1
|
Yokota‐Nakagi N, Omoto S, Tazumi S, Kawakami M, Takamata A, Morimoto K. Estradiol replacement improves high-fat diet-induced insulin resistance in ovariectomized rats. Physiol Rep 2022; 10:e15193. [PMID: 35238495 PMCID: PMC8892597 DOI: 10.14814/phy2.15193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 05/15/2023] Open
Abstract
The role of 17β-estradiol (E2) in high-fat diet (HFD)-induced alteration of the protein kinase B (Akt) signaling pathway in ovariectomized (OVX) rats is unclear. Therefore, we examined whether chronic estrogen replacement restores HFD-induced impairment in insulin sensitivity by its effects concomitant with alterations in the Akt isoform 2 (Akt2) and Akt substrate of 160 kDa (AS160) phosphorylation in muscles of OVX rats. Nine-week-old female Wistar rats underwent ovariectomy under anesthesia; after 4 weeks, subcutaneous implantation of either E2 or placebo (PL) pellets was performed, and HFD feeding was initiated. Intravenous glucose tolerance tests were performed to assess insulin sensitivity. Following insulin injection into rats' portal vein, the liver and gastrocnemius muscle were dissected for insulin signaling analysis. We observed that HFD increased energy intake and body weight in the PL group; however, it was temporarily decreased in the E2 group. Adipose tissue accumulation was larger in HFD-fed rats than in normal chow diet (NCD)-fed rats in the PL group; however, this difference was not observed in the E2 group. HFD reduced insulin sensitivity in the PL group only. In vivo insulin stimulation increased Akt2 phosphorylation in the muscles of NCD-fed rats in both groups. In contrast, HFD affected insulin-stimulated phosphorylation of Akt2 and AS160 in the muscles of rats in the PL group but not in the E2 group. Our data suggest that E2 replacement improves HFD-induced insulin resistance, and this effect is accompanied by the alterations in the Akt2 and AS160 phosphorylation in insulin-stimulated muscles of OVX rats.
Collapse
Affiliation(s)
- Naoko Yokota‐Nakagi
- Department of Environmental HealthFaculty of Human Life and EnvironmentNara Women’s UniversityNaraJapan
- Department of Health and NutritionFaculty of Health ScienceKyoto Koka Women’s UniversityKyotoJapan
| | - Sayo Omoto
- Department of Environmental HealthFaculty of Human Life and EnvironmentNara Women’s UniversityNaraJapan
| | - Shoko Tazumi
- Department of Environmental HealthFaculty of Human Life and EnvironmentNara Women’s UniversityNaraJapan
| | - Mizuho Kawakami
- Department of Environmental HealthFaculty of Human Life and EnvironmentNara Women’s UniversityNaraJapan
| | - Akira Takamata
- Department of Environmental HealthFaculty of Human Life and EnvironmentNara Women’s UniversityNaraJapan
| | - Keiko Morimoto
- Department of Environmental HealthFaculty of Human Life and EnvironmentNara Women’s UniversityNaraJapan
- Department of Health and NutritionFaculty of Health ScienceKyoto Koka Women’s UniversityKyotoJapan
| |
Collapse
|
2
|
Baldassini WA, Ramsey JJ, Hagopian K, Lanna DPD. The influence of Shc proteins and high-fat diet on energy metabolism of mice. Cell Biochem Funct 2018; 35:527-537. [PMID: 29243276 DOI: 10.1002/cbf.3310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/22/2017] [Accepted: 11/08/2017] [Indexed: 01/24/2023]
Abstract
The purpose of this study was to determine if Shc proteins influence the metabolic response to acute (7 days) feeding of a high-fat diet (HFD). To this end, whole animal energy expenditure (EE) and substrate oxidation were measured in the Shc knockout (ShcKO) and wild-type (WT) mice fed a control or HFD. The activities of enzymes of glycolysis, the citric acid cycle, electron transport chain (ETC), and β-oxidation were also investigated in liver and skeletal muscle of ShcKO and WT animals. The study showed that ShcKO increases (P < .05) EE adjusted for either total body weight or lean mass. This change in EE could contribute to decreases in weight gain in ShcKO versus WT mice fed an HFD. Thus, our results indicate that Shc proteins should be considered as potential targets for developing interventions to mitigate weight gain on HFD by stimulating EE. Although decreased levels of Shc proteins influenced the activity of some enzymes in response to high-fat feeding (eg, increasing the activity of acyl-CoA dehydrogenase), it did not produce concerted changes in enzymes of glycolysis, citric acid cycle, or the ETC. The physiological significance of observed changes in select enzyme activities remains to be determined. SIGNIFICANCE OF THE STUDY We report higher EE in ShcKO versus WT mice when consuming the HFD. Although decreased levels of Shc proteins influenced the activity of a central enzyme of β-oxidation in response to high-fat feeding, it did not produce concerted changes in enzymes of glycolysis, citric acid cycle, or the ETC. Thus, an increase in EE in response to consumption of an HFD may be a mechanism that leads to decreased weight gain previously reported in ShcKO mice with long-term consumption of an HFD.
Collapse
Affiliation(s)
- W A Baldassini
- Department of Animal Science, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - J J Ramsey
- Veterinary Medicine, Molecular Biosciences, University of California-Davis (UC DAVIS), Davis, CA, USA
| | - K Hagopian
- Veterinary Medicine, Molecular Biosciences, University of California-Davis (UC DAVIS), Davis, CA, USA
| | - D P D Lanna
- Department of Animal Science, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| |
Collapse
|
3
|
Kras KA, Hoffman N, Roust LR, Patel SH, Carroll CC, Katsanos CS. Plasma Amino Acids Stimulate Uncoupled Respiration of Muscle Subsarcolemmal Mitochondria in Lean but Not Obese Humans. J Clin Endocrinol Metab 2017; 102:4515-4525. [PMID: 29029131 PMCID: PMC5718694 DOI: 10.1210/jc.2017-01201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/19/2017] [Indexed: 11/19/2022]
Abstract
CONTEXT Obesity is associated with mitochondrial dysfunction in skeletal muscle. Increasing the plasma amino acid (AA) concentrations stimulates mitochondrial adenosine triphosphate (ATP) production in lean individuals. OBJECTIVE To determine whether acute elevation in plasma AAs enhances muscle mitochondrial respiration and ATP production in subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria in obese adults. DESIGN Assessment of SS and IMF mitochondrial function during saline (i.e., control) and AA infusions. PARTICIPANTS Eligible participants were healthy lean (body mass index, <25 kg/m2; age, 37 ± 3 years; n = 10) and obese (body mass index >30 kg/m2; age 35 ± 3 years; n = 11) subjects. INTERVENTION Single trial of saline infusion followed by AA infusion. SS and IMF mitochondria were isolated from muscle biopsies collected at the end of the saline and AA infusions. MAIN OUTCOMES Mitochondrial respiration and ATP production. RESULTS AA infusion increased adenosine 5'-diphosphate (ADP)-stimulated respiration and ATP production rates of SS mitochondria in the lean (P < 0.05), but not obese, subjects. Furthermore, AA infusion increased the uncoupled (i.e., non-ADP-stimulated) respiration of SS mitochondria in the lean subjects only (P < 0.05). AA infusion had no effect on any of these parameters in IMF mitochondria in either lean or obese subjects (P > 0.05). CONCLUSIONS Increasing the plasma AA concentrations enhances the capacity for respiration and ATP production of muscle SS, but not IMF, mitochondria in lean individuals, in parallel with increases in uncoupled respiration. However, neither of these parameters increases in muscle SS or IMF mitochondria in obese individuals.
Collapse
Affiliation(s)
- Katon A. Kras
- Center for Metabolic and Vascular Biology, Arizona State University/Mayo Clinic in Arizona, Scottsdale, Arizona 85259
| | - Nyssa Hoffman
- Center for Metabolic and Vascular Biology, Arizona State University/Mayo Clinic in Arizona, Scottsdale, Arizona 85259
| | - Lori R. Roust
- College of Medicine, Mayo Clinic in Arizona, Scottsdale, Arizona 85259
| | - Shivam H. Patel
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana 47907
| | - Chad C. Carroll
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana 47907
| | - Christos S. Katsanos
- Center for Metabolic and Vascular Biology, Arizona State University/Mayo Clinic in Arizona, Scottsdale, Arizona 85259
- College of Medicine, Mayo Clinic in Arizona, Scottsdale, Arizona 85259
| |
Collapse
|
4
|
Booth A, Magnuson A, Fouts J, Foster MT. Adipose tissue: an endocrine organ playing a role in metabolic regulation. Horm Mol Biol Clin Investig 2017; 26:25-42. [PMID: 26910750 DOI: 10.1515/hmbci-2015-0073] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/01/2016] [Indexed: 12/14/2022]
Abstract
Adipose tissue is a complex endocrine organ with an intricate role in whole body homeostasis. Beyond storing energy, adipose tissue is fundamental in numerous processes including, but not limited to, metabolism, food intake and immune cell function. Adipokines and cytokines are the signaling factors from adipose tissue. These factors play a role in maintaining health, but are also candidates for pathologies associated with obesity. Indeed excessive adiposity causes dysregulation of these factors which negatively affect health and contribute to numerous obesity-induced co-morbidities. In particular, adipokines are fundamental in regulation of glucose homeostasis and insulin signaling, thus aberrant production of these adipose derived hormones correlates with the development and progression of type 2 diabetes. Therefore, elucidation of adipose regulation is crucial for understanding the pathophysiological basis of obesity and metabolic diseases such as type 2 diabetes. In the present review, we summarize current data on the relation between adipokines and adipose depot derived cytokines in the maintenance of glucose homeostasis. Specifically, physiological and molecular functions of several adipokines are defined with particular focus on interactions within the insulin-signaling pathway and subsequent regulation of glucose uptake in both standard and obesity-induced dysregulated conditions. This same relation will be discussed for cytokines and inflammation as well.
Collapse
|
5
|
MacDonald TL, Ritchie KL, Davies S, Hamilton MJ, Cervone DT, Dyck DJ. Exercise training is an effective alternative to estrogen supplementation for improving glucose homeostasis in ovariectomized rats. Physiol Rep 2015; 3:3/11/e12617. [PMID: 26603453 PMCID: PMC4673645 DOI: 10.14814/phy2.12617] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/13/2015] [Indexed: 01/04/2023] Open
Abstract
The irreversible loss of estrogen (specifically 17-β-estradiol; E2) compromises whole-body glucose tolerance in women. Hormone replacement therapy (HRT) is frequently prescribed to treat estrogen deficiency, but has several deleterious side effects. Exercise has been proposed as an HRT substitute, however, their relative abilities to treat glucose intolerance are unknown. Thirty ovariectomized (OVX) and 20 SHAM (control) rats underwent glucose tolerance tests (GTT) 10 weeks post surgery. Area under the curve (AUC) for OVX rats was 60% greater than SHAM controls (P = 0.0005). Rats were then randomly assigned to the following treatment groups: SHAM sedentary (sed) or exercise (ex; 60 min, 5×/weeks), OVX sed, ex, or E2 (28 μg/kg bw/day) for 4 weeks. OVX ex rats experienced a ∼45% improvement in AUC relative to OVX sed rats, whereas OVX E2 underwent a partial reduction (17%; P = 0.08). Maximal insulin-stimulated glucose uptake in soleus and EDL was not impaired in OVX rats, or augmented with exercise or E2. Akt phosphorylation did not differ in soleus, EDL, or liver of any group. However, OVX ex and OVX E2 experienced greater increases in p-Akt Ser473 in VAT and SQ tissues compared with SHAM and OVX sed groups. Mitochondrial markers CS, COXIV, and core1 were increased in soleus posttraining in OVX ex rats. The content of COXIV was reduced by 52% and 61% in SQ of OVX sed and E2 rats, compared to SHAM controls, but fully restored in OVX ex rats. In summary, exercise restores glucose tolerance in OVX rats more effectively than E2. This is not reflected by alterations in muscle maximal insulin response, but increased insulin signaling in adipose depots may underlie whole-body improvements.
Collapse
Affiliation(s)
- Tara L MacDonald
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kerry L Ritchie
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Sarah Davies
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Melissa J Hamilton
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Daniel T Cervone
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - David J Dyck
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
Maher AC, McFarlan J, Lally J, Snook LA, Bonen A. TBC1D1 reduces palmitate oxidation by inhibiting β-HAD activity in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1115-23. [PMID: 25163918 DOI: 10.1152/ajpregu.00014.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In skeletal muscle the Rab-GTPase-activating protein TBC1D1 has been implicated in the regulation of fatty acid oxidation by an unknown mechanism. We determined whether TBC1D1 altered fatty acid utilization via changes in protein-mediated fatty acid transport and/or selected enzymes regulating mitochondrial fatty acid oxidation. We also determined the effects of TBC1D1 on glucose transport and oxidation. Electrotransfection of mouse soleus muscles with TBC1D1 cDNA increased TBC1D1 protein after 2 wk (P<0.05), without altering its paralog AS160. TBC1D1 overexpression decreased basal palmitate oxidation (-22%) while blunting 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)-stimulated palmitate oxidation (-18%). There was a tendency to increase fatty acid esterification (+10 nmol·g(-1)·60 min(-1), P=0.07), which reflected the reduction in fatty acid oxidation (-12 nmol·g(-1)·60 min(-1)). Concomitantly, basal (+21%) and AICAR-stimulated glucose oxidation (+8%) were increased in TBC1D1-transfected muscles relative to their respective controls (P<0.05), independent of changes in GLUT4 and glucose transport. The reductions in TBC1D1-mediated fatty acid oxidation could not be attributed to changes in the transporter FAT/CD36, muscle mitochondrial content, CPT1 expression or the expression and phosphorylation of AS160, acetyl-CoA carboxylase, or AMPK. However, TBC1D1 overexpression reduced β-HAD enzyme activity (-18%, P<0.05). In conclusion, TBC1D1-mediated reduction of muscle fatty acid oxidation appears to occur via inhibition of β-HAD activity.
Collapse
Affiliation(s)
- A C Maher
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - J McFarlan
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - J Lally
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - L A Snook
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - A Bonen
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
7
|
Sai Y, Zou Z, Peng K, Dong Z. The Parkinson's disease-related genes act in mitochondrial homeostasis. Neurosci Biobehav Rev 2012; 36:2034-43. [DOI: 10.1016/j.neubiorev.2012.06.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/09/2012] [Accepted: 06/12/2012] [Indexed: 11/16/2022]
|
8
|
Sáinz N, Rodríguez A, Catalán V, Becerril S, Ramírez B, Lancha A, Burgos-Ramos E, Gómez-Ambrosi J, Frühbeck G. Leptin reduces the expression and increases the phosphorylation of the negative regulators of GLUT4 traffic TBC1D1 and TBC1D4 in muscle of ob/ob mice. PLoS One 2012; 7:e29389. [PMID: 22253718 PMCID: PMC3253781 DOI: 10.1371/journal.pone.0029389] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 11/28/2011] [Indexed: 02/01/2023] Open
Abstract
Leptin improves insulin sensitivity in skeletal muscle. Our goal was to determine whether proteins controlling GLUT4 traffic are altered by leptin deficiency and in vivo leptin administration in skeletal muscle of wild type and ob/ob mice. Leptin-deficient ob/ob mice were divided in three groups: control, leptin-treated (1 mg/kg/d) and leptin pair-fed ob/ob mice. Microarray analysis revealed that 1,546 and 1,127 genes were regulated by leptin deficiency and leptin treatment, respectively. Among these, we identified 24 genes involved in intracellular vesicle-mediated transport in ob/ob mice. TBC1 domain family, member 1 (Tbc1d1), a negative regulator of GLUT4 translocation, was up-regulated (P = 0.001) in ob/ob mice as compared to wild types. Importantly, leptin treatment reduced the transcript levels of Tbc1d1 (P<0.001) and Tbc1d4 (P = 0.004) in the leptin-treated ob/ob as compared to pair-fed ob/ob animals. In addition, phosphorylation levels of TBC1D1 and TBC1D4 were enhanced in leptin-treated ob/ob as compared to control ob/ob (P = 0.015 and P = 0.023, respectively) and pair-fed ob/ob (P = 0.036 and P = 0.034, respectively) mice. Despite similar GLUT4 protein expression in wild type and ob/ob groups a different immunolocalization of this protein was evidenced in muscle sections. Leptin treatment increased GLUT4 immunoreactivity in gastrocnemius and extensor digitorum longus sections of leptin-treated ob/ob mice. Moreover, GLUT4 protein detected in immunoprecipitates from TBC1D4 was reduced by leptin replacement compared to control ob/ob (P = 0.013) and pair-fed ob/ob (P = 0.037) mice. Our findings suggest that leptin enhances the intracellular GLUT4 transport in skeletal muscle of ob/ob animals by reducing the expression and activity of the negative regulators of GLUT4 traffic TBC1D1 and TBC1D4.
Collapse
Affiliation(s)
- Neira Sáinz
- Metabolic Research Laboratory, Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain
| | - Andoni Lancha
- Metabolic Research Laboratory, Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain
| | - Emma Burgos-Ramos
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Universidad de Navarra, Pamplona, Spain
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain
- * E-mail:
| |
Collapse
|