1
|
Zafrani L, Ergin B, Kapucu A, Ince C. Blood transfusion improves renal oxygenation and renal function in sepsis-induced acute kidney injury in rats. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:406. [PMID: 27993148 PMCID: PMC5168817 DOI: 10.1186/s13054-016-1581-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 11/25/2016] [Indexed: 11/29/2022]
Abstract
Background The effects of blood transfusion on renal microcirculation during sepsis are unknown. This study aimed to investigate the effect of blood transfusion on renal microvascular oxygenation and renal function during sepsis-induced acute kidney injury. Methods Twenty-seven Wistar albino rats were randomized into four groups: a sham group (n = 6), a lipopolysaccharide (LPS) group (n = 7), a LPS group that received fluid resuscitation (n = 7), and a LPS group that received blood transfusion (n = 7). The mean arterial blood pressure, renal blood flow, and renal microvascular oxygenation within the kidney cortex were recorded. Acute kidney injury was assessed using the serum creatinine levels, metabolic cost, and histopathological lesions. Nitrosative stress (expression of endothelial (eNOS) and inducible nitric oxide synthase (iNOS)) within the kidney was assessed by immunohistochemistry. Hemoglobin levels, pH, serum lactate levels, and liver enzymes were measured. Results Fluid resuscitation and blood transfusion both significantly improved the mean arterial pressure and renal blood flow after LPS infusion. Renal microvascular oxygenation, serum creatinine levels, and tubular damage significantly improved in the LPS group that received blood transfusion compared to the group that received fluids. Moreover, the renal expression of eNOS was markedly suppressed under endotoxin challenge. Blood transfusion, but not fluid resuscitation, was able to restore the renal expression of eNOS. However, there were no significant differences in lactic acidosis or liver function between the two groups. Conclusions Blood transfusion significantly improved renal function in endotoxemic rats. The specific beneficial effect of blood transfusion on the kidney could have been mediated in part by the improvements in renal microvascular oxygenation and sepsis-induced endothelial dysfunction via the restoration of eNOS expression within the kidney. Electronic supplementary material The online version of this article (doi:10.1186/s13054-016-1581-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lara Zafrani
- Department of Translational Physiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Bulent Ergin
- Department of Intensive Care, Erasmus MC, University of Medical Center, Rotterdam, The Netherlands
| | - Aysegul Kapucu
- Department of Biology, Faculty of Science, University of Istanbul, Istanbul, Turkey
| | - Can Ince
- Department of Intensive Care, Erasmus MC, University of Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Bertolizio G, Bissonnette B, Mason L, Ashwal S, Hartman R, Marcantonio S, Obenaus A. Effects of hemodilution after traumatic brain injury in juvenile rats. Paediatr Anaesth 2011; 21:1198-208. [PMID: 21929525 DOI: 10.1111/j.1460-9592.2011.03695.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Normovolemic hemodilution (HD) in adult animal studies has shown exacerbation of traumatic brain injury (TBI) lesion volumes. Similar studies in juvenile rats have not been reported and outcomes are likely to be different. This study investigated the effects of normovolemic hemodilution (21% hematocrit) in a juvenile TBI (jTBI) model. METHODS Twenty 17-day-old rats underwent moderate cortical contusion impact injury (CCI) and were divided into four groups: CCI/hemodilution (HD) (group HD), CCI/no HD (group C), Sham/HD (group SHD), and Sham/no HD (group S). Regional laser Doppler flowmetry (LDF), edema formation (MRI-T2WI), water mobility assessed using diffusion weighted imaging (MRI-DWI), open field activity tests, and histological analyses were evaluated for lesion characteristics. RESULTS Hemodilution significantly increased blood flow in the HD compared to the C group after TBI. T2WI revealed a significantly increased extravascular blood volume in HD at 1, 7, and 14 days post-CCI. Edematous tissue and total contusional lesion volume were higher in HD-treated animals at 1 and 14 days. DWI revealed that HD, SHD, and C groups had elevated water mobility compared to S groups in the ipsilateral cortex and striatum. Histology showed a larger cortical lesion in the C than HD group. Open field activity was increased in HD, C, and SHD groups compared to the S group. CONCLUSIONS Hemodilution results in significant brain hyperemia with increased edema formation, extravascular blood volume, and water mobility after jTBI. Hemodilution results in less cortical damage but did not alter behavior. Hemodilution is likely not to be clinically beneficial following jTBI.
Collapse
Affiliation(s)
- Gianluca Bertolizio
- Department of Anesthesiology, Loma Linda University, Loma Linda, CA 92354, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Vermeer H, Teerenstra S, de Sévaux RGL, van Swieten HA, Weerwind PW. The effect of hemodilution during normothermic cardiac surgery on renal physiology and function: a review. Perfusion 2009; 23:329-38. [DOI: 10.1177/0267659109105398] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although the definitions of renal dysfunction vary, loss of renal function is a common complication following cardiac surgery using cardiopulmonary bypass (CPB). When postoperative dialysis is required, mortality is approximately 50%. CPB-accompanied hemodilution is a major contributing factor to renal damage as it notably reduces oxygen delivery by reducing the oxygen transport capacity of the blood as well as disturbing the microcirculation. To minimize hypoxemic damage during CPB, lowering of body temperature is applied to reduce the patient’s metabolic rate. At present, however, temperature management during elective adult cardiac surgery is shifting from moderate hypothermia to normothermia. To determine whether the currently accepted levels of hemodilution during CPB can suffice the normothermic patient’s high oxygen demand, we focused this study on renal physiology and postoperative renal function. Hemodilution reduces the capillary density through a diminished capillary viscosity, thereby, redistributing blood from the renal medulla to the renal cortex. As the physiology of the renal medulla makes it a hypoxic environment, this part of the kidney appears to be especially at risk for hypoxic damage caused by a hemodilution-induced lowered oxygen transport and oxygen delivery. In addition, hemodilution is also likely to disturb the hormonal systems regulating renal blood distribution. Clinical studies, mostly of retrospective or observational nature, show that perioperative nadir hematocrit levels lower than approximately 24% are associated with an increased risk to develop postoperative renal failure. A better comprehension of the cause-and-effect relation between low perioperative hematocrits and loss of postoperative renal function may enable more effective renal protective strategies.
Collapse
Affiliation(s)
- H Vermeer
- Department of Extra-Corporeal Circulation, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - S Teerenstra
- Department of Epidemiology, Biostatistics and Health Technology Assessment, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - RGL de Sévaux
- Department of Nephrology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - HA van Swieten
- Department of Cardiothoracic Surgery, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - PW Weerwind
- Department of Cardiothoracic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
4
|
Iloprost preserves renal oxygenation and restores kidney function in endotoxemia-related acute renal failure in the rat. Crit Care Med 2009; 37:1423-32. [DOI: 10.1097/ccm.0b013e31819b5f4e] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Johannes T, Mik EG, Nohé B, Unertl KE, Ince C. Acute decrease in renal microvascular PO2 during acute normovolemic hemodilution. Am J Physiol Renal Physiol 2006; 292:F796-803. [PMID: 17077389 DOI: 10.1152/ajprenal.00206.2006] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Large differences in the tolerance of organ systems to conditions of decreased O(2) delivery such as hemodilution exist. The kidney receives approximately 25% of the cardiac output and O(2) delivery is in excess of the oxygen demand under normal circumstances. In a rat model of acute normovolemic hemodilution (ANH), we studied the effect of reduced hematocrit on renal regional and microvascular oxygenation. Experiments were performed in 12 anesthetized male Wistar rats. Six animals underwent four steps of ANH (hematocrit 25, 15, 10, and <10%). Six animals served as time-matched controls. Systemic and renal hemodynamic and oxygenation parameters were monitored. Renal cortical (c) and outer medullary (m) microvascular PO(2) (microPO(2)) and the renal venous PO(2) (P(rv)O(2)) were continuously measured by oxygen-dependent quenching of phosphorescence. Despite a significant increase in renal blood flow in the first two steps of ANH, cmicroPO(2) and mmicroPO(2) dropped immediately. From the first step onward oxygen consumption (VO(2(ren))) became dependent on oxygen delivery (DO(2(ren))). With a progressive decrease in hematocrit, a significant correlation between microPO(2) and VO(2(ren)) could be observed, as well as a PO(2) gap between microPO(2) and P(rv)O(2). Furthermore, there was a high correlation between VO(2(ren)) and RBF over a wide range of flows. In conclusion, the oxygen supply to the renal tissue is becoming critical already in an early stage of ANH due to the combination of increased VO(2(ren)), decreased DO(2(ren)), and intrarenal O(2) shunt. This has clinical relevance as recent publications reporting that hemodilution during surgery forms a risk factor for postoperative renal dysfunction.
Collapse
Affiliation(s)
- Tanja Johannes
- Dept. of Physiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
6
|
Johannes T, Mik EG, Nohé B, Raat NJH, Unertl KE, Ince C. Influence of fluid resuscitation on renal microvascular PO2 in a normotensive rat model of endotoxemia. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2006; 10:R88. [PMID: 16784545 PMCID: PMC1550962 DOI: 10.1186/cc4948] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/23/2006] [Accepted: 05/12/2006] [Indexed: 11/26/2022]
Abstract
Introduction Septic renal failure is often seen in the intensive care unit but its pathogenesis is only partly understood. This study, performed in a normotensive rat model of endotoxemia, tests the hypotheses that endotoxemia impairs renal microvascular PO2 (μPO2) and oxygen consumption (VO2,ren), that endotoxemia is associated with a diminished kidney function, that fluid resuscitation can restore μPO2, VO2,ren and kidney function, and that colloids are more effective than crystalloids. Methods Male Wistar rats received a one-hour intravenous infusion of lipopolysaccharide, followed by resuscitation with HES130/0.4 (Voluven®), HES200/0.5 (HES-STERIL® ® 6%) or Ringer's lactate. The renal μPO2 in the cortex and medulla and the renal venous PO2 were measured by a recently published phosphorescence lifetime technique. Results Endotoxemia induced a reduction in renal blood flow and anuria, while the renal μPO2 and VO2,ren remained relatively unchanged. Resuscitation restored renal blood flow, renal oxygen delivery and kidney function to baseline values, and was associated with oxygen redistribution showing different patterns for the different compounds used. HES200/0.5 and Ringer's lactate increased the VO2,ren, in contrast to HES130/0.4. Conclusion The loss of kidney function during endotoxemia could not be explained by an oxygen deficiency. Renal oxygen redistribution could for the first time be demonstrated during fluid resuscitation. HES130/0.4 had no influence on the VO2,ren and restored renal function with the least increase in the amount of renal work.
Collapse
Affiliation(s)
- Tanja Johannes
- Department of Physiology, Academic Medical Center, University of Amsterdam, The Netherlands
- Department of Anesthesiology and Critical Care, University Hospital Tuebingen, Germany
| | - Egbert G Mik
- Department of Physiology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Boris Nohé
- Department of Anesthesiology and Critical Care, University Hospital Tuebingen, Germany
| | - Nicolaas JH Raat
- Department of Physiology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Klaus E Unertl
- Department of Anesthesiology and Critical Care, University Hospital Tuebingen, Germany
| | - Can Ince
- Department of Physiology, Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|
7
|
Chan BP, Liu W, Klitzman B, Reichert WM, Truskey GA. In vivo performance of dual ligand augmented endothelialized expanded polytetrafluoroethylene vascular grafts. ACTA ACUST UNITED AC 2004; 72:52-63. [PMID: 15389501 DOI: 10.1002/jbm.b.30114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this study, we examined combinations of three approaches to improve the adhesion of endothelial cells (EC) onto expanded polytetrafluoroethylene (ePTFE) vascular grafts placed at the femoral artery of rats: (1) high-affinity receptor-ligand binding of RGD-streptavidin (SA) and biotin to supplement integrin-mediated EC adhesion; (2) cell sodding to pressurize the seeded EC into the interstices of the ePTFE grafts; and (3) longer postseeding attachment time from 1 to 24 h prior to implantation. An in vitro system, which accounts for cell loss due to both graft handling and shear stress, was designed to optimize conditions for in vivo experiments. Results suggest that longer in vitro attachment time enabled the adherent EC to endure mechanical stresses by forming strong adhesions to the underlying extracellular matrix substrates; cell sodding helped to retain the adherent EC by physically docking the cells against the graft interstices; and the SA-biotin interaction enhanced the early attachment of EC but did not lead to better cell retention or reduced surface coverage of blood clot in the current study. Mechanical manipulation of cells during implantation is a limiting factor in maintaining a confluent EC layer on synthetic vascular grafts.
Collapse
Affiliation(s)
- Bernard P Chan
- Department of Biomedical Engineering, Duke University, Hudson Hall, Room 136, Box 90281, Durham, North Carolina 27708-0281, USA
| | | | | | | | | |
Collapse
|
8
|
Crosara-Alberto DP, Darini ALC, Inoue RY, Silva JS, Ferreira SH, Cunha FQ. Involvement of NO in the failure of neutrophil migration in sepsis induced by Staphylococcus aureus. Br J Pharmacol 2002; 136:645-58. [PMID: 12086974 PMCID: PMC1573390 DOI: 10.1038/sj.bjp.0704734] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2001] [Revised: 02/12/2002] [Accepted: 03/25/2002] [Indexed: 01/11/2023] Open
Abstract
1. Sepsis induced by S. aureus was used to investigate whether neutrophil migration failure to infectious focus correlates with lethality in Gram-positive bacteria-induced sepsis in mice. 2. By contrast with the sub-lethal (SL-group), the lethal (L-group) intraperitoneal inoculum of S. aureus caused failure of neutrophil migration (92% reduction), high CFU in the exudate, bacteremia and impairment of in vitro neutrophil chemotactic activity. 3. Pre-treatments of L-group with adequate doses of aminoguanidine prevented the neutrophil migration failure and improved the survival of the animals (pre-treated: 43%; untreated: 0% survival). Thus, the impairment of neutrophil migration in the L-group appears to be mediated by nitric oxide (NO). 4. The injection of S. aureus SL-inoculum in iNOS deficient (-/-) or aminoguanidine-treated wild-type mice (pre- and post-treatment), which did not present neutrophil migration failure, paradoxically caused severe peritonitis and high mortality. This fact is explainable by the lack of NO dependent microbicidal activity in migrated neutrophils. 5. In conclusion, although the NO microbicidal mechanism is active in neutrophils, the failure of their migration to the infectious focus may be responsible for the severity and outcome of sepsis.
Collapse
Affiliation(s)
- D P Crosara-Alberto
- Department of Pharmacology, Faculty of Medicine Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - A L C Darini
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - R Y Inoue
- Department of Internal Medicine, School of Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - J S Silva
- Department of Biochemistry and Immunology, Faculty of Medicine Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - S H Ferreira
- Department of Pharmacology, Faculty of Medicine Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - F Q Cunha
- Department of Pharmacology, Faculty of Medicine Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|