1
|
Zhang Z, Kalra H, Delzell MC, Jedlicka CR, Vasilyev M, Vasileva A, Tomasson MH, Bates ML. CORP: Sources and degrees of variability in whole animal intermittent hypoxia experiments. J Appl Physiol (1985) 2023; 134:1207-1215. [PMID: 36958346 PMCID: PMC10151045 DOI: 10.1152/japplphysiol.00643.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/17/2023] [Accepted: 03/12/2023] [Indexed: 03/25/2023] Open
Abstract
Chamber exposures are commonly used to evaluate the physiological and pathophysiological consequences of intermittent hypoxia in animal models. Researchers in this field use both commercial and custom-built chambers in their experiments. The purpose of this Cores of Reproducibility in Physiology paper is to demonstrate potential sources of variability in these systems that researchers should consider. Evaluating the relationship between arterial oxygen saturation and inspired oxygen concentration, we found that there are important sex-dependent differences in the commonly used C57BL6/J mouse model. The time delay of the oxygen sensor that provides feedback to the system during the ramp-down and ramp-up phases was different, limiting the number of cycles per hour that can be conducted and the overall stability of the oxygen concentration. The time to reach the hypoxic and normoxic hold stages, and the overall oxygen concentration, were impacted by the cycle number. These variables were further impacted by whether there are animals present in the chamber, highlighting the importance of verifying the cycling frequency with animals in the chamber. At ≤14 cycles/h, instability in the chamber oxygen concentration did not impact arterial oxygen saturation but may be important at higher cycle numbers. Taken together, these data demonstrate the important sources of variability that justify reporting and verifying the target oxygen concentration, cycling frequency, and arterial oxygen concentration, particularly when comparing different animal models and chamber configurations.NEW & NOTEWORTHY Intermittent hypoxia exposures are commonly used in physiology and many investigators use chamber systems to perform these studies. Because of the variety of chamber systems and protocols used, it is important to understand the sources of variability in intermittent hypoxia experiments that can impact reproducibility. We demonstrate sources of variability that come from the animal model, the intermittent hypoxia protocol, and the chamber system that can impact reproducibility.
Collapse
Affiliation(s)
- Zishan Zhang
- Interdisciplinary Graduate Program in Molecular Medicine, University of Iowa, Iowa City, Iowa, United States
- Division of Hematology, Oncology, and Bone Marrow Transplantation, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Hardik Kalra
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Matthew C Delzell
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
- Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, Missouri, United States
| | - Charles R Jedlicka
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Mikhail Vasilyev
- Division of Hematology, Oncology, and Bone Marrow Transplantation, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Anastasiia Vasileva
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Michael H Tomasson
- Interdisciplinary Graduate Program in Molecular Medicine, University of Iowa, Iowa City, Iowa, United States
- Division of Hematology, Oncology, and Bone Marrow Transplantation, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Melissa L Bates
- Interdisciplinary Graduate Program in Molecular Medicine, University of Iowa, Iowa City, Iowa, United States
- Division of Hematology, Oncology, and Bone Marrow Transplantation, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
- Division of Neonatology, Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
3
|
Bates ML. Respiratory diseases are whole body diseases: opportunities for growth in respiratory physiology. Am J Physiol Lung Cell Mol Physiol 2021; 321:L628-L630. [PMID: 34405725 DOI: 10.1152/ajplung.00326.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Melissa L Bates
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa.,Department of Pediatrics, University of Iowa, Iowa City, Iowa
| |
Collapse
|
4
|
Titova OE, Michaëlsson K, Vithayathil M, Mason AM, Kar S, Burgess S, Larsson SC. Sleep duration and risk of overall and 22 site-specific cancers: A Mendelian randomization study. Int J Cancer 2021; 148:914-920. [PMID: 32895918 PMCID: PMC7821333 DOI: 10.1002/ijc.33286] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
Studies of sleep duration in relation to the risk of site-specific cancers other than breast cancer are scarce. Furthermore, the available results are inconclusive and the causality remains unclear. We aimed to investigate the potential causal associations of sleep duration with overall and site-specific cancers using the Mendelian randomization (MR) design. Single-nucleotide polymorphisms associated with the sleep traits identified from a genome-wide association study were used as instrumental variables to estimate the association with overall cancer and 22 site-specific cancers among 367 586 UK Biobank participants. A replication analysis was performed using data from the FinnGen consortium (up to 121 579 individuals). There was suggestive evidence that genetic liability to short-sleep duration was associated with higher odds of cancers of the stomach (odds ratio [OR], 2.22; 95% confidence interval [CI], 1.15-4.30; P = .018), pancreas (OR, 2.18; 95% CI, 1.32-3.62; P = .002) and colorectum (OR, 1.48; 95% CI, 1.12-1.95; P = .006), but with lower odds of multiple myeloma (OR, 0.47; 95% CI, 0.22-0.99; P = .047). Suggestive evidence of association of genetic liability to long-sleep duration with lower odds of pancreatic cancer (OR, 0.44; 95% CI, 0.25-0.79; P = .005) and kidney cancer (OR, 0.44; 95% CI, 0.21-0.90; P = .025) was observed. However, none of these associations passed the multiple comparison threshold and two-sample MR analysis using FinnGen data did not confirm these findings. In conclusion, this MR study does not provide strong evidence to support causal associations of sleep duration with risk of overall and site-specific cancers. Further MR studies are required.
Collapse
Affiliation(s)
- Olga E. Titova
- Unit of Medical Epidemiology, Department of Surgical SciencesUppsala UniversityUppsalaSweden
| | - Karl Michaëlsson
- Unit of Medical Epidemiology, Department of Surgical SciencesUppsala UniversityUppsalaSweden
| | | | - Amy M. Mason
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
- National Institute for Health Research Cambridge Biomedical Research CentreUniversity of Cambridge and Cambridge University HospitalsCambridgeUK
| | - Siddhartha Kar
- MRC Integrative Epidemiology Unit, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Stephen Burgess
- Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
- MRC Biostatistics UnitUniversity of CambridgeCambridgeUK
| | - Susanna C. Larsson
- Unit of Medical Epidemiology, Department of Surgical SciencesUppsala UniversityUppsalaSweden
- Unit of Cardiovascular and Nutritional EpidemiologyInstitute of Environmental Medicine, Karolinska InstitutetStockholmSweden
| |
Collapse
|
5
|
Gozal D, Almendros I, Phipps AI, Campos-Rodriguez F, Martínez-García MA, Farré R. Sleep Apnoea Adverse Effects on Cancer: True, False, or Too Many Confounders? Int J Mol Sci 2020; 21:ijms21228779. [PMID: 33233617 PMCID: PMC7699730 DOI: 10.3390/ijms21228779] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Obstructive sleep apnoea (OSA) is a prevalent disorder associated with increased cardiovascular, metabolic and neurocognitive morbidity. Recently, an increasing number of basic, clinical and epidemiological reports have suggested that OSA may also increase the risk of cancer, and adversely impact cancer progression and outcomes. This hypothesis is convincingly supported by biological evidence linking certain solid tumours and hypoxia, as well as by experimental studies involving cell and animal models testing the effects of intermittent hypoxia and sleep fragmentation that characterize OSA. However, the clinical and epidemiological studies do not conclusively confirm that OSA adversely affects cancer, even if they hold true for specific cancers such as melanoma. It is likely that the inconclusive studies reflect that they were not specifically designed to test the hypothesis or because of the heterogeneity of the relationship of OSA with different cancer types or even sub-types. This review critically focusses on the extant basic, clinical, and epidemiological evidence while formulating proposed directions on how the field may move forward.
Collapse
Affiliation(s)
- David Gozal
- Department of Child Health, The University of Missouri School of Medicine, Columbia, MO 65201, USA
- Correspondence: (D.G.); (R.F.)
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain;
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain;
- Institut d’Investigacions Biomediques August Pi Sunyer, 08036 Barcelona, Spain
| | - Amanda I. Phipps
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA 98195, USA;
- Epidemiology Program, Fred Hutchinson Research Cancer Research Center, Seattle, WA 98109, USA
| | - Francisco Campos-Rodriguez
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain;
- Respiratory Department, Hospital Valme (Seville, Spain), Institute of Biomedicine of Seville (IBiS), 41014 Seville, Spain
| | - Miguel A. Martínez-García
- Pneumology Department, Sleep-Disordered Breathing and Research Unit, Polytechnic and University La Fe Hospital, 46026 Valencia, Spain;
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain;
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain;
- Institut d’Investigacions Biomediques August Pi Sunyer, 08036 Barcelona, Spain
- Correspondence: (D.G.); (R.F.)
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Obstructive sleep apnea (OSA) has been recognized as a risk factor for cancer mainly through hypoxia, based on studies that did not distinguish among cancer types. The purpose of this review is to discuss the most recent data on epidemiology and pathophysiology of the OSA-cancer association. RECENT FINDINGS According to epidemiological studies, OSA may have different influences on each type of cancer, either increasing or decreasing its incidence and aggressiveness. Time spent with oxygen saturation below 90% appears the polysomnographic variable most strongly associated with unfavorable effects on cancer. Experimental studies support the role of hypoxia as an important risk factor for cancer growth and aggressiveness, especially when it shows an intermittent pattern. These effects are largely mediated by the hypoxia-inducible factor, which controls the synthesis of molecules with effects on inflammation, immune surveillance and cell proliferation. Sleep fragmentation participates in increasing cancer risk. Modulating effects of age remain controversial. SUMMARY Effects of OSA on cancer may largely vary among neoplastic diseases, both in their magnitude and direction. The worse risk associated with intermittent rather than persistent hypoxia, and the effects of OSA therapy on cancer natural history are still poorly known, and deserve new careful studies.
Collapse
|
7
|
Saxena K, Jolly MK. Acute vs. Chronic vs. Cyclic Hypoxia: Their Differential Dynamics, Molecular Mechanisms, and Effects on Tumor Progression. Biomolecules 2019; 9:E339. [PMID: 31382593 PMCID: PMC6722594 DOI: 10.3390/biom9080339] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Hypoxia has been shown to increase the aggressiveness and severity of tumor progression. Along with chronic and acute hypoxic regions, solid tumors contain regions of cycling hypoxia (also called intermittent hypoxia or IH). Cyclic hypoxia is mimicked in vitro and in vivo by periodic exposure to cycles of hypoxia and reoxygenation (H-R cycles). Compared to chronic hypoxia, cyclic hypoxia has been shown to augment various hallmarks of cancer to a greater extent: angiogenesis, immune evasion, metastasis, survival etc. Cycling hypoxia has also been shown to be the major contributing factor in increasing the risk of cancer in obstructive sleep apnea (OSA) patients. Here, we first compare and contrast the effects of acute, chronic and intermittent hypoxia in terms of molecular pathways activated and the cellular processes affected. We highlight the underlying complexity of these differential effects and emphasize the need to investigate various combinations of factors impacting cellular adaptation to hypoxia: total duration of hypoxia, concentration of oxygen (O2), and the presence of and frequency of H-R cycles. Finally, we summarize the effects of cycling hypoxia on various hallmarks of cancer highlighting their dependence on the abovementioned factors. We conclude with a call for an integrative and rigorous analysis of the effects of varying extents and durations of hypoxia on cells, including tools such as mechanism-based mathematical modelling and microfluidic setups.
Collapse
Affiliation(s)
- Kritika Saxena
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|