1
|
Nogueira JE, Amorim MR, Pinto AP, da Rocha AL, da Silva ASR, Branco LGS. Molecular hydrogen downregulates acute exhaustive exercise-induced skeletal muscle damage. Can J Physiol Pharmacol 2021; 99:812-820. [PMID: 33356867 DOI: 10.1139/cjpp-2020-0297] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Physical exercise-induced skeletal muscle damage may be characterized by increased oxidative stress, inflammation, and apoptosis which may be beneficial when exercise is regular, but it is rather harmful when exercise is exhaustive and performed acutely by unaccustomed individuals. Molecular hydrogen (H2) has emerged as a potent antioxidant, anti-inflammatory, and anti-apoptotic agent, but its action on the deleterious effects of acute exhaustive exercise in muscle damage remain unknown. Therefore, we tested the hypothesis that H2 decreases acute exhaustive exercise-induced skeletal muscle damage of sedentary rats. Rats ran to exhaustion on a sealed treadmill inhaling an H2-containing mixture or the control gas. We measured oxidative stress (SOD, GSH, and TBARS), inflammatory (TNF-α, IL-1β, IL-6, IL-10, and NF-κB phosphorylation), and apoptotic (expression of caspase-3, Bcl-2, and HSP70) markers. Exercise caused no changes in SOD activity but increased TBARS levels. H2 caused increases in exercise-induced SOD activity and blunted exercise-induced increased TBARS levels. We observed exercise-induced TNF-α and IL-6 surges as well as NF-κB phosphorylation, which were blunted by H2. Exercise increased cleaved caspase-3 expression, and H2 reduced this response. In conclusion, H2 effectively downregulates muscle damage, reducing oxidative stress, inflammation, and apoptosis after acute exhaustive exercise performed by an unaccustomed organism.
Collapse
Affiliation(s)
- Jonatas E Nogueira
- School of Physical Education and Sports of Ribeirao Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Mateus R Amorim
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana P Pinto
- Postgraduate Program in Rehabilitation and Functional Performance, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Alisson L da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Adelino S R da Silva
- School of Physical Education and Sports of Ribeirao Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Postgraduate Program in Rehabilitation and Functional Performance, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz G S Branco
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
2
|
Myrcene Attenuates Renal Inflammation and Oxidative Stress in the Adrenalectomized Rat Model. Molecules 2020; 25:molecules25194492. [PMID: 33007969 PMCID: PMC7582976 DOI: 10.3390/molecules25194492] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022] Open
Abstract
Physiological Glucocorticoids are important regulators of the immune system. Pharmacological GCs are in widespread use to treat inflammatory diseases. Adrenalectomy (ADX) has been shown to exacerbate renal injury through inflammation and oxidative stress that results in renal impairment due to depletion of GCs. In this study, the effect of myrcene to attenuate renal inflammation and oxidative stress was evaluated in the adrenalectomized rat model. Rats were adrenalectomized bilaterally or the adrenals were not removed after surgery (sham). Myrcene (50 mg/kg body weight, orally) was administered post ADX. Myrcene treatment resulted in significant downregulation of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) compared to untreated ADX rats. In addition, myrcene resulted in significant downregulation of immunomodulatory factors (IFNγ and NF-κB) and anti-inflammatory markers (IL-4 and IL-10) in treated ADX compared to untreated ADX. Myrcene significantly increased the antioxidant molecules (CAT, GSH, and SOD) and decreased MDA levels in treated ADX compared to untreated. Moreover, myrcene treatment reduced the expression of COX-2, iNOS, KIM-1, and kidney functional molecules (UREA, LDH, total protein, and creatinine) in ADX treated compared to ADX untreated. These results suggest that myrcene could be further developed as a therapeutic drug for treatment of kidney inflammation and injury.
Collapse
|
3
|
Yoo SZ, No MH, Heo JW, Chang E, Park DH, Kang JH, Seo DY, Han J, Jung SJ, Hwangbo K, Kwak HB. Effects of a single bout of exercise on mitochondria-mediated apoptotic signaling in rat cardiac and skeletal muscles. J Exerc Rehabil 2019; 15:512-517. [PMID: 31523670 PMCID: PMC6732537 DOI: 10.12965/jer.1938380.190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022] Open
Abstract
This study aimed to determine the effects of a single bout exercise on mitochondria-mediated apoptotic signaling in cardiac and skeletal muscles. Fischer 344 rats (4 months old) were randomly divided into the control or a single bout of exercise group (n=10 each). The rats performed a single bout of treadmill exercise for 60 min. Mitochondria-mediated apoptotic signaling (e.g., Bax, Bcl-2, mitochondrial permeability transition pore [mPTP] opening, cytochrome c, and cleaved caspase-3) was measured in cardiac (e.g., left ventricle) and skeletal (e.g., soleus and white gastrocnemius) muscles. A single bout of exercise significantly decreased mPTP opening sensitivity in all tissues. However, a single bout of exercise did not show any statistical differences in Bax, Bcl-2, cytochrome c, and cleaved caspase-3 in all tissues measured. A single bout of exercise did not show definite results on characteristics of mitochondria-mediated apoptotic signaling. Therefore, further research is necessary to provide a more mechanistic understanding of the apoptosis pathway.
Collapse
Affiliation(s)
- Su-Zi Yoo
- Department of Kinesiology, Inha University, Incheon, Korea
| | - Mi-Hyun No
- Department of Kinesiology, Inha University, Incheon, Korea
| | - Jun-Won Heo
- Department of Kinesiology, Inha University, Incheon, Korea
| | - Eunwook Chang
- Department of Kinesiology, Inha University, Incheon, Korea
| | - Dong-Ho Park
- Department of Kinesiology, Inha University, Incheon, Korea
| | - Ju-Hee Kang
- Department of Pharmacology and Medicinal Toxicology Research Center, Inha University School of Medicine, Incheon, Korea
| | - Dae-Yun Seo
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Su-Jeen Jung
- Department of Leisure Sports, Seoil University, Seoul, Korea
| | - Kwan Hwangbo
- Technical & Education Office, Korea Football Association, Seoul, Korea
| | - Hyo-Bum Kwak
- Department of Kinesiology, Inha University, Incheon, Korea
| |
Collapse
|
4
|
Lu X, Li C, Li C, Li P, Fu E, Xie Y, Jin F. Heat-Labile Enterotoxin-Induced PERK-CHOP Pathway Activation Causes Intestinal Epithelial Cell Apoptosis. Front Cell Infect Microbiol 2017. [PMID: 28642847 PMCID: PMC5463185 DOI: 10.3389/fcimb.2017.00244] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a leading cause of diarrhea among children and travelers in developing countries, and heat-labile enterotoxin (LT) is one of the most important virulence factors. The pathogenesis of and virulence factors associated with ETEC have been well-characterized; however, the extent to which ETEC damages host cells remains unclear. In this study, we found that LT could induce decreases in intestinal epithelial cell viability and induce apoptosis in a dose- and time- dependent manner in both HCT-8 and Caco-2 cells. We analyzed the expression profiles of apoptosis-related proteins via protein array technology and found that Bax, p-p53(S46), cleaved caspase-3, and TNFRI/TNFRSF1A expression levels were significantly up-regulated in wild-type ETEC- but not in ΔLT ETEC-infected HCT-8 cells. Bax is essential for endoplasmic reticulum (ER) stress-triggered apoptosis, and our RNAi experiments showed that the PERK-eIF2-CHOP pathway and reactive oxygen species (ROS) are also main participants in this process. LT-induced ROS generation was decreased in CHOP-knockdown HCT-8 cells compared to that in control cells. Moreover, pretreatment with the ROS inhibitor NAC down-regulated GRP78, CHOP, Bim, and cleaved caspase-3 expression, resulting in a reduction in the apoptosis rate from 36.2 to 20.3% in LT-treated HCT-8 cells. Furthermore, ROS inhibition also attenuated LT-induced apoptosis in the small intestinal mucosa in the ETEC-inoculation mouse model.
Collapse
Affiliation(s)
- Xi Lu
- Department of Respiration, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Chunmeng Li
- Bacteriology Room in Department of Clinical Laboratory, Shaanxi Province Hospital of Traditional Chinese MedicineXi'an, China
| | - Congcong Li
- Department of Respiration, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Pengcheng Li
- Department of Respiration, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Enqing Fu
- Department of Respiration, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Yonghong Xie
- Department of Respiration, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Faguang Jin
- Department of Respiration, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| |
Collapse
|
5
|
Chen C, Nakagawa S, An Y, Ito K, Kitaichi Y, Kusumi I. The exercise-glucocorticoid paradox: How exercise is beneficial to cognition, mood, and the brain while increasing glucocorticoid levels. Front Neuroendocrinol 2017; 44:83-102. [PMID: 27956050 DOI: 10.1016/j.yfrne.2016.12.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/26/2016] [Accepted: 12/01/2016] [Indexed: 11/26/2022]
Abstract
Exercise is known to have beneficial effects on cognition, mood, and the brain. However, exercise also activates the hypothalamic-pituitary-adrenal axis and increases levels of the glucocorticoid cortisol (CORT). CORT, also known as the "stress hormone," is considered a mediator between chronic stress and depression and to link various cognitive deficits. Here, we review the evidence that shows that while both chronic stress and exercise elevate basal CORT levels leading to increased secretion of CORT, the former is detrimental to cognition/memory, mood/stress coping, and brain plasticity, while the latter is beneficial. We propose three preliminary answers to the exercise-CORT paradox. Importantly, the elevated CORT, through glucocorticoid receptors, functions to elevate dopamine in the medial prefrontal cortex under chronic exercise but not chronic stress, and the medial prefrontal dopamine is essential for active coping. Future inquiries may provide further insights to promote our understanding of this paradox.
Collapse
Affiliation(s)
- Chong Chen
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Shin Nakagawa
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| | - Yan An
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Koki Ito
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Yuji Kitaichi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| |
Collapse
|
6
|
Lewis NA, Howatson G, Morton K, Hill J, Pedlar CR. Alterations in redox homeostasis in the elite endurance athlete. Sports Med 2015; 45:379-409. [PMID: 25319354 DOI: 10.1007/s40279-014-0276-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The production of reactive oxygen (ROS) and nitrogen species (RNS) is a fundamental feature of mammalian physiology, cellular respiration and cell signalling, and essential for muscle function and training adaptation. Aerobic and anaerobic exercise results in alterations in redox homeostasis (ARH) in untrained, trained and well trained athletes. Low to moderate doses of ROS and RNS play a role in muscle adaptation to endurance training, but an overwhelming increase in RNS and ROS may lead to increased cell apoptosis and immunosuppression, fatigued states and underperformance. OBJECTIVES The objectives of this systematic review are: (a) to test the hypotheses that ARH occur in elite endurance athletes; following an acute exercise bout, in an endurance race or competition; across a micro-, meso- or macro-training cycle; following a training taper; before, during and after altitude training; in females with amenorrhoea versus eumenorrhoea; and in non-functional over-reaching (NFOR) and overtraining states (OTS); (b) to report any relationship between ARH and training load and ARH and performance; and (c) to apply critical difference values for measures of oxidative stress/ARH to address whether there is any evidence of ARH being of physiological significance (not just statistical) and thus relevant to health and performance in the elite athlete. METHODS Electronic databases, Embase, MEDLINE, and SPORTDiscus were searched for relevant articles. Only studies that were observational articles of cross-sectional or longitudinal design, and included elite athletes competing at national or international level in endurance sports were included. Studies had to include biomarkers of ARH; oxidative damage, antioxidant enzymes, antioxidant capacity, and antioxidant vitamins and nutrients in urine, serum, plasma, whole blood, red blood cells (RBCs) and white blood cells (WBCs). A total of 3,057 articles were identified from the electronic searches. Twenty-eight articles met the inclusion criteria and were included in the review. RESULTS ARH occurs in elite endurance athletes, after acute exercise, a competition or race, across training phases, and with natural or simulated altitude. A reduction in ARH occurs across the season in elite athletes, with marked variation around intensified training phases, between individuals, and the greatest disturbances (of physiological significance) occurring with live-high-train-low techniques, and in athletes competing. A relationship with ARH and performance and illness exists in elite athletes. There was considerable heterogeneity across the studies for the biomarkers and assays used; the sport; the blood sampling time points; and the phase in the annual training cycle and thus baseline athlete fitness. In addition, there was a consistent lack of reporting of the analytical variability of the assays used to assess ARH. CONCLUSIONS The reported biochemical changes around ARH in elite athletes suggest that it may be of value to monitor biomarkers of ARH at rest, pre- and post-simulated performance tests, and before and after training micro- and meso-cycles, and altitude camps, to identify individual tolerance to training loads, potentially allowing the prevention of non-functionally over-reached states and optimisation of the individual training taper and training programme.
Collapse
|
7
|
Quadrilatero J, Alway SE, Dupont-Versteegden EE. Skeletal muscle apoptotic response to physical activity: potential mechanisms for protection. Appl Physiol Nutr Metab 2011; 36:608-17. [PMID: 21936642 DOI: 10.1139/h11-064] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Apoptosis is a highly conserved type of cell death that plays a critical role in tissue homeostasis and disease-associated processes. Skeletal muscle is unique with respect to apoptotic processes, given its multinucleated morphology and its apoptosis-associated differences related to muscle and (or) fiber type as well as mitochondrial content and (or) subtype. Elevated apoptotic signaling has been reported in skeletal muscle during aging, stress-induced states, and disease; a phenomenon that plays a role in muscle dysfunction, degradation, and atrophy. Exercise is a strong physiological stimulus that can influence a number of extracellular and intracellular signaling pathways, which may directly or indirectly influence apoptotic processes in skeletal muscle. In general, acute strenuous and eccentric exercise are associated with a proapoptotic phenotype and increased DNA fragmentation (a hallmark of apoptosis), whereas regular exercise training or activity is associated with an antiapoptotic environment and reduced DNA fragmentation in skeletal muscle. Interestingly, the protective effect of regular activity on skeletal muscle apoptotic processes has been observed in healthy, aged, stress-induced, and diseased rodent models. Several mechanisms for this protective response have been proposed, including altered anti- and proapoptotic protein expression, increased mitochondrial biogenesis and improved mitochondrial function, and reduced reactive oxygen species generation and (or) enhanced antioxidant status. Given the current literature, we propose that regular physical activity may represent an effective strategy to decrease apoptotic signaling, and possibly muscle wasting and dysfunction, during aging and disease.
Collapse
Affiliation(s)
- Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | | | | |
Collapse
|
8
|
The effect of an adventure race on lymphocyte and neutrophil death. Eur J Appl Physiol 2010; 109:447-53. [PMID: 20143084 DOI: 10.1007/s00421-010-1363-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2010] [Indexed: 10/19/2022]
Abstract
The effect of an adventure race (Ecomotion Pró), which lasted for 4-5 days, on neutrophil and lymphocyte death from elite athletes was investigated. Blood was collected from 11 athletes at rest and after the adventure race. The following parameters of cell death were measured in neutrophils and lymphocytes: cell membrane integrity, DNA fragmentation, mitochondrial transmembrane depolarization and reactive oxygen species (ROS) production. Phagocytosis capacity was also evaluated in neutrophils. The adventure race raised the proportion of cells with the loss of membrane integrity; lymphocytes by 14% and neutrophils by 16.4%. The proportion of lymphocytes with DNA fragmentation (2.9-fold) and mitochondrial transmembrane depolarization (1.5-fold) increased. However, these parameters did not change in neutrophils. ROS production remained unchanged in lymphocytes, whereas an increase by 2.2-fold was found in neutrophils due to the race. Despite these changes, the phagocytosis capacity did not change in neutrophils after the race. In conclusion, the Ecomotion Pró race-induced neutrophil death by necrosis (as indicated by the loss of membrane integrity) and led to lymphocyte death by apoptosis (as indicated by increase DNA fragmentation and depolarization of mitochondrial membrane).
Collapse
|
9
|
LEVADA-PIRES ADRIANACRISTINA, CURY-BOAVENTURA MARIAFERNANDA, GORJÃO RENATA, HIRABARA SANDROMASSAO, PUGGINA ENRICOFUINI, PELLEGRINOTTI IDICOLUIZ, DOMINGUES FILHO LUIZANTONIO, CURI RUI, PITHON-CURI TANIACRISTINA. Induction of Lymphocyte Death by Short- and Long-Duration Triathlon Competitions. Med Sci Sports Exerc 2009; 41:1896-901. [DOI: 10.1249/mss.0b013e3181a327a2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
LEVADA-PIRES ADRIANACRISTINA, CURY-BOAVENTURA MARIAFERNANDA, GORJÃO RENATA, HIRABARA SANDROMASSAO, PUGGINA ENRICOFUINI, PERES CARMEMMALDONADO, LAMBERTUCCI RAFAELHERLING, CURI RUI, PITHON-CURI TANIACRISTINA. Neutrophil Death Induced by a Triathlon Competition in Elite Athletes. Med Sci Sports Exerc 2008; 40:1447-54. [DOI: 10.1249/mss.0b013e31816dc89e] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
11
|
Sureda A, Tauler P, Aguiló A, Cases N, Llompart I, Tur JA, Pons A. Influence of an Antioxidant Vitamin-Enriched Drink on Pre- and Post-Exercise Lymphocyte Antioxidant System. ANNALS OF NUTRITION AND METABOLISM 2008; 52:233-40. [DOI: 10.1159/000140515] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 01/18/2008] [Indexed: 11/19/2022]
|
12
|
Abstract
Animal studies have shown that several methionine (Met) and cysteine (Cys) analogs or precursors have L-Met- and L-Cys-sparing activity. Relative oral bioavailability (RBV) values, with the L-isomer of Met and Cys set at 100% (isosulfurous basis), are near 100% for D-Met for animals but only about 30% for humans. Both the OH and keto analogs of Met have high RBV-sparing values, as does N-acetyl-L-Met (the D-isomer of acetylated Met has no bioactivity). L-Homocysteine has an RBV value of about 65% for Met sparing in rats and chicks, but D-homocysteine has little if any Met-sparing activity. S-Methyl-L-Met can partially spare Met, but only when fed under dietary conditions of choline/betaine deficiency. Relative to L-Cys, high RBV values exist for L-cystine, N-acetyl-L-Cys, L-homocysteine, L-Met, and glutathione, but D-cystine, the keto analog of Cys, L-cysteic acid, and taurine have no Cys-sparing activity. l-2-Oxothiazolidine-4-carboxylate has an RBV value of 75%, D-homocysteine 70%, and DL-lanthionine 35% as Cys precursors. Under dietary conditions of Cys deficiency and very low inorganic sulfate (SO4) ingestion, dietary SO4 supplementation has been shown to reduce the Cys requirement of several animal species as well as humans. Excessive ingestion of Met, Cys, or cystine has also been studied extensively in experimental animals, and these sulfur amino acids (SAA) are well established as being among the most toxic of all amino acids that have been studied. Even though Cys and its oxidized product (cystine) are equally efficacious at levels at or below their dietary requirements for maximal growth, Cys is far more toxic than cystine when administered orally in the pharmacologic dosing range. Isosulfurous (excess) levels of cystine, N-acetyl-L-Cys, or glutathione are far less growth depressing than L-Cys when 6 to 10 times the minimally required level of these SAA compounds are fed to chicks.
Collapse
Affiliation(s)
- David H Baker
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|