1
|
Minato Y, Aoki-Nonaka Y, Lwin HY, Ando D, Warita Y, Matsugishi-Nasu A, Hiyoshi T, Takahashi N, Tabeta K. Allyl isothiocyanate suppressed periodontal tissue destruction in mice via bacteriostatic and anti-inflammatory activities against Porphyromonas gingivalis. Arch Oral Biol 2025; 169:106118. [PMID: 39486276 DOI: 10.1016/j.archoralbio.2024.106118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVES Allyl isothiocyanate (AITC) is a phytochemical that is abundantly present in cruciferous vegetables, such as wasabi and mustard. Among its pharmacological properties, it demonstrates anticancer, antifungal, and anti-inflammatory activities. This study aimed to investigate the functions of AITC against periodontopathic bacteria and its effects on a mouse model of periodontitis. DESIGN The antimicrobial and antibiofilm functions of AITC were assessed against Porphyromonas gingivalis, Fusobacterium nucleatum, and Streptococcus mitis. To clarify its anti-inflammatory effects, macrophage-like cells from THP-1 were stimulated with P. gingivalis lipopolysaccharide (LPS), and the release of inflammatory cytokines was analyzed by ELISA. Experimental periodontitis was induced in 9-week-old mice by ligation and oral infection of P. gingivalis, and AITC was injected into the gingiva once daily for 8 days. Alveolar bone resorption was evaluated by measuring the exposed root area. Gene expressions in the periodontal tissue were analyzed via qPCR. RESULTS AITC exerted weak bacteriostatic effects against P. gingivalis, inhibiting biofilm formation. AITC also impeded the production of interleukin-6 and tumor necrosis factor-α induced by P. gingivalis LPS. Additionally, transient receptor potential ankyrin 1(TRPA1) channel agonist inhibited the anti-inflammatory effects of AITC. In vivo, AITC inhibited alveolar bone destruction and decreased the gene transcription of Il6 in the periodontal tissue. CONCLUSION AITC exerted weak bacteriostatic and anti-inflammatory effects against P. gingivalis, reducing alveolar bone destruction and suppressing the inflammatory response in experimental periodontitis. Therefore, AITC may serve as a valuable adjunct in controlling periodontal disease.
Collapse
Affiliation(s)
- Yukako Minato
- Division of Periodontology, Niigata University Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yukari Aoki-Nonaka
- Division of Periodontology, Niigata University Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Hnin Yu Lwin
- Division of Periodontology, Niigata University Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Daiki Ando
- Division of Periodontology, Niigata University Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuko Warita
- Division of Periodontology, Niigata University Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Aoi Matsugishi-Nasu
- Division of Periodontology, Niigata University Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takumi Hiyoshi
- Division of Periodontology, Niigata University Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Takahashi
- Division of Periodontology, Niigata University Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koichi Tabeta
- Division of Periodontology, Niigata University Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
2
|
Mori N, Urata T. Intragastric administration of cinnamaldehyde induces changes in body temperature via TRPA1. Biosci Biotechnol Biochem 2024; 88:196-202. [PMID: 37994656 DOI: 10.1093/bbb/zbad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
The transient receptor potential (TRP) channel family, including TRPA1, is known to be involved in temperature sensing and response. Previous studies have shown that intragastric administration of cinnamaldehyde (a typical TRPA1 agonist) can change body temperature, but the role of TRPA1 in this response is not clear. In this study, we found that intragastric administration of cinnamaldehyde increased in the intrascapular brown adipose tissue (IBAT) and rectal temperatures. However, this effect was not observed in TRPA1 knockout mice, suggesting that TRPA1 is involved in these temperature changes. Intravenous cinnamaldehyde also increased IBAT and rectal temperatures, only in the presence of TRPA1. We also explored the contribution of the vagus nerve to these temperature changes and found that it played a limited role. These results suggest that cinnamaldehyde can affect body temperature through TRPA1 activation, with the vagus nerve having a minor influence.
Collapse
Affiliation(s)
- Noriyuki Mori
- Department of Food Science and Nutrition, Faculty of Human Life, Doshisha Women's College of Liberal Arts, Kamigyo-ku, Kyoto, Japan
- Division of Nutrition Sciences, School of Human Culture, University of Shiga Prefecture, Hikone, Shiga, Japan
| | - Tomomi Urata
- Division of Nutrition Sciences, School of Human Culture, University of Shiga Prefecture, Hikone, Shiga, Japan
| |
Collapse
|
3
|
Hu Z, Zhang Y, Yu W, Li J, Yao J, Zhang J, Wang J, Wang C. Transient receptor potential ankyrin 1 (TRPA1) modulators: Recent update and future perspective. Eur J Med Chem 2023; 257:115392. [PMID: 37269667 DOI: 10.1016/j.ejmech.2023.115392] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 06/05/2023]
Abstract
The transient receptor potential ankyrin 1 (TRPA1) channel is a non-selective cation channel that senses irritant chemicals. Its activation is closely associated with pain, inflammation, and pruritus. TRPA1 antagonists are promising treatments for these diseases, and there has been a recent upsurge in their application to new areas such as cancer, asthma, and Alzheimer's disease. However, due to the generally disappointing performance of TRPA1 antagonists in clinical studies, scientists must pursue the development of antagonists with higher selectivity, metabolic stability, and solubility. Moreover, TRPA1 agonists provide a deeper understanding of activation mechanisms and aid in antagonist screening. Therefore, we summarize the TRPA1 antagonists and agonists developed in recent years, with a particular focus on structure-activity relationships (SARs) and pharmacological activity. In this perspective, we endeavor to keep abreast of cutting-edge ideas and provide inspiration for the development of more effective TRPA1-modulating drugs.
Collapse
Affiliation(s)
- Zelin Hu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Ya Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Wenhan Yu
- College of Letters & Science, University of California, Berkeley, Berkeley, 94720, California, United States
| | - Junjie Li
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaqi Yao
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Jifa Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Wang C, Huang W, Lu J, Chen H, Yu Z. TRPV1-Mediated Microglial Autophagy Attenuates Alzheimer’s Disease-Associated Pathology and Cognitive Decline. Front Pharmacol 2022; 12:763866. [PMID: 35115924 PMCID: PMC8804218 DOI: 10.3389/fphar.2021.763866] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/06/2021] [Indexed: 01/21/2023] Open
Abstract
Autophagy is a major regulator of the ageing process of the central nervous system and neurodegeneration. Autophagy dysfunction has been implicated in the pathogenesis of Alzheimer’s disease (AD). TRPV1 was reported to regulate autophagy to protect against foam cell formation and reduce the release of inflammatory factors in atherosclerosis. In this study, pharmacological activation of TRPV1 with the TRPV1 agonist capsaicin induced autophagy in a TRPV1-dependent manner in both primary microglia and BV2 cells. TRPV1-mediated autophagy regulated glycolysis and oxidative phosphorylation by controlling the expression of genes required for aerobic glycolysis and mitochondrial respiration in primary microglia. TRPV1 agonist capsaicin decreased amyloid and phosphorylated tau pathology and reversed memory deficits by promoting microglia activation, metabolism, and autophagy in 3xTg mice. These results indicate that TRPV1 was a potential therapeutic target for AD, which suggests that capsaicin should be further assessed as a possible treatment for AD.
Collapse
Affiliation(s)
- Chenfei Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Huang
- Cardiology Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Lu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Zhihua Yu, ; Hongzhuan Chen,
| | - Zhihua Yu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhihua Yu, ; Hongzhuan Chen,
| |
Collapse
|
5
|
Okulicz M, Hertig I, Szkudelski T. Differentiated Effects of Allyl Isothiocyanate in Diabetic Rats: From Toxic to Beneficial Action. Toxins (Basel) 2021; 14:toxins14010003. [PMID: 35050980 PMCID: PMC8780617 DOI: 10.3390/toxins14010003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 11/25/2022] Open
Abstract
Allyl isothiocyanate (AITC), a constituent of Brassica family plants, has been reported to possess a high bioactivity in animal and human cells, showing ambiguous properties from adverse to beneficial ones. It was reported its genotoxic, carcinogenic, goitrogenic effects. On the other side, AITC has shown anti-cancer, cardioprotective, neuroprotective, and lately anti-obesity abilities. So far, its anti-diabetic effects are poorly explored. We tried to assess AITC action on carbohydrate, lipid and hormonal disorders in high fat diet-fed/streptozotocin diabetic rats. In this report, diabetic rats were treated intragastrically at doses 2.5, 5 and 25 mg/kg b.w./day of AITC for 2 weeks. Irrespectively of doses, AITC considerably lowered thyroid hormones (fT4, fT3), increased liver TG content, and also caused robust LDL-cholesterol and direct bilirubin concentration enhancement. Moreover, AITC at the highest dose caused pancreatic amylase and lipase drops and thyroid gland hypertrophy. AITC at 2.5 and 5 mg significantly reduced blood glucose levels along with robust beta-hydroxybutyric acid drop. Additionally, AITC at 5 mg improved insulin sensitivity (HOMA-IR index) in spite of reduced blood insulin. To conclude, despite amelioration of diabetic hyperglycemia by AITC, the adverse lipids and hormonal effects may exclude its use as a health-promoting compound in terms of anti-diabetic properties.
Collapse
Affiliation(s)
- Monika Okulicz
- Correspondence: ; Tel.: +48-61-8487196; Fax: +48-61-8487197
| | | | | |
Collapse
|
6
|
Aloum L, Alefishat E, Shaya J, Petroianu GA. Remedia Sternutatoria over the Centuries: TRP Mediation. Molecules 2021; 26:1627. [PMID: 33804078 PMCID: PMC7998681 DOI: 10.3390/molecules26061627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
Sneezing (sternutatio) is a poorly understood polysynaptic physiologic reflex phenomenon. Sneezing has exerted a strange fascination on humans throughout history, and induced sneezing was widely used by physicians for therapeutic purposes, on the assumption that sneezing eliminates noxious factors from the body, mainly from the head. The present contribution examines the various mixtures used for inducing sneezes (remedia sternutatoria) over the centuries. The majority of the constituents of the sneeze-inducing remedies are modulators of transient receptor potential (TRP) channels. The TRP channel superfamily consists of large heterogeneous groups of channels that play numerous physiological roles such as thermosensation, chemosensation, osmosensation and mechanosensation. Sneezing is associated with the activation of the wasabi receptor, (TRPA1), typical ligand is allyl isothiocyanate and the hot chili pepper receptor, (TRPV1), typical agonist is capsaicin, in the vagal sensory nerve terminals, activated by noxious stimulants.
Collapse
Affiliation(s)
- Lujain Aloum
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (L.A.); (E.A.)
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (L.A.); (E.A.)
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman 11941, Jordan
| | - Janah Shaya
- Pre-Medicine Bridge Program, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates;
| | - Georg A. Petroianu
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (L.A.); (E.A.)
| |
Collapse
|
7
|
Yap JMG, Ueda T, Kanemitsu Y, Takeda N, Fukumitsu K, Fukuda S, Uemura T, Tajiri T, Ohkubo H, Maeno K, Ito Y, Oguri T, Ugawa S, Niimi A. AITC inhibits fibroblast-myofibroblast transition via TRPA1-independent MAPK and NRF2/HO-1 pathways and reverses corticosteroids insensitivity in human lung fibroblasts. Respir Res 2021; 22:51. [PMID: 33579280 PMCID: PMC7881560 DOI: 10.1186/s12931-021-01636-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/24/2021] [Indexed: 01/17/2023] Open
Abstract
Background Little is known on the role of transient receptor potential ankyrin 1 (TRPA1) in fibroblast—myofibroblast transition (FMT) that can lead to airway remodeling which is a major problem for severe asthma and fibrosis. Thus, this study investigated the effect of TRPA1 modulators on transforming growth factor beta 1(TGF-β1) -treated lung fibroblasts. Methods MRC-5 cells were preincubated with TGF-β1 for 24 h. TRPA1 agonist or antagonist were added and further incubated for 24 h. The changes in TRPA1 and alpha-smooth muscle actin (α-SMA) expressions by stimuli were evaluated using qRT-PCR, western blot and immunohistochemical analyses. Statistical significance was determined by using one- or two-way ANOVA, followed by Bonferroni’s post hoc analysis for comparison of multiple groups and paired 2-tailed Student’s t-test between 2 groups. Results MRC-5 cells treated by TGF-β1 significantly upregulated α-SMA mRNA expressions (P < 0.01), but downregulated TRPA1 gene expression (P < 0.001). Post-treatment of TRPA1 activator, allyl isothiocyanate (AITC), after TGF-β1 significantly downregulated the α-SMA gene induction (P < 0.01 at 24 h), protein expression (P < 0.05) and immunoreactivity with stress fibers (P < 0.05). On the other hand, TRPA1 antagonist HC-030031 did not prevent this effect, and instead tended to facilitate the suppressive effect of AITC when co-stimulated. AITC significantly increased phosphorylated- extracellular signal-regulated kinase (ERK) 1/2 and heme oxygenase (HO)-1 protein expressions (P < 0.05) in TGF-β1-treated cells. Combined inhibition with ERK1/2 mitogen-activated protein kinase (MAPK) and nuclear factor erythroid 2-related factor (NRF2) almost completely reversed AITC-induced α-SMA suppression (P < 0.05). Dexamethasone was not able to inhibit the upregulated α-SMA induction by TGF-β1. However, AITC improved dexamethasone-insensitive myodifferentiation in the presence of the corticosteroid (P < 0.01). Conclusion We found that AITC exerts protective effect on TGF-β1-induced α-SMA induction by activating ERK1/2 MAPK and NRF2/HO-1 pathways in lung fibroblasts. It also overcomes corticosteroids insensitivity in TGF-β1-induced α-SMA induction. TRPA1 antagonist modulates the suppressive effect, but not prevent it. AITC and TRPA1 antagonist may be therapeutic agents in treating chronic respiratory diseases.
Collapse
Affiliation(s)
- Jennifer Maries Go Yap
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Takashi Ueda
- Department of Anatomy and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Yoshihiro Kanemitsu
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Norihisa Takeda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Kensuke Fukumitsu
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Satoshi Fukuda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Takehiro Uemura
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Tomoko Tajiri
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Hirotsugu Ohkubo
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Ken Maeno
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Yutaka Ito
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Testsuya Oguri
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Shinya Ugawa
- Department of Anatomy and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| |
Collapse
|
8
|
Hai J, Kawabata F, Uchida K, Nishimura S, Tabata S. Intragastric administration of AMG517, a TRPV1 antagonist, enhanced activity-dependent energy metabolism via capsaicin-sensitive sensory nerves in mice. Biosci Biotechnol Biochem 2020; 84:2121-2127. [PMID: 32633621 DOI: 10.1080/09168451.2020.1789836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Transient receptor potential vanilloid 1 (TRPV1), a nociceptive cation channel, is known to play roles in regulating the energy metabolism (EM) of the whole body. We previously reported that TRPV1 antagonists such as AMG517 enhanced EM in mice, however, these mechanisms remain unclear. The aim of this study was to explore the mechanisms underlying the enhancement of EM by AMG517, a selective TRPV1 antagonist, in mice. Respiratory gas analysis indicated that intragastric administration of AMG517 enhanced EM along with increasing locomotor activity in mice. Next, to clarify the possible involvement with afferent sensory nerves, including the vagus, we desensitized the capsaicin-sensitive sensory nerves of mice by systemic capsaicin treatment. In the desensitized mice, intragastric administration of AMG517 did not change EM and locomotor activity. Therefore, this study indicated that intragastric administration of AMG517 enhanced EM and increased locomotor activity via capsaicin-sensitive sensory nerves, including vagal afferents in mice.
Collapse
Affiliation(s)
- Jun Hai
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University , Fukuoka, Japan.,Department of Physiological Science and Molecular Biology, Fukuoka Dental College , Fukuoka, Japan
| | - Fuminori Kawabata
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University , Fukuoka, Japan.,Physiology of Domestic Animals, Faculty of Agriculture and Life Science, Hirosaki University , Aomori, Japan
| | - Kunitoshi Uchida
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College , Fukuoka, Japan.,Division of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka , Shizuoka, Japan
| | - Shotaro Nishimura
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University , Fukuoka, Japan
| | - Shoji Tabata
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University , Fukuoka, Japan
| |
Collapse
|
9
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
10
|
Maliszewska J, Jankowska M, Kletkiewicz H, Stankiewicz M, Rogalska J. Effect of Capsaicin and Other Thermo-TRP Agonists on Thermoregulatory Processes in the American Cockroach. Molecules 2018; 23:E3360. [PMID: 30567399 PMCID: PMC6321544 DOI: 10.3390/molecules23123360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022] Open
Abstract
Capsaicin is known to activate heat receptor TRPV1 and induce changes in thermoregulatory processes of mammals. However, the mechanism by which capsaicin induces thermoregulatory responses in invertebrates is unknown. Insect thermoreceptors belong to the TRP receptors family, and are known to be activated not only by temperature, but also by other stimuli. In the following study, we evaluated the effects of different ligands that have been shown to activate (allyl isothiocyanate) or inhibit (camphor) heat receptors, as well as, activate (camphor) or inhibit (menthol and thymol) cold receptors in insects. Moreover, we decided to determine the effect of agonist (capsaicin) and antagonist (capsazepine) of mammalian heat receptor on the American cockroach's thermoregulatory processes. We observed that capsaicin induced the decrease of the head temperature of immobilized cockroaches. Moreover, the examined ligands induced preference for colder environments, when insects were allowed to choose the ambient temperature. Camphor exposure resulted in a preference for warm environments, but the changes in body temperature were not observed. The results suggest that capsaicin acts on the heat receptor in cockroaches and that TRP receptors are involved in cockroaches' thermosensation.
Collapse
Affiliation(s)
- Justyna Maliszewska
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, 87-100 Toruń, Poland.
| | - Milena Jankowska
- Department of Biophysics, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, 87-100 Toruń, Poland.
| | - Hanna Kletkiewicz
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, 87-100 Toruń, Poland.
| | - Maria Stankiewicz
- Department of Biophysics, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, 87-100 Toruń, Poland.
| | - Justyna Rogalska
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, 87-100 Toruń, Poland.
| |
Collapse
|
11
|
HAI J, KAWABATA F, KAWABATA Y, LIANG R, NISHIMURA S, TABATA S. Differences in the effects of TRPV1 antagonists on energy metabolism in mice . Biomed Res 2018; 39:279-286. [DOI: 10.2220/biomedres.39.279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jun HAI
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University
| | - Fuminori KAWABATA
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University
| | - Yuko KAWABATA
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University
| | - Ruojun LIANG
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University
| | - Shotaro NISHIMURA
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University
| | - Shoji TABATA
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University
| |
Collapse
|
12
|
Mori N, Kurata M, Yamazaki H, Matsumura S, Hashimoto T, Kanazawa K, Nadamoto T, Inoue K, Fushiki T. Allyl isothiocyanate increases carbohydrate oxidation through enhancing insulin secretion by TRPV1. Biosci Biotechnol Biochem 2017; 82:698-708. [PMID: 29207921 DOI: 10.1080/09168451.2017.1407234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The transient receptor potential (TRP) V1 is a cation channel belonging to the TRP channel family and it has been reported to be involved in energy metabolism, especially glucose metabolism. While, we have previously shown that intragastric administration of allyl isothiocyanate (AITC) enhanced glucose metabolism via TRPV1, the underlying mechanism has not been elucidated. In this study, we examined the relationship between insulin secretion and the increase in carbohydrate oxidation due to AITC. Intragastric administration of AITC elevated blood insulin levels in mice and AITC directly enhanced insulin secretion from isolated islets. These observations were not reproduced in TRPV1 knockout mice. Furthermore, AITC did not increase carbohydrate oxidation in streptozotocin-treated mice. These results suggest that intragastric administration of AITC could induce insulin secretion from islets via TRPV1 and that enhancement of insulin secretion was related to the increased carbohydrate oxidation due to AITC.
Collapse
Affiliation(s)
- Noriyuki Mori
- a Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture , Kyoto University , Kyoto , Japan.,b Division of Nutrition Sciences, School of Human Culture , University of Shiga Prefecture , Shiga , Japan
| | - Manami Kurata
- a Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture , Kyoto University , Kyoto , Japan
| | - Hanae Yamazaki
- c Laboratory of Ajinomoto Integrative Research for Advanced Dieting, Graduate School of Agriculture , Kyoto University , Kyoto , Japan
| | - Shigenobu Matsumura
- a Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture , Kyoto University , Kyoto , Japan
| | - Takashi Hashimoto
- d Department of Agrobioscience, Graduate School of Agricultural Science , Kobe University , Kobe , Japan
| | - Kazuki Kanazawa
- d Department of Agrobioscience, Graduate School of Agricultural Science , Kobe University , Kobe , Japan
| | - Tomonori Nadamoto
- b Division of Nutrition Sciences, School of Human Culture , University of Shiga Prefecture , Shiga , Japan
| | - Kazuo Inoue
- a Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture , Kyoto University , Kyoto , Japan
| | - Tohru Fushiki
- a Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture , Kyoto University , Kyoto , Japan
| |
Collapse
|
13
|
Langeveld M, Tan CY, Soeters MR, Virtue S, Watson LPE, Murgatroyd PR, Ambler GK, Vidal-Puig S, Chatterjee KV, Vidal-Puig A. No metabolic effects of mustard allyl-isothiocyanate compared with placebo in men. Am J Clin Nutr 2017; 106:1197-1205. [PMID: 29070564 PMCID: PMC5657285 DOI: 10.3945/ajcn.116.148395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 09/11/2017] [Indexed: 11/16/2022] Open
Abstract
Background: Induction of nonshivering thermogenesis can be used to influence energy balance to prevent or even treat obesity. The pungent component of mustard, allyl-isothiocyanate (AITC), activates the extreme cold receptor transient receptor potential channel, subfamily A, member 1 and may thus induce energy expenditure and metabolic changes.Objective: The objective of our study was to evaluate the potential of mustard AITC to induce thermogenesis (primary outcome) and alter body temperature, cold and hunger sensations, plasma metabolic parameters, and energy intake (secondary outcomes).Design: Energy expenditure in mice was measured after subcutaneous injection with vehicle, 1 mg norepinephrine/kg, or 5 mg AITC/kg. In our human crossover study, 11 healthy subjects were studied under temperature-controlled conditions after an overnight fast. After ingestion of 10 g of capsulated mustard or uncapsulated mustard or a capsulated placebo mixture, measurements of energy expenditure, substrate oxidation, core temperature, cold and hunger scores, and plasma parameters were repeated every 30 min during a 150-min period. Subjects were randomly selected for the placebo and capsulated mustard intervention; 9 of 11 subjects received the uncapsulated mustard as the final intervention because this could not be blinded. After the experiments, energy intake was measured with the universal eating monitor in a test meal.Results: In mice, AITC administration induced a 32% increase in energy expenditure compared with vehicle (17.5 ± 4.9 J · min-1 · mouse-1 compared with 12.5 ± 1.2 J · min-1 · mouse-1, P = 0.03). Of the 11 randomly selected participants, 1 was excluded because of intercurrent illness after the first visit and 1 withdrew after the second visit. Energy expenditure did not increase after ingestion of capsulated or uncapsulated mustard compared with placebo. No differences in substrate oxidation, core temperature, cold and hunger scores, or plasma parameters were found, nor was the energy intake at the end of the experiment different between the 3 conditions.Conclusion: The highest tolerable dose of mustard we were able to use did not elicit a relevant thermogenic response in humans. This trial was registered at www.controlled-trials.com as ISRCTN19147515.
Collapse
Affiliation(s)
- Mirjam Langeveld
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, and
| | - Chong Yew Tan
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, and
| | - Maarten R Soeters
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, and
| | - Samuel Virtue
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, and
| | - Laura PE Watson
- National Institute for Health Research/Wellcome Trust Clinical Research Facility, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Peter R Murgatroyd
- National Institute for Health Research/Wellcome Trust Clinical Research Facility, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Graeme K Ambler
- South East Wales Vascular Network, Aneurin Bevan University Health Board, Royal Gwent Hospital, Newport, United Kingdom
| | - Santiago Vidal-Puig
- Department of Applied Statistics and Operational Research and Quality, Technical University of Valencia, Valencia, Spain; and
| | - Krishna V Chatterjee
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, and
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, and
| |
Collapse
|
14
|
Urata T, Mori N, Fukuwatari T. Vagus nerve is involved in the changes in body temperature induced by intragastric administration of 1,8-cineole via TRPM8 in mice. Neurosci Lett 2017; 650:65-71. [PMID: 28412531 DOI: 10.1016/j.neulet.2017.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/06/2017] [Accepted: 04/10/2017] [Indexed: 02/07/2023]
Abstract
Transient Receptor Potential Melastatin 8 (TRPM8) is a cold receptor activated by mild cold temperature (<28°C). TRPM8 expressed in cutaneous sensory nerves is involved in cold sensation and thermoregulation. TRPM8 mRNA is detected in various tissues, including the gastrointestinal mucosa, and in the vagal afferent nerve. The relationship between vagal afferent nerve-specific expression of TRPM8 and thermoregulation remains unclear. In this study, we aimed to investigate whether TRPM8 expression in the vagal afferent nerve is involved in autonomic thermoregulation. We found that intragastric administration of 1,8-cineole, a TRPM8 agonist, increased intrascapular brown adipose tissue and colonic temperatures, and M8-B-treatment (TRPM8 antagonist) inhibited these responses. Intravenous administration of 1,8-cineole also showed similar effects. In vagotomized mice, the responses induced by intragastric administration of 1,8-cineole were attenuated. These results suggest that TRPM8 expressed in tissues apart from cutaneous sensory nerves are involved in autonomic thermoregulation response.
Collapse
Affiliation(s)
- Tomomi Urata
- Department of Nutrition, School of Human Culture, the University of Shiga Prefecture, Hassakacho 2500, Hikone, Shiga 522-8533, Japan
| | - Noriyuki Mori
- Department of Nutrition, School of Human Culture, the University of Shiga Prefecture, Hassakacho 2500, Hikone, Shiga 522-8533, Japan.
| | - Tsutomu Fukuwatari
- Department of Nutrition, School of Human Culture, the University of Shiga Prefecture, Hassakacho 2500, Hikone, Shiga 522-8533, Japan
| |
Collapse
|
15
|
KAWABATA F, KAWABATA Y, LIANG R, NISHIMURA S, TABATA S. Comparative analysis of allyl isothiocyanate (AITC)-induced carbohydrate oxidation changes via TRPV1 between mice and chickens . Biomed Res 2017. [DOI: 10.2220/biomedres.38.149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Wang H, Siemens J. TRP ion channels in thermosensation, thermoregulation and metabolism. Temperature (Austin) 2015; 2:178-87. [PMID: 27227022 PMCID: PMC4843888 DOI: 10.1080/23328940.2015.1040604] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 12/13/2022] Open
Abstract
In humans, the TRP superfamily of cation channels includes 27 related molecules that respond to a remarkable variety of chemical and physical stimuli. While physiological roles for many TRP channels remain unknown, over the past years several have been shown to function as molecular sensors in organisms ranging from yeast to humans. In particular, TRP channels are now known to constitute important components of sensory systems, where they participate in the detection or transduction of osmotic, mechanical, thermal, or chemosensory stimuli. We here summarize our current understanding of the role individual members of this versatile receptor family play in thermosensation and thermoregulation, and also touch upon their immerging role in metabolic control.
Collapse
Affiliation(s)
- Hong Wang
- Department of Pharmacology; University of Heidelberg ; Heidelberg, Germany
| | - Jan Siemens
- Department of Pharmacology; University of Heidelberg ; Heidelberg, Germany
| |
Collapse
|
17
|
Tóth BI, Oláh A, Szöllősi AG, Bíró T. TRP channels in the skin. Br J Pharmacol 2014; 171:2568-81. [PMID: 24372189 DOI: 10.1111/bph.12569] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/28/2013] [Accepted: 12/03/2013] [Indexed: 12/16/2022] Open
Abstract
Emerging evidence suggests that transient receptor potential (TRP) ion channels not only act as 'polymodal cellular sensors' on sensory neurons but are also functionally expressed by a multitude of non-neuronal cell types. This is especially true in the skin, one of the largest organs of the body, where they appear to be critically involved in regulating various cutaneous functions both under physiological and pathophysiological conditions. In this review, we focus on introducing the roles of several cutaneous TRP channels in the regulation of the skin barrier, skin cell proliferation and differentiation, and immune functions. Moreover, we also describe the putative involvement of several TRP channels in the development of certain skin diseases and identify future TRP channel-targeted therapeutic opportunities.
Collapse
Affiliation(s)
- Balázs I Tóth
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; DE-MTA 'Lendület' Cellular Physiology Research Group, Department of Physiology, University of Debrecen, Medical and Health Science Center, Research Center for Molecular Medicine, Debrecen, Hungary
| | | | | | | |
Collapse
|
18
|
Abstract
This themed issue of the British Journal of Pharmacology contains review and research articles on recent advances in transient receptor potential (TRP) channel pharmacology. The review articles, written by a panel of distinguished experts, address the rapid progress in TRP channel research in fields as diverse as oncology, urology, dermatology, migraine, inflammation and pain. These reviews are complemented by original research reports focusing, among others, on the emerging roles of TRPV1 in osteoporosis and cystitis and on evodiamine as a lead structure for the development of potent TRPV1 agonists/desensitizers. Other papers highlight the differences in TRPV3 pharmacology between recombinant and native systems, the mechanisms of TRPM3 activation/inhibition and TRPP2 as a target of naringenin, a dietary flavonoid with anticancer actions. New therapeutic opportunities in pain may arise from the strategy to combine TRP channel and cell membrane impermeant sodium channel blockers to inhibit sensory nerve activity.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
19
|
Pezzoli M, Elhamdani A, Camacho S, Meystre J, González SM, le Coutre J, Markram H. Dampened neural activity and abolition of epileptic-like activity in cortical slices by active ingredients of spices. Sci Rep 2014; 4:6825. [PMID: 25359561 PMCID: PMC4215320 DOI: 10.1038/srep06825] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/19/2014] [Indexed: 01/24/2023] Open
Abstract
Active ingredients of spices (AIS) modulate neural response in the peripheral nervous system, mainly through interaction with TRP channel/receptors. The present study explores how different AIS modulate neural response in layer 5 pyramidal neurons of S1 neocortex. The AIS tested are agonists of TRPV1/3, TRPM8 or TRPA1. Our results demonstrate that capsaicin, eugenol, menthol, icilin and cinnamaldehyde, but not AITC dampen the generation of APs in a voltage- and time-dependent manner. This effect was further tested for the TRPM8 ligands in the presence of a TRPM8 blocker (BCTC) and on TRPM8 KO mice. The observable effect was still present. Finally, the influence of the selected AIS was tested on in vitro gabazine-induced seizures. Results coincide with the above observations: except for cinnamaldehyde, the same AIS were able to reduce the number, duration of the AP bursts and increase the concentration of gabazine needed to elicit them. In conclusion, our data suggests that some of these AIS can modulate glutamatergic neurons in the brain through a TRP-independent pathway, regardless of whether the neurons are stimulated intracellularly or by hyperactive microcircuitry.
Collapse
Affiliation(s)
- Maurizio Pezzoli
- Laboratory of Neural Microcircuitry. Brain and Mind Institute. École Polytechnique Fédérale de Lausanne. Switzerland
| | - Abdeladim Elhamdani
- Laboratory of Neural Microcircuitry. Brain and Mind Institute. École Polytechnique Fédérale de Lausanne. Switzerland
| | - Susana Camacho
- Laboratory of Neural Microcircuitry. Brain and Mind Institute. École Polytechnique Fédérale de Lausanne. Switzerland
- Laboratory of Perception Physiology. Nestlé Research Center. Lausanne, Switzerland
| | - Julie Meystre
- Laboratory of Neural Microcircuitry. Brain and Mind Institute. École Polytechnique Fédérale de Lausanne. Switzerland
| | | | - Johannes le Coutre
- Laboratory of Perception Physiology. Nestlé Research Center. Lausanne, Switzerland
- Organization for Interdisciplinary Research Projects, The University of Tokyo, Tokyo, Japan
| | - Henry Markram
- Laboratory of Neural Microcircuitry. Brain and Mind Institute. École Polytechnique Fédérale de Lausanne. Switzerland
| |
Collapse
|
20
|
Nilius B, Szallasi A. Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol Rev 2014; 66:676-814. [PMID: 24951385 DOI: 10.1124/pr.113.008268] [Citation(s) in RCA: 377] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The large Trp gene family encodes transient receptor potential (TRP) proteins that form novel cation-selective ion channels. In mammals, 28 Trp channel genes have been identified. TRP proteins exhibit diverse permeation and gating properties and are involved in a plethora of physiologic functions with a strong impact on cellular sensing and signaling pathways. Indeed, mutations in human genes encoding TRP channels, the so-called "TRP channelopathies," are responsible for a number of hereditary diseases that affect the musculoskeletal, cardiovascular, genitourinary, and nervous systems. This review gives an overview of the functional properties of mammalian TRP channels, describes their roles in acquired and hereditary diseases, and discusses their potential as drug targets for therapeutic intervention.
Collapse
Affiliation(s)
- Bernd Nilius
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.); and Department of Pathology, Monmouth Medical Center, Long Branch, New Jersey (A.S.)
| | - Arpad Szallasi
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.); and Department of Pathology, Monmouth Medical Center, Long Branch, New Jersey (A.S.)
| |
Collapse
|
21
|
Straub RH. TRPV1, TRPA1, and TRPM8 channels in inflammation, energy redirection, and water retention: role in chronic inflammatory diseases with an evolutionary perspective. J Mol Med (Berl) 2014; 92:925-37. [DOI: 10.1007/s00109-014-1175-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/17/2014] [Accepted: 05/20/2014] [Indexed: 01/04/2023]
|
22
|
Ahern GP. Transient receptor potential channels and energy homeostasis. Trends Endocrinol Metab 2013; 24:554-60. [PMID: 23891326 PMCID: PMC8772519 DOI: 10.1016/j.tem.2013.06.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/25/2013] [Accepted: 06/25/2013] [Indexed: 11/24/2022]
Abstract
Transient receptor potential (TRP) channels are members of an ancient class of ion channels that are present in most mammalian tissues. Consistent with their wide tissue distribution, TRPs are capable of influencing diverse physiological processes including adipocyte function, energy intake and energy expenditure. TRPs function as transduction channels downstream of G-protein-coupled receptors (GPCRs) and receptor tyrosine kinases, and some can also be direct sensors of chemical irritants that influence food intake or regulate body temperature and thermogenesis. TRP agonists were shown to reduce body weight and adiposity, suggesting that they might be exploited as therapeutic targets. In this review I discuss the current knowledge of how TRP channels influence energy balance.
Collapse
Affiliation(s)
- Gerard P Ahern
- Department of Pharmacology and Physiology, Georgetown University, Washington DC 20007, USA.
| |
Collapse
|
23
|
Winter Z, Buhala A, Ötvös F, Jósvay K, Vizler C, Dombi G, Szakonyi G, Oláh Z. Functionally important amino acid residues in the transient receptor potential vanilloid 1 (TRPV1) ion channel--an overview of the current mutational data. Mol Pain 2013; 9:30. [PMID: 23800232 PMCID: PMC3707783 DOI: 10.1186/1744-8069-9-30] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/17/2013] [Indexed: 12/30/2022] Open
Abstract
This review aims to create an overview of the currently available results of site-directed mutagenesis studies on transient receptor potential vanilloid type 1 (TRPV1) receptor. Systematization of the vast number of data on the functionally important amino acid mutations of TRPV1 may provide a clearer picture of this field, and may promote a better understanding of the relationship between the structure and function of TRPV1. The review summarizes information on 112 unique mutated sites along the TRPV1, exchanged to multiple different residues in many cases. These mutations influence the effect or binding of different agonists, antagonists, and channel blockers, alter the responsiveness to heat, acid, and voltage dependence, affect the channel pore characteristics, and influence the regulation of the receptor function by phosphorylation, glycosylation, calmodulin, PIP2, ATP, and lipid binding. The main goal of this paper is to publish the above mentioned data in a form that facilitates in silico molecular modelling of the receptor by promoting easier establishment of boundary conditions. The better understanding of the structure-function relationship of TRPV1 may promote discovery of new, promising, more effective and safe drugs for treatment of neurogenic inflammation and pain-related diseases and may offer new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Zoltán Winter
- Institute of Pharmaceutical Analysis, Faculty of Pharmacy, University of Szeged, Szeged, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Virtue S, Vidal-Puig A. Assessment of brown adipose tissue function. Front Physiol 2013; 4:128. [PMID: 23760815 PMCID: PMC3671177 DOI: 10.3389/fphys.2013.00128] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/16/2013] [Indexed: 11/25/2022] Open
Abstract
In this review we discuss practical considerations for the assessment of brown adipose tissue in rodent models, focusing on mice. The central aim of the review is to provide a critical appraisal of the utility of specialized techniques for assessing brown adipose tissue function in vivo. We cover several of the most common specialized methods for analysing brown adipose tissue function in vivo, including assessment of maximal thermogenic capacity by indirect calorimetry and the measurement of sympathetic tone to brown adipose tissue. While these techniques are powerful, they are not readily available to all laboratories; therefore we also cover several simple measurements that, particularly in combination, can be used to determine if a mouse model is likely to have alterations in brown adipose tissue function. Such techniques include: pair feeding, analysis of brown adipose tissue lipid content and mRNA and protein markers of brown adipose tissue activation.
Collapse
Affiliation(s)
- Sam Virtue
- Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of CambridgeCambridge, UK
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of CambridgeCambridge, UK
- Wellcome Trust Sanger InstituteCambridge, UK
| |
Collapse
|
25
|
Gregersen NT, Belza A, Jensen MG, Ritz C, Bitz C, Hels O, Frandsen E, Mela DJ, Astrup A. Acute effects of mustard, horseradish, black pepper and ginger on energy expenditure, appetite, ad libitum energy intake and energy balance in human subjects. Br J Nutr 2013; 109:556-63. [PMID: 23021155 DOI: 10.1017/s0007114512001201] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chilli peppers have been shown to enhance diet-induced thermogenesis (DIT) and reduce energy intake (EI) in some studies, but there are few data on other pungent spices. The primary aim of the present study was to test the acute effects of black pepper (pepper), ginger, horseradish and mustard in a meal on 4 h postprandial DIT. The secondary aim was to examine the effects on subjective appetite measures, ad libitum EI and energy balance. In a five-way placebo-controlled, single-blind, cross-over trial, twenty-two young (age 24·9 (SD 4·6) years), normal-weight (BMI 21·8 (SD 2·1) kg/m²) males were randomly assigned to receive a brunch meal with either pepper (1·3 g), ginger (20 g), horseradish (8·3 g), mustard (21 g) or no spices (placebo). The amounts of spices were chosen from pre-testing to make the meal spicy but palatable. No significant treatment effects were observed on DIT, but mustard produced DIT, which tended to be larger than that of placebo (14 %, 59 (SE 3) v. 52 (SE 2) kJ/h, respectively, P=0·08). No other spice induced thermogenic effects approaching statistical significance. Subjective measures of appetite (P>0·85), ad libitum EI (P=0·63) and energy balance (P=0·67) also did not differ between the treatments. Finally, horseradish decreased heart rate (P=0·048) and increased diastolic blood pressure (P= 0·049) compared with placebo. In conclusion, no reliable treatment effects on appetite, EI or energy balance were observed, although mustard tended to be thermogenic at this dose. Further studies should explore the possible strength and mechanisms of the potential thermogenic effect of mustard actives, and potential enhancement by, for example, combinations with other food components.
Collapse
Affiliation(s)
- N T Gregersen
- Department of Human Nutrition, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | - A Belza
- Department of Human Nutrition, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | - M G Jensen
- Department of Human Nutrition, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | - C Ritz
- Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - C Bitz
- Department of Human Nutrition, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | - O Hels
- StatistiConsult, Ølstykke, Denmark
| | - E Frandsen
- Department of Clinical Physiology and Nuclear Medicine, Glostrup University Hospital, Glostrup, Denmark
| | - D J Mela
- Unilever R&D Vlaardingen, Vlaardingen, The Netherlands
| | - A Astrup
- Department of Human Nutrition, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| |
Collapse
|
26
|
MORI N, KURATA M, YAMAZAKI H, HOSOKAWA H, NADAMOTO T, INOUE K, FUSHIKI T. Intragastric Administration of Allyl Isothiocyanate Reduces Hyperglycemia in Intraperitoneal Glucose Tolerance Test (IPGTT) by Enhancing Blood Glucose Consumption in Mice. J Nutr Sci Vitaminol (Tokyo) 2013; 59:56-63. [DOI: 10.3177/jnsv.59.56] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Glendinning JI, Simons YM, Youngentob L, Youngentob SL. Fetal ethanol exposure attenuates aversive oral effects of TrpV1, but not TrpA1 agonists in rats. Exp Biol Med (Maywood) 2012; 237:236-40. [PMID: 22378825 DOI: 10.1258/ebm.2011.011345] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In humans, fetal ethanol exposure is highly predictive of adolescent ethanol use and abuse. Prior work in our labs indicated that fetal ethanol exposure results in stimulus-induced chemosensory plasticity in the taste and olfactory systems of adolescent rats. In particular, we found that increased ethanol acceptability could be attributed, in part, to an attenuated aversion to ethanol's aversive odor and quinine-like bitter taste quality. Here, we asked whether fetal ethanol exposure also alters the oral trigeminal response of adolescent rats to ethanol. We focused on two excitatory ligand-gated ion channels, TrpV1 and TrpA1, which are expressed in oral trigeminal neurons and mediate the aversive orosensory response to many chemical irritants. To target TrpV1, we used capsaicin, and to target TrpA1, we used allyl isothiocyanate (or mustard oil). We assessed the aversive oral effects of ethanol, together with capsaicin and mustard oil, by measuring short-term licking responses to a range of concentrations of each chemical. Experimental rats were exposed in utero by administering ethanol to dams through a liquid diet. Control rats had ad libitum access to an iso-caloric iso-nutritive liquid diet. We found that fetal ethanol exposure attenuated the oral aversiveness of ethanol and capsaicin, but not mustard oil, in adolescent rats. Moreover, the increased acceptability of ethanol was directly related to the reduced aversiveness of the TrpV1-mediated orosensory input. We propose that fetal ethanol exposure increases ethanol avidity not only by making ethanol smell and taste better, but also by attenuating ethanol's capsaicin-like burning sensations.
Collapse
Affiliation(s)
- John I Glendinning
- Department of Biology, Barnard College, Columbia University, New York, NY 10027, USA.
| | | | | | | |
Collapse
|