
|
8
|
Ouyang X, Li S, Zhou J, Chen JDZ. Electroacupuncture Ameliorates Gastric Hypersensitivity via Adrenergic Pathway in a Rat Model of Functional Dyspepsia. Neuromodulation 2020; 23:1137-1143. [DOI: 10.1111/ner.13154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/27/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaojun Ouyang
- Veterans Research and Education Foundation, Oklahoma City VA Health Care System OK USA
- Institute of Geriatrics, Jiangsu Province Official Hospital Nanjing Jiangsu China
| | - Shiying Li
- Veterans Research and Education Foundation, Oklahoma City VA Health Care System OK USA
- Division of Gastroenterology and Hepatology Johns Hopkins University Baltimore MD USA
| | - Jingzhu Zhou
- Veterans Research and Education Foundation, Oklahoma City VA Health Care System OK USA
- Department of Acupuncture and Moxibustion The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Jiande DZ Chen
- Division of Gastroenterology and Hepatology Johns Hopkins University Baltimore MD USA
| |
Collapse
|
9
|
Kline KT, Lian H, Zhong XS, Luo X, Winston JH, Cong Y, Savidge TC, Dashwood RH, Powell DW, Li Q. Neonatal Injury Increases Gut Permeability by Epigenetically Suppressing E-Cadherin in Adulthood. THE JOURNAL OF IMMUNOLOGY 2019; 204:980-989. [PMID: 31889022 DOI: 10.4049/jimmunol.1900639] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022]
Abstract
Altered intestinal epithelial integrity is an important susceptibility trait in inflammatory bowel disease (IBD), and early life stressors are reported to contribute to this disease susceptibility in adulthood. To identify disease mechanisms associated with early-life trauma that exacerbate IBD in adulthood, we used a "double-hit" neonatal inflammation (NI) and adult inflammation (AI) model that exhibits more severe mucosal injury in the colon later in life. In this study, we explore the underlying mechanisms of this aggravated injury. In rats exposed to both NI and AI, we found sustained increases in colonic permeability accompanied by significantly attenuated expression of the epithelial junction protein E-cadherin. Quantitative RT-PCR revealed a decreased Cdh1 (gene of E-cadherin) mRNA expression in NI + AI rats compared with NI or AI rats. Next, we performed microRNA microarrays to identify potential regulators of E-cadherin in NI + AI rats. We confirmed the overexpression of miR-155, a predicted regulator of E-cadherin, and selected it for further analysis based on reported significance in human IBD. Using ingenuity pathway analysis software, the targets and related canonical pathway of miR-155 were analyzed. Mechanistic studies identified histone hyperacetylation at the Mir155 promoter in NI + AI rats, concomitant with elevated RNA polymerase II binding. In vitro, E-cadherin knockdown markedly increased epithelial cell permeability, as did overexpression of miR-155 mimics, which significantly suppressed E-cadherin protein. In vivo, NI + AI colonic permeability was significantly reversed with administration of miR-155 inhibitor rectally. Our collective findings indicate that early-life inflammatory stressors trigger a significant and sustained epithelial injury by suppressing E-cadherin through epigenetic mechanisms.
Collapse
Affiliation(s)
- Kevin T Kline
- Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555
| | - Haifeng Lian
- Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555.,Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou 256600, China
| | - Xiaoying S Zhong
- Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555
| | - Xiuju Luo
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410083, China
| | - John H Winston
- Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555
| | - Yingzi Cong
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555
| | - Tor C Savidge
- Texas Children's Microbiome Center, Baylor College of Medicine, Houston, TX 77030; and
| | - Roderick H Dashwood
- Center for Epigenetics and Disease Prevention, Texas A&M College of Medicine, Houston, TX 77807
| | - Don W Powell
- Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555
| | - Qingjie Li
- Division of Gastroenterology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555;
| |
Collapse
|
10
|
Nerve growth factor and Tropomyosin receptor kinase A are increased in the gastric mucosa of patients with functional dyspepsia. BMC Gastroenterol 2019; 19:221. [PMID: 31856738 PMCID: PMC6924065 DOI: 10.1186/s12876-019-1133-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 12/02/2019] [Indexed: 01/19/2023] Open
Abstract
Background Nerve growth factor (NGF) and enteric glial cells (EGCs) are associated with visceral hypersensitivity and gastrointestinal motility disorder, which may represent the pathogenesis of functional dyspepsia (FD). This study aimed to investigate the expression of NGF, its high affinity receptor tropomyosin receptor kinase A (TrkA) and the EGC activation marker glial fibrillary acidic protein (GFAP) in the gastric mucosa of patients with FD and the association of these proteins with dyspeptic symptoms. Methods Gastric mucosal biopsies taken from 27 FD patients (9 epigastric pain syndrome (EPS) patients, 7 postprandial distress syndrome (PDS) patients and 11 EPS overlap PDS patients) and 26 control subjects were used for analysis. The expression of NGF, TrkA and GFAP was examined, and the association of these proteins with dyspeptic symptoms, including epigastric pain, postprandial fullness, early satiation and epigastric burning, was analysed. Results The expression levels of NGF, TrkA, and GFAP in the gastric mucosa were significantly higher in the EPS group, the PDS group, and the EPS overlap PDS group than in the healthy control group. There was no significant difference between the FD subgroups. TrkA colocalized with GFAP, which indicated that TrkA was localized to EGCs, and the expression of TrkA in EGCs was significantly higher in the FD group than in the control group. Changes in the expression of NGF, TrkA, and GFAP were positively correlated with epigastric pain, postprandial fullness and early satiation but had no significant relationship with epigastric burning. Conclusions The increased expression of gastric NGF, TrkA and GFAP might be involved in FD pathophysiology and symptom perception.
Collapse
|
11
|
Abstract
Beyond their well-known role in embryonic development of the central and peripheral nervous system, neurotrophins, particularly nerve growth factor and brain-derived neurotrophic factor, exert an essential role in pain production and sensitization. This has mainly been studied within the framework of somatic pain, and even antibodies (tanezumab and fasinumab) have recently been developed for their use in chronic somatic painful conditions, such as osteoarthritis or low back pain. However, data suggest that neurotrophins also exert an important role in the occurrence of visceral pain and visceral sensitization. Visceral pain is a distressing symptom that prompts many consultations and is typically encountered in both 'organic' (generally inflammatory) and 'functional' (displaying no obvious structural changes in routine clinical evaluations) disorders of the gut, such as inflammatory bowel disease and irritable bowel syndrome, respectively. The present review provides a summary of neurotrophins as a molecular family and their role in pain in general and addresses recent investigations of the involvement of nerve growth factor and brain-derived neurotrophic factor in visceral pain, particularly that associated with inflammatory bowel disease and irritable bowel syndrome.
Collapse
|
12
|
Dong Y, Li S, Yin J, Chen JDZ. Ameliorating effects of optimized gastric electrical stimulation and mechanisms involving nerve growth factor and opioids in a rodent model of gastric hypersensitivity. Neurogastroenterol Motil 2019; 31:e13551. [PMID: 30790401 DOI: 10.1111/nmo.13551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 12/09/2018] [Accepted: 12/20/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Gastric electrical stimulation (GES) has been applied to treat gastric motility disorders for decades. This study was designed to investigate the effects and mechanisms of GES for visceral hypersensitivity in a rodent model of functional dyspepsia (FD). METHODS Male Sprague-Dawley rat pups at 10-days old received 0.1% iodoacetamide (IA) daily for 6 days. The experiments were performed when the rats reached 8-11 weeks of age, and visceral hypersensitivity was established. Then, GES parameters were optimized and the chronic effects of GES on gastric hypersensitivity were assessed by electromyogram (EMG). Naloxone (3 mg/kg), D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP, 1 mg/kg), and anti-NGF (16 μg/kg) were individually intraperitoneally injected to investigate opioid and nerve growth factor (NGF) mechanisms. Tissues were analyzed for NGF expression. KEY RESULTS In the IA-treated rats, the visceromotor response to gastric distension was significantly increased, and both acute GES with optimized stimulation parameters (0.25 seconds on, 0.25 seconds off, 100 Hz, 0.25 ms, 6 mA) and chronic GES (7 days, 2 hours/day) normalized gastric hypersensitivity. The inhibitory effect of GES on gastric hypersensitivity was blocked by naloxone and CTOP. Anti-NGF normalized EMG responses in IA-treated rats. The expressions of NGF in the tissues of IA-treated rats were dramatically increased, and these increases were suppressed with GES. CONCLUSIONS AND INFERENCES GES with optimized parameters improves gastric hypersensitivity induced by neonatal treatment of IA mediated peripherally by suppressing NGF and via the opioid mechanism involving the µ receptor. GES as a potential therapy for treating visceral pain may be explored in clinical studies.
Collapse
Affiliation(s)
- Yan Dong
- Veterans Research and Education Foundation, VA Medical Center, Oklahoma City, Oklahoma.,Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shiying Li
- Veterans Research and Education Foundation, VA Medical Center, Oklahoma City, Oklahoma.,Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jieyun Yin
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jiande D Z Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
13
|
Ye Y, Wang XR, Zheng Y, Yang JW, Yang NN, Shi GX, Liu CZ. Choosing an Animal Model for the Study of Functional Dyspepsia. Can J Gastroenterol Hepatol 2018; 2018:1531958. [PMID: 29623262 PMCID: PMC5830275 DOI: 10.1155/2018/1531958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 11/16/2017] [Indexed: 02/06/2023] Open
Abstract
Functional dyspepsia (FD) is a common functional gastrointestinal disorder with pain or discomfort in the upper abdomen as the main characteristic. The prevalence of FD worldwide varies between 5% and 11%. This condition adversely affects attendance and productivity in the workplace. Emerging evidence is beginning to unravel the pathophysiologies of FD, and new data on treatment are helping to guide evidence-based practice. In order to better understand the pathophysiologies of FD and explore better treatment options, various kinds of animal models of FD have been developed. However, it is unclear which of these models most closely mimic the human disease. This review provides a comprehensive overview of the currently available animal models of FD in relationship to the clinical features of the disease. The rationales, methods, merits, and disadvantages for modelling specific symptoms of FD are discussed in detail.
Collapse
Affiliation(s)
- Yang Ye
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Xue-Rui Wang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Yang Zheng
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Jing-Wen Yang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Na-Na Yang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Guang-Xia Shi
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Cun-Zhi Liu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| |
Collapse
|
14
|
Liu S, Hagiwara SI, Bhargava A. Early-life adversity, epigenetics, and visceral hypersensitivity. Neurogastroenterol Motil 2017; 29:10.1111/nmo.13170. [PMID: 28782197 PMCID: PMC5576863 DOI: 10.1111/nmo.13170] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022]
Abstract
Abdominal pain is associated with many gastrointestinal dysfunctions, such as irritable bowel syndrome (IBS), functional dyspepsia, and inflammatory bowel disease (IBD). Visceral hypersensitivity is a key reason for development of abdominal pain that presents in these gastrointestinal disorders/diseases. The pathogenesis of visceral hypersensitivity is complex and still far from being fully understood. In animal studies, visceral hypersensitivity has been linked to several early-life adverse (ELA) events. In humans, IBD, functional dyspepsia, and IBS can have adult onset, though the adverse events that lead to visceral hypersensitivity are largely uncharacterized. In this issue of the journal, Aguirre et al. report the interesting finding that epigenetics underlies the effects of ELA events on visceral hypersensitivity. This mini-review examines models of ELA events leading to visceral hypersensitivity and the potential role of epigenetics, as reported by Aguirre et al. and others.
Collapse
Affiliation(s)
- S. Liu
- Department of Biology, College of Science and Health, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA
| | - SI. Hagiwara
- The Osher Center for Integrative Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - A. Bhargava
- The Osher Center for Integrative Medicine, University of California San Francisco, San Francisco, CA 94143, USA,Department of Ob-Gyn, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|