1
|
Spaans F, Melgert BN, Chiang C, Borghuis T, Klok PA, de Vos P, van Goor H, Bakker WW, Faas MM. Extracellular ATP decreases trophoblast invasion, spiral artery remodeling and immune cells in the mesometrial triangle in pregnant rats. Placenta 2014; 35:587-95. [PMID: 24953164 DOI: 10.1016/j.placenta.2014.05.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/24/2014] [Accepted: 05/29/2014] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Preeclampsia is characterized by deficient trophoblast invasion and spiral artery remodeling, a process governed by inflammatory cells. High levels of the danger signal extracellular adenosine triphosphate (ATP) have been found in women with preeclampsia and infusion of ATP in pregnant rats induced preeclampsia-like symptoms such as albuminuria and placental ischemia. We hypothesized that ATP inhibits trophoblast invasion and spiral artery remodeling and affects macrophages and natural killer (NK) cells present in the rat mesometrial triangle. METHODS Pregnant rats were infused with ATP or saline (control) on day 14 of pregnancy. Rats were sacrificed on day 15, 17 or 20 of pregnancy and placentas with mesometrial triangle were collected. Sections were stained for trophoblast cells, α-smooth muscle actin (spiral artery remodeling), NK cells and various macrophage populations. Expression of various cytokines in the mesometrial triangle was analyzed using real-time RT-PCR. RESULTS ATP infusion decreased interstitial trophoblast invasion on day 17 and spiral artery remodeling on day 17 and 20, increased activated tartrate resistant acid phosphatase (TRAP)-positive macrophages on day 15, decreased NK cells on day 17 and 20, and decreased inducible nitric oxide synthase (iNOS)-positive and CD206-positive macrophages and TNF-α and IL-33 expression at the end of pregnancy (day 20). DISCUSSION Interstitial trophoblast invasion and spiral artery remodeling in the rat mesometrial triangle were decreased by infusion of ATP. These ATP-induced modifications were preceded by an increase in activated TRAP-positive macrophages and coincided with NK cell numbers, suggesting that they are involved. CONCLUSION Trophoblast invasion and spiral artery remodeling may be inhibited by ATP-induced activated macrophages and decreased NK cells in the mesometrial triangle in rat pregnancy.
Collapse
Affiliation(s)
- F Spaans
- Division of Medical Biology, University of Groningen and University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1, EA 11, 9713 GZ Groningen, The Netherlands
| | - B N Melgert
- Division of Medical Biology, University of Groningen and University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1, EA 11, 9713 GZ Groningen, The Netherlands; Department of Pharmacokinetics, Toxicology and Targeting, University of Groningen, Groningen, The Netherlands
| | - C Chiang
- Division of Medical Biology, University of Groningen and University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1, EA 11, 9713 GZ Groningen, The Netherlands
| | - T Borghuis
- Division of Pathology, University of Groningen and University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - P A Klok
- Division of Pathology, University of Groningen and University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - P de Vos
- Division of Medical Biology, University of Groningen and University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1, EA 11, 9713 GZ Groningen, The Netherlands
| | - H van Goor
- Division of Pathology, University of Groningen and University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - W W Bakker
- Division of Pathology, University of Groningen and University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - M M Faas
- Division of Medical Biology, University of Groningen and University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1, EA 11, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
2
|
Spaans F, de Vos P, Bakker WW, van Goor H, Faas MM. Danger signals from ATP and adenosine in pregnancy and preeclampsia. Hypertension 2014; 63:1154-60. [PMID: 24688119 DOI: 10.1161/hypertensionaha.114.03240] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Floor Spaans
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
3
|
Díaz P, Wood AM, Sibley CP, Greenwood SL. Intermediate conductance Ca2+-activated K+ channels modulate human placental trophoblast syncytialization. PLoS One 2014; 9:e90961. [PMID: 24595308 PMCID: PMC3940956 DOI: 10.1371/journal.pone.0090961] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 02/05/2014] [Indexed: 12/31/2022] Open
Abstract
Regulation of human placental syncytiotrophoblast renewal by cytotrophoblast migration, aggregation/fusion and differentiation is essential for successful pregnancy. In several tissues, these events are regulated by intermediate conductance Ca2+-activated K+ channels (IKCa), in part through their ability to regulate cell volume. We used cytotrophoblasts in primary culture to test the hypotheses that IKCa participate in the formation of multinucleated syncytiotrophoblast and in syncytiotrophoblast volume homeostasis. Cytotrophoblasts were isolated from normal term placentas and cultured for 66 h. This preparation recreates syncytiotrophoblast formation in vivo, as mononucleate cells (15 h) fuse into multinucleate syncytia (66 h) concomitant with elevated secretion of human chorionic gonadotropin (hCG). Cells were treated with the IKCa inhibitor TRAM-34 (10 µM) or activator DCEBIO (100 µM). Culture medium was collected to measure hCG secretion and cells fixed for immunofluorescence with anti-IKCa and anti-desmoplakin antibodies to assess IKCa expression and multinucleation respectively. K+ channel activity was assessed by measuring 86Rb efflux at 66 h. IKCa immunostaining was evident in nucleus, cytoplasm and surface of mono- and multinucleate cells. DCEBIO increased 86Rb efflux 8.3-fold above control and this was inhibited by TRAM-34 (85%; p<0.0001). Cytotrophoblast multinucleation increased 12-fold (p<0.05) and hCG secretion 20-fold (p<0.05), between 15 and 66 h. Compared to controls, DCEBIO reduced multinucleation by 42% (p<0.05) and hCG secretion by 80% (p<0.05). TRAM-34 alone did not affect cytotrophoblast multinucleation or hCG secretion. Hyposmotic solution increased 86Rb efflux 3.8-fold (p<0.0001). This effect was dependent on extracellular Ca2+, inhibited by TRAM-34 and 100 nM charybdotoxin (85% (p<0.0001) and 43% respectively) but unaffected by 100 nM apamin. In conclusion, IKCa are expressed in cytotrophoblasts and their activation inhibits the formation of multinucleated cells in vitro. IKCa are stimulated by syncytiotrophoblast swelling implicating a role in syncytiotrophoblast volume homeostasis. Inappropriate activation of IKCa in pathophysiological conditions could compromise syncytiotrophoblast turnover and volume homeostasis in pregnancy disease.
Collapse
Affiliation(s)
- Paula Díaz
- Maternal and Fetal Health Research Centre, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- St. Mary’s Hospital, Central Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
- * E-mail:
| | - Amber M. Wood
- Maternal and Fetal Health Research Centre, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- St. Mary’s Hospital, Central Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Colin P. Sibley
- Maternal and Fetal Health Research Centre, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- St. Mary’s Hospital, Central Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Susan L. Greenwood
- Maternal and Fetal Health Research Centre, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- St. Mary’s Hospital, Central Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
4
|
Fyfe GK, Panicker S, Jones RL, Wareing M. Expression of an electrically silent voltage-gated potassium channel in the human placenta. J OBSTET GYNAECOL 2013; 32:624-9. [PMID: 22943705 DOI: 10.3109/01443615.2012.709288] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human placental expression of K(V)9.3, a voltage-gated K channel linked to tissue oxygenation responses, has been suggested at the messenger RNA level but tissue localisation has not been described. We aimed to: (1) produce an antibody to human K(V)9.3 and (2) assess channel expression and distribution in human placental tissue. We determined human placental protein expression and localisation using an antibody to K(V)9.3. Antibody specificity was confirmed by Western blotting. Staining was observed in syncytiotrophoblast microvillous membrane, endothelial cells (in intermediate, stem villi and chorionic plate blood vessels) and vascular smooth muscle cells (large diameter vessels only) by immunohistochemistry. Expression was unchanged in tissue from women with small-for-gestational age babies. It was concluded that K(V)9.3 is localised to human placental vascular tissues and syncytiotrophoblast.
Collapse
Affiliation(s)
- G K Fyfe
- Maternal and Fetal Health Research Centre, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | | | | | | |
Collapse
|
5
|
Williams JLR, Fyfe GK, Sibley CP, Baker PN, Greenwood SL. K+channel inhibition modulates the biochemical and morphological differentiation of human placental cytotrophoblast cells in vitro. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1204-13. [DOI: 10.1152/ajpregu.00193.2008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maintaining placental syncytiotrophoblast, a specialized multinucleated transport epithelium, is essential for normal human pregnancy. Syncytiotrophoblast continuously renews through differentiation and fusion of cytotrophoblast cells, under paracrine control by syncytiotrophoblast production of human chorionic gonadotropin (hCG). We hypothesized that K+channels participate in trophoblast syncytialization and hCG secretion in vitro. Two models of normal-term placenta were used: 1) isolated cytotrophoblast cells and 2) villous tissue in explant culture. Cells and explants were treated with K+channel modulators from 18 h, and day 3, onward, respectively. Culture medium was analyzed for hCG, to assess secretion, as well as for lactate dehydrogenase (LDH), to indicate cell/tissue integrity. hCG was also measured in cytotrophoblast cell lysates, indicating cellular production. Syncytialization of cytotrophoblast cells was assessed by immunofluorescent staining of desmosomes and nuclei. Over 18–66 h, mononucleate cells fused to form multinucleated syncytia, accompanied by a 28-fold rise in hCG secretion. 1 mM Ba2+stimulated cytotrophoblast cell hCG secretion at 66 h compared with control, whereas 5 mM tetraethylammonium (TEA) inhibited hCG secretion by >90%. 0.1–1 mM 4-aminopyridine (4-AP) reduced cytotrophoblast cell hCG secretion and elevated cellular hCG; without altering cellular integrity or syncytialization. In villous explants, hCG secretion was not altered by 1 mM Ba2+but inhibited by 5 mM 4-AP and 5/10 mM TEA, without affecting LDH release. Anandamide, pinacidil, and cromakalim were without effect in either model. In conclusion, 4-AP- and TEA-sensitive K+channels (e.g., voltage-gated and Ca2+-activated) regulate trophoblast hCG secretion in culture. If these K+channels participate in hCG secretion in situ, they may regulate trophoblast turnover in health and disease.
Collapse
|
6
|
Díaz P, Vallejos C, Guerrero I, Riquelme G. Barium, Tea and Sodium Sensitive Potassium Channels are Present in the Human Placental Syncytiotrophoblast Apical Membrane. Placenta 2008; 29:883-91. [DOI: 10.1016/j.placenta.2008.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/01/2008] [Accepted: 07/03/2008] [Indexed: 10/21/2022]
|
7
|
Roberts VHJ, Waters LH, Powell T. Purinergic receptor expression and activation in first trimester and term human placenta. Placenta 2006; 28:339-47. [PMID: 16764923 DOI: 10.1016/j.placenta.2006.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 04/20/2006] [Accepted: 04/24/2006] [Indexed: 11/25/2022]
Abstract
Intracellular calcium concentration ([Ca(2+)](i)) is an important signalling molecule in the human placenta and regulation of [Ca(2+)](i) must be tightly controlled to ensure normal cell function and in order to meet the changing demand for calcium with increased fetal growth over gestation. Little is known about the receptors and mechanisms involved in intracellular calcium signalling in the human placenta but in isolated cytotrophoblast cells members of the P2 purinergic receptor family have been shown to mediate an ATP-stimulated rise in [Ca(2+)](i). In this study we examined activation and expression of several of the purinergic receptor subtypes in human placental villous fragments at two stages of gestation, first trimester and term. We demonstrate mRNA and protein expression of the P2X(4), P2X(7) and P2Y(2) subtypes but found no evidence of P2Y(4) protein in the placenta. Using fluorescent calcium imaging we demonstrate that 300 microM ATP, 450 microM UTP and 300 microM BzATP significantly elevate [Ca(2+)](i) in villous fragments with a significant increase in agonist-induced response seen in the term compared to the first trimester fragments (ATP, P<0.0001; UTP, P=0.018; BzATP, P=0.015). The roles of the purinergic receptors within the human placenta are not known but it seems likely for this study that calcium handling through these receptors is altered with advancing gestation. This may be due to the need to meet increased fetal Ca(2+) requirements due to growth or as a secondary function to alterations in placental [Ca(2+)](i) signalling.
Collapse
Affiliation(s)
- V H J Roberts
- Division of Human Development, St Mary's Hospital, University of Manchester, Manchester M13 0JH, UK.
| | | | | |
Collapse
|
8
|
Roberts VHJ, Greenwood SL, Elliott AC, Sibley CP, Waters LH. Purinergic receptors in human placenta: evidence for functionally active P2X4, P2X7, P2Y2, and P2Y6. Am J Physiol Regul Integr Comp Physiol 2005; 290:R1374-86. [PMID: 16373435 DOI: 10.1152/ajpregu.00612.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Appropriate regulation of ion transport by the human placental syncytiotrophoblast is important for fetal growth throughout pregnancy. In nonplacental tissues, ion transport can be modulated by extracellular nucleotides that raise intracellular calcium ([Ca2+]i) via activation of purinergic receptors. We tested the hypothesis that purinergic receptors are expressed by human placental cytotrophoblast cells and that their activation by extracellular nucleotides modulates ion (K+) efflux and [Ca2+]i. P2X/P2Y receptor agonists 5-bromouridine 5'-triphosphate (5-BrUTP), ADP, ATP, 2',3'-O-(4-benzoyl-benzoyl)adenosine 5'-triphosphate (BzATP), and UTP stimulated 86Rb (K+ tracer) efflux from cultured cytotrophoblast cells at early (mononuclear) or later (multinucleate syncytiotrophoblast-like) stages of differentiation, with ATP and UTP particularly potent. 2-Methylthioadenosine 5'-triphosphate (2-MeS-ATP), and UDP elevated 86Rb efflux only from multinucleated cells. All agonists caused a significant peak and plateau increase in [Ca2+]i, although the magnitude of responses was variable. The effect of BzATP, UTP, and UDP in multinucleated cells was unaffected, and that of ATP partially inhibited, by removal of extracellular Ca2+, implicating P2Y receptor activation. mRNA encoding P2X1, P2X2, P2X4, and P2X7 and P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 were identified in mono- and multinucleated cells, whereas P2X3 and P2X5 mRNA were absent from all samples. Western blot analysis revealed P2X4, P2X7, P2Y2, and P2Y6 protein in cytotrophoblast cells, but P2Y4 was not detected. On the basis of published agonist selectivity, the data indicate the presence of functionally active P2X4, P2X7, P2Y2, and P2Y6 receptors in cytotrophoblast cells. We propose that activation of these receptors, and subsequent elevation of [Ca2+]i, modulates syncytiotrophoblast homeostasis and/or maternofetal ion exchange in response to extracellular nucleotides.
Collapse
Affiliation(s)
- V H J Roberts
- Division of Human Development, St. Mary's Hospital, The Medical School, Univ. of Manchester, Hathersage Road, Manchester, UK M13 0JH
| | | | | | | | | |
Collapse
|
9
|
Knöfler M, Sooranna SR, Daoud G, Whitley GS, Markert UR, Xia Y, Cantiello H, Hauguel-de Mouzon S. Trophoblast signalling: knowns and unknowns--a workshop report. Placenta 2005; 26 Suppl A:S49-51. [PMID: 15837068 DOI: 10.1016/j.placenta.2005.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/04/2005] [Indexed: 11/29/2022]
Affiliation(s)
- M Knöfler
- Department of Obstetrics and Gynecology, Medical University of Vienna, AKH, Waehringer Guertel 18-20, A-1090, Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Niger C, Malassiné A, Cronier L. Calcium channels activated by endothelin-1 in human trophoblast. J Physiol 2004; 561:449-58. [PMID: 15358810 PMCID: PMC1665371 DOI: 10.1113/jphysiol.2004.073023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/30/2004] [Accepted: 09/01/2004] [Indexed: 12/17/2022] Open
Abstract
Ca2+ transfer across the syncytiotrophoblast (ST) of the human placenta is essential for normal fetal development. However, the nature of Ca2+ conductance in the ST and the mechanisms by which it is regulated are poorly understood. With the major signal transduction pathway of endothelin-1 (ET1) acting via phospholipase C (PLC) and Ca2+, we used ET1 to analyse the nature of Ca2+ channels on cultured trophoblastic cells by means of cytofluorimetric analysis using the ratiometric Ca2+ indicator Indo-1. Results indicate that ET1 (10(-7) M) stimulates a biphasic (transient and sustained) increase in [Ca2+]i in trophoblastic cells. This response is mediated by the endothelin receptor B (ETB) coupled to PLC, since treatment with BQ788 (10(-6) M) or U73122 (2 microM) totally abolished the response. Persistence of the rapid transient rise in [Ca2+]i in Ca2+-free extracellular medium confirms the release of Ca2+ from intracellular stores in response to ET1 stimulation. Furthermore, abolition of the sustained increase in [Ca2+]i in Ca2+-free extracellular medium argues in favour of the entry of Ca2+ during the plateau phase. Abolition of this plateau phase by Ni2+ (1 mM) in the presence of extracellular Ca2+ confirmed the existence of an ET1-induced Ca2+ entry. No evidence for the presence of voltage-operated channels was demonstrated during ET1 action since nifedipine (10(-6) M) did not reduce the Ca2+ response and depolarization with a hyper-potassium solution had no effect. Pharmacological studies using the imidazole derivatives SK&F96365 (30 microM) and LOE 908 (10 microM) partially inhibited the ET1-evoked Ca2+ response, thus providing evidence for the presence of both store-operated Ca2+ channels and non-selective cationic channels in the human ST.
Collapse
Affiliation(s)
- C Niger
- CNRS UMR 6187, Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, 86022 Poitiers Cedex, France
| | | | | |
Collapse
|
11
|
Clarson LH, Roberts VHJ, Hamark B, Elliott AC, Powell T. Store-operated Ca2+ entry in first trimester and term human placenta. J Physiol 2003; 550:515-28. [PMID: 12766233 PMCID: PMC2343039 DOI: 10.1113/jphysiol.2003.044149] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Accepted: 04/23/2003] [Indexed: 11/08/2022] Open
Abstract
We have examined whether store-operated Ca2+ entry, a common pathway for Ca2+ entry in non-excitable tissue, is apparent in the syncytiotrophoblast of both first trimester and term human placenta. Expression of transient receptor potential (TRPC) homologues, a family of channels thought to be involved in store-operated Ca2+ entry, was also studied at the mRNA and protein levels. [Ca2+]i in syncytiotrophoblast of first trimester and term placental villous fragments was measured by microfluorimetry using the Ca2+-sensitive dye fura-2. Store-operated Ca2+ entry was stimulated using 1 microM thapsigargin in Ca(2+)-free Tyrode buffer (no added Ca2+ + 1 mM EGTA) followed by superfusion with control (Ca2+-containing) buffer. In term fragments, this protocol resulted in a rapid increase in [Ca2+]i, which was inhibited in the presence of 150 microM GdCl3, 200 microM NiCl2, 200 microM CoCl2 or 30 microM SKF96365 but was unaffected by addition of 10 microM nifedipine. It was not possible to stimulate such a rise in [Ca2+]i in first trimester fragments. Messenger RNA encoding TRPC1, TRPC3, TRPC4, TRPC5 and TRPC6 was identified in both first trimester and term placentas. From Western blotting, TRPC3 and TRPC6 proteins were detected in term, but not in first trimester, placentas, while TRPC1 protein was not detected. By immunocytochemistry, TRPC3 and TRPC4 were localised to cytotrophoblast cells in first trimester placentas and to the syncytiotrophoblast in term placentas. TRPC6 staining was present in the syncytiotrophoblast of both first trimester and term placenta, but the intensity was much greater in the latter. We propose that store-operated Ca2+ entry may be an important route for Ca2+ entry into the syncytiotrophoblast of term, but not first trimester placentas, and that in human placenta TRPC channels may underlie this entry mechanism.
Collapse
Affiliation(s)
- L H Clarson
- Academic Unit of Child Health, University of Manchester, St Mary's Hospital, Hathersage Road, Manchester M13 0JH, UK.
| | | | | | | | | |
Collapse
|