1
|
Anesio A, Barbosa SP, De Luca LA, de Paula PM, Colombari DSA, Colombari E, Andrade CAF, Menani JV. Central muscarinic and LPBN mechanisms on sodium intake. Brain Res Bull 2018; 144:14-20. [PMID: 30391542 DOI: 10.1016/j.brainresbull.2018.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/25/2018] [Accepted: 10/30/2018] [Indexed: 11/28/2022]
Abstract
Central cholinergic activation stimulates water intake, but also NaCl intake when the inhibitory mechanisms are blocked with injections of moxonidine (α2 adrenergic/imidazoline agonist) into the lateral parabrachial nucleus (LPBN). In the present study, we investigated the involvement of central M1 and M2 muscarinic receptors on NaCl intake induced by pilocarpine (non-selective muscarinic agonist) intraperitoneally combined with moxonidine into the LPBN or by muscimol (GABAA agonist) into the LPBN. Male Holtzman rats with stainless steel cannulas implanted bilaterally in the LPBN and in the lateral ventricle were used. Pirenzepine (M1 muscarinic antagonist, 1 nmol/1 μl) or methoctramine (M2 muscarinic antagonist, 50 nmol/1 μL) injected intracerebroventricularly (i.c.v.) reduced 0.3 M NaCl and water intake in rats treated with pilocarpine (0.1 mg/100 g of body weight) injected intraperitoneally combined with moxonidine (0.5 nmol/0.2 μL) into the LPBN. In rats treated with muscimol (0.5 nmol/0.2 μL) into the LPBN, methoctramine i.c.v. also reduced 0.3 M NaCl and water intake, however, pirenzepine produced no effect. The results suggest that M1 and M2 muscarinic receptors activate central pathways involved in the control of water and sodium intake that are under the influence of the LPBN inhibitory mechanisms.
Collapse
Affiliation(s)
- Augusto Anesio
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - Silas Pereira Barbosa
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - Laurival A De Luca
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - Patrícia Maria de Paula
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - Débora S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - Carina A F Andrade
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - José V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil.
| |
Collapse
|
2
|
Rapid stimulation of sodium intake combining aldosterone into the 4th ventricle and the blockade of the lateral parabrachial nucleus. Neuroscience 2017; 346:94-101. [DOI: 10.1016/j.neuroscience.2017.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 12/17/2022]
|
3
|
Gasparini S, Andrade-Franzé GMF, Gomide JMC, Andrade CAF, De Luca LA, Colombari DSA, De Paula PM, Colombari E, Menani JV. Sodium intake combining cholinergic activation and noradrenaline into the lateral parabrachial nucleus. Neuroscience 2015; 300:229-37. [PMID: 25977166 DOI: 10.1016/j.neuroscience.2015.04.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/17/2015] [Accepted: 04/25/2015] [Indexed: 11/26/2022]
Abstract
The administration of cholinergic agonists like pilocarpine intraperitoneally (i.p.) or carbachol intracerebroventricularly (i.c.v.) induces water, but non significant hypertonic NaCl intake. These treatments also produce pressor responses, which may inhibit sodium intake. Noradrenaline (NOR) acting on α2-adrenoceptors in the lateral parabrachial nucleus (LPBN) deactivates inhibitory mechanisms increasing fluid depletion-induced sodium intake. In the present study, we investigated: (1) water and 1.8% NaCl intake in rats treated with pilocarpine i.p. or carbachol i.c.v. combined with NOR into the LPBN; (2) if inhibitory signals from cardiovascular receptors are blocked by NOR in the LPBN. Male Holtzman rats with stainless steel guide-cannulas implanted in the lateral ventricle and bilaterally in the LPBN were used. Bilateral injections of NOR (80nmol/0.2μl) into the LPBN decreased water intake (0.8±0.3, vs. saline (SAL): 2.9±0.3ml/180min) induced by pilocarpine (1mg/kg of body weight) i.p., without changing 1.8% NaCl intake (0.8±2.4, vs. SAL: 0.5±0.3ml/180min). Prazosin (1mg/kg of body weight) i.p. blocked pressor responses and increased water and 1.8% NaCl intake (6.3±1.7 and 14.7±3.5ml/180min, respectively) in rats treated with pilocarpine combined with NOR into the LPBN. Prazosin i.p. also increased 1.8% NaCl intake in rats treated with carbachol i.c.v combined with NOR into the LPBN. The results suggest that different signals inhibit sodium intake in rats treated with cholinergic agonists, among them those produced by increases of arterial pressure that are not efficiently deactivated by NOR acting in the LPBN.
Collapse
Affiliation(s)
- S Gasparini
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - G M F Andrade-Franzé
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - J M C Gomide
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - C A F Andrade
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - L A De Luca
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - D S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - P M De Paula
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - E Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - J V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil.
| |
Collapse
|
4
|
Davern PJ. A role for the lateral parabrachial nucleus in cardiovascular function and fluid homeostasis. Front Physiol 2014; 5:436. [PMID: 25477821 PMCID: PMC4235290 DOI: 10.3389/fphys.2014.00436] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/26/2014] [Indexed: 11/13/2022] Open
Abstract
The lateral parabrachial nucleus (LPBN) is located in an anatomical position that enables it to perform a critical role in relaying signals related to the regulation of fluid and electrolyte intake and cardiovascular function from the brainstem to the forebrain. Early neuroanatomical studies have described the topographic organization of blood pressure sensitive neurons and functional studies have demonstrated a major role for the LPBN in regulating cardiovascular function, including blood pressure, in response to hemorrhages, and hypovolemia. In addition, inactivation of the LPBN induces overdrinking of water in response to a range of dipsogenic treatments primarily, but not exclusively, those associated with endogenous centrally acting angiotensin II. Moreover, treatments that typically cause water intake stimulate salt intake under some circumstances particularly when serotonin receptors in the LPBN are blocked. This review explores the expanding body of evidence that underlies the complex neural network within the LPBN influencing salt appetite, thirst and the regulation of blood pressure. Importantly understanding the interactions among neurons in the LPBN that affect fluid balance and cardiovascular control may be critical to unraveling the mechanisms responsible for hypertension.
Collapse
Affiliation(s)
- Pamela J Davern
- Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Institute Melbourne, VIC, Australia
| |
Collapse
|
5
|
Gasparini S, Menani JV, Daniels D. Moxonidine into the lateral parabrachial nucleus modifies postingestive signals involved in sodium intake control. Neuroscience 2014; 284:768-774. [PMID: 25264033 DOI: 10.1016/j.neuroscience.2014.09.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 09/03/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
Abstract
The activation of α2-adrenoceptors with bilateral injections of moxonidine (α2-adrenoceptor and imidazoline receptor agonist) into the lateral parabrachial nucleus (LPBN) increases 1.8% NaCl intake induced by treatment with furosemide (FURO)+captopril (CAP) subcutaneously. In the present study, we analyzed licking microstructure during water and 1.8% NaCl intake to investigate the changes in orosensory and postingestive signals produced by moxonidine injected into the LPBN. Male Sprague-Dawley rats were treated with FURO+CAP combined with bilateral injections of vehicle or moxonidine (0.5 nmol/0.2 μl) into the LPBN. Bilateral injections of moxonidine into the LPBN increased FURO+CAP-induced 1.8% NaCl intake, without changing water intake. Microstructural analysis of licking behavior found that this increase in NaCl intake was a function of increased number of licking bursts from 15 to 75 min of the test (maximum of 49±9 bursts/bin, vs. vehicle: 2±2 bursts/bin). Analysis of the first 15 min of the test, when most of the licking behavior occurred, found no effect of moxonidine on the number of licks/burst for sodium intake (24±5 licks/burst, vs. vehicle: 27±8 licks/burst). This finding suggests that activation of α2-adrenoceptors in the LPBN affects postingestive signals that are important to inhibit and limit sodium intake by FURO+CAP-treated rats.
Collapse
Affiliation(s)
- S Gasparini
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - J V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil.
| | - D Daniels
- Department of Psychology, University at Buffalo, The State University of New York, United States
| |
Collapse
|
6
|
Menani JV, De Luca LA, Johnson AK. Role of the lateral parabrachial nucleus in the control of sodium appetite. Am J Physiol Regul Integr Comp Physiol 2014; 306:R201-10. [PMID: 24401989 DOI: 10.1152/ajpregu.00251.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In states of sodium deficiency many animals seek and consume salty solutions to restore body fluid homeostasis. These behaviors reflect the presence of sodium appetite that is a manifestation of a pattern of central nervous system (CNS) activity with facilitatory and inhibitory components that are affected by several neurohumoral factors. The primary focus of this review is on one structure in this central system, the lateral parabrachial nucleus (LPBN). However, before turning to a more detailed discussion of the LPBN, a brief overview of body fluid balance-related body-to-brain signaling and the identification of the primary CNS structures and humoral factors involved in the control of sodium appetite is necessary. Angiotensin II, mineralocorticoids, and extracellular osmotic changes act on forebrain areas to facilitate sodium appetite and thirst. In the hindbrain, the LPBN functions as a key integrative node with an ascending output that exerts inhibitory influences on forebrain regions. A nonspecific or general deactivation of LPBN-associated inhibition by GABA or opioid agonists produces NaCl intake in euhydrated rats without any other treatment. Selective LPBN manipulation of other neurotransmitter systems [e.g., serotonin, cholecystokinin (CCK), corticotrophin-releasing factor (CRF), glutamate, ATP, or norepinephrine] greatly enhances NaCl intake when accompanied by additional treatments that induce either thirst or sodium appetite. The LPBN interacts with key forebrain areas that include the subfornical organ and central amygdala to determine sodium intake. To summarize, a model of LPBN inhibitory actions on forebrain facilitatory components for the control of sodium appetite is presented in this review.
Collapse
Affiliation(s)
- Jose V Menani
- Department of Physiology and Pathology, School of Dentistry, Universidade Estadual Paulista, Araraquara, São Paulo, Brazil; and Departments of Psychology, Pharmacology and Health, and Human Physiology and the Cardiovascular Center, University of Iowa, Iowa City, Iowa
| | | | | |
Collapse
|
7
|
Roncari CF, David RB, Johnson RF, De Paula PM, Colombari DSA, De Luca LA, Johnson AK, Colombari E, Menani JV. Angiotensinergic and cholinergic receptors of the subfornical organ mediate sodium intake induced by GABAergic activation of the lateral parabrachial nucleus. Neuroscience 2013; 262:1-8. [PMID: 24374079 DOI: 10.1016/j.neuroscience.2013.12.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 11/26/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
Abstract
Bilateral injections of the GABA(A) agonist muscimol into the lateral parabrachial nucleus (LPBN) induce 0.3 M NaCl and water intake in satiated and normovolemic rats, a response reduced by intracerebroventricular (icv) administration of losartan or atropine (angiotensinergic type 1 (AT₁) and cholinergic muscarinic receptor antagonists, respectively). In the present study, we investigated the effects of the injections of losartan or atropine into the subfornical organ (SFO) on 0.3M NaCl and water intake induced by injections of muscimol into the LPBN. In addition, using intracellular calcium measurement, we also tested the sensitivity of SFO-cultured cells to angiotensin II (ANG II) and carbachol (cholinergic agonist). In male Holtzman rats with cannulas implanted bilaterally into the LPBN and into the SFO, injections of losartan (1 μg/0.1 μl) or atropine (2 nmol/0.1 μl) into the SFO almost abolished 0.3M NaCl and water intake induced by muscimol (0.5 nmol/0.2 μl) injected into the LPBN. In about 30% of the cultured cells of the SFO, carbachol and ANG II increased intracellular calcium concentration ([Ca²⁺](i)). Three distinct cell populations were found in the SFO, i.e., cells activated by either ANG II (25%) or carbachol (2.6%) or by both stimuli (2.3%). The results suggest that the activation of angiotensinergic and cholinergic mechanisms in the SFO is important for NaCl and water intake induced by the deactivation of LPBN inhibitory mechanisms with muscimol injections. They also show that there are cells in the SFO activated by both angiotensinergic and cholinergic stimuli, perhaps those involved in the responses to muscimol into the LPBN.
Collapse
Affiliation(s)
- C F Roncari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil; Department of Psychology, The Cardiovascular Center, University of Iowa, Iowa City, IA, USA; Department of Pharmacology, The Cardiovascular Center, University of Iowa, Iowa City, IA, USA
| | - R B David
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil; Department of Psychology, The Cardiovascular Center, University of Iowa, Iowa City, IA, USA; Department of Pharmacology, The Cardiovascular Center, University of Iowa, Iowa City, IA, USA
| | - R F Johnson
- Department of Psychology, The Cardiovascular Center, University of Iowa, Iowa City, IA, USA; Department of Pharmacology, The Cardiovascular Center, University of Iowa, Iowa City, IA, USA
| | - P M De Paula
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - D S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - L A De Luca
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - A K Johnson
- Department of Psychology, The Cardiovascular Center, University of Iowa, Iowa City, IA, USA; Department of Pharmacology, The Cardiovascular Center, University of Iowa, Iowa City, IA, USA
| | - E Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - J V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, UNESP, Araraquara, SP, Brazil.
| |
Collapse
|
8
|
Zafra MA, Simón MJ, Molina F, Puerto A. Lesions of the lateral parabrachial area block the aversive component and induced-flavor preference for the delayed intragastric administration of nutrients in rats: Effects on subsequent food and water intake. Nutr Neurosci 2013; 8:297-307. [PMID: 16669600 DOI: 10.1080/10284150600576655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The aim of this study was to examine the function of the lateral parabrachial area (LPB) in relation to the intragastric administration of nutrients. The consumption of flavors associated with intragastric nutrient administration and the subsequent food and water intake were measured in rats with lesions in the LPB. The results showed that bilateral LPB lesions prevented development of aversions and induced flavor preference when there was a delay between the presentation of a flavor and the intragastric administration of nutrients. However, these lesions did not disrupt development of the aversive process when there was no delay between the presentations. Likewise, the LPB lesions increased subsequent food intake when there was a delay but not when there was no delay between the presentations. In contrast, the water intake was reduced in both situations. These results are interpreted in terms of a dual visceral system for processing the intragastric effects of foods.
Collapse
Affiliation(s)
- María A Zafra
- Psychobiology Area, University of Granada, Campus de Cartuja, Granada 18071, Spain.
| | | | | | | |
Collapse
|
9
|
Kimura EH, De Oliveira LB, Menani JV, Callera JC. Baclofen into the lateral parabrachial nucleus induces hypertonic sodium chloride intake during cell dehydration. Behav Brain Funct 2013; 9:17. [PMID: 23642235 PMCID: PMC3679877 DOI: 10.1186/1744-9081-9-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/23/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Activation of GABA(B) receptors with baclofen into the lateral parabrachial nucleus (LPBN) induces ingestion of water and 0.3 M NaCl in fluid replete rats. However, up to now, no study has investigated the effects of baclofen injected alone or combined with GABA(B) receptor antagonist into the LPBN on water and 0.3 M NaCl intake in rats with increased plasma osmolarity (rats treated with an intragastric load of 2 M NaCl). Male Wistar rats with stainless steel cannulas implanted bilaterally into the LPBN were used. RESULTS In fluid replete rats, baclofen (0.5 nmol/0.2 μl), bilaterally injected into the LPBN, induced ingestion of 0.3 M NaCl (14.3 ± 4.1 vs. saline: 0.2 ± 0.2 ml/210 min) and water (7.1 ± 2.9 vs. saline: 0.6 ± 0.5 ml/210 min). In cell-dehydrated rats, bilateral injections of baclofen (0.5 and 1.0 nmol/0.2 μl) into the LPBN induced an increase of 0.3 M NaCl intake (15.6 ± 5.7 and 21.5 ± 3.5 ml/210 min, respectively, vs. saline: 1.7 ± 0.8 ml/210 min) and an early inhibition of water intake (3.5 ± 1.4 and 6.7 ± 2.1 ml/150 min, respectively, vs. saline: 9.2 ± 1.4 ml/150 min). The pretreatment of the LPBN with 2-hydroxysaclofen (GABA(B) antagonist, 5 nmol/0.2 μl) potentiated the effect of baclofen on 0.3 M NaCl intake in the first 90 min of test and did not modify the inhibition of water intake induced by baclofen in cell-dehydrated rats. Baclofen injected into the LPBN did not affect blood pressure and heart rate. CONCLUSIONS Thus, injection of baclofen into the LPBN in cell-dehydrated rats induced ingestion of 0.3 M NaCl and inhibition of water intake, suggesting that even in a hyperosmotic situation, the blockade of LPBN inhibitory mechanisms with baclofen is enough to drive rats to drink hypertonic NaCl, an effect independent of changes in blood pressure.
Collapse
Affiliation(s)
- Everton H Kimura
- Department of Basic Sciences, School of Dentistry, UNESP - Univ. Estadual Paulista, Rodovia Marechal Rondom, km 527, Araçatuba, São Paulo 16018-805, Brazil
| | | | | | | |
Collapse
|
10
|
Roncari C, David R, de Paula P, Colombari D, de Luca L, Menani J. Importance of central AT1 receptors for sodium intake induced by GABAergic activation of the lateral parabrachial nucleus. Neuroscience 2011; 196:147-52. [DOI: 10.1016/j.neuroscience.2011.08.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/15/2011] [Accepted: 08/19/2011] [Indexed: 10/17/2022]
|
11
|
Natriorexigenic effect of baclofen is reduced by AT1 receptor blockade in the lateral parabrachial nucleus. Brain Res Bull 2011; 86:348-54. [DOI: 10.1016/j.brainresbull.2011.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/01/2011] [Accepted: 09/04/2011] [Indexed: 11/19/2022]
|
12
|
Da Silva CZC, Menani JV, Callera JC. AT1 receptor blockade in the lateral parabrachial nucleus reduces the effects of muscimol on sodium intake. Brain Res 2011; 1403:28-36. [DOI: 10.1016/j.brainres.2011.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 05/30/2011] [Accepted: 06/02/2011] [Indexed: 11/29/2022]
|
13
|
Purinergic mechanisms of lateral parabrachial nucleus facilitate sodium depletion-induced NaCl intake. Brain Res 2010; 1372:49-58. [PMID: 21129366 DOI: 10.1016/j.brainres.2010.11.075] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 11/13/2010] [Accepted: 11/20/2010] [Indexed: 02/06/2023]
Abstract
Purinergic receptors are present in the lateral parabrachial nucleus (LPBN), a pontine structure involved in the control of sodium intake. In the present study, we investigated the effects of α,β-methyleneadenosine 5'-triphosphate (α,β-methylene ATP, selective P2X purinergic agonist) alone or combined with pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS, P2X purinergic antagonist) or suramin (non-selective P2 purinergic antagonist) injected into the LPBN on sodium depletion-induced 1.8% NaCl intake. Male Holtzman rats with stainless steel cannulas implanted into the LPBN were used. Sodium depletion was induced by treating rats with the diuretic furosemide (20mg/kg of body weight) followed by 24h of sodium-deficient diet. Bilateral injections of α,β-methylene ATP (2.0 and 4.0nmol/0.2μl) into the LPBN increased sodium depletion-induced 1.8% NaCl intake (25.3±0.8 and 26.5±0.9ml/120min, respectively, vs. saline: 15.2±1.3ml/120min). PPADS (4nmol/0.2μl) alone into the LPBN did not change 1.8% NaCl intake, however, pretreatment with PPADS into the LPBN abolished the effects of α,β-methylene ATP on 1.8% NaCl intake (16.9±0.9ml/120min). Suramin (2.0nmol/0.2μl) alone into the LPBN reduced sodium depletion-induced 1.8% NaCl intake (5.7±1.9ml/120min, vs. saline: 15.5±1.1ml/120min), without changing 2% sucrose intake or 24h water deprivation-induced water intake. The combination of suramin and α,β-methylene ATP into the LPBN produced no change of 1.8% NaCl intake (15.2±1.2ml/120min). The results suggest that purinergic P2 receptor activation in the LPBN facilitates NaCl intake, probably by restraining LPBN mechanisms that inhibit sodium intake.
Collapse
|
14
|
De Gobbi JIF, Beltz TG, Johnson RF, Menani JV, Thunhorst RL, Johnson AK. Non-NMDA receptors in the lateral parabrachial nucleus modulate sodium appetite. Brain Res 2009; 1301:44-51. [PMID: 19747457 DOI: 10.1016/j.brainres.2009.08.094] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 08/27/2009] [Accepted: 08/31/2009] [Indexed: 10/20/2022]
Abstract
Glutamatergic mechanisms have been implicated in the control of fluid ingestion. In the present study, we investigated whether non-N-methyl-d-aspartate (NMDA) glutamatergic receptors in the lateral parabrachial nucleus (LPBN) are involved in the control of water and sodium intake. Male Sprague-Dawley rats had cannulas implanted bilaterally into the LPBN. They were acutely depleted of water and sodium by injections of the diuretic furosemide (Furo; 10 mg/kg, bw) and given a low dose of the angiotensin-converting enzyme inhibitor, captopril (Cap; 5 mg/kg, bw). Bilateral LPBN injections of the non-NMDA receptor antagonist DNQX (2 and 5 nmol/0.2 microl) increased the ingestion of 0.3 M NaCl and water of Furo/Cap treated rats. The increased ingestion produced by DNQX was abolished by pretreating the LPBN with alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), a non-NMDA receptor agonist. AMPA injected alone into the LPBN reduced water and 0.3 M NaCl intake. Injections of DNQX (5 nmol/0.2 microl) into the LPBN also produced ingestion of 0.3 M NaCl after sc injections of the beta-adrenoceptor agonist, isoproterenol, a hypotensive drug that typically produces only water intake. Food intake, arterial blood pressure and heart rate were not altered by DNQX LPBN injections. We conclude that agonists acting on non-NMDA receptors in the LPBN exert an inhibitory influence on sodium intake during acute fluid depletion with hypotension and after isoproterenol treatment. A possible interaction of serotonin with glutamate within the LPBN is discussed.
Collapse
Affiliation(s)
- Juliana I F De Gobbi
- Department of Psychology, Cardiovascular Center, University of Iowa, Iowa City, 52242-1407, USA
| | | | | | | | | | | |
Collapse
|
15
|
De Gobbi JIF, Menani JV, Beltz TG, Johnson RF, Thunhorst RL, Johnson AK. Right atrial stretch alters fore- and hind-brain expression of c-fos and inhibits the rapid onset of salt appetite. J Physiol 2008; 586:3719-29. [PMID: 18556369 DOI: 10.1113/jphysiol.2008.151282] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The inflation of an intravascular balloon positioned at the superior vena cava and right atrial junction (SVC-RAJ) reduces sodium or water intake induced by various experimental procedures (e.g. sodium depletion; hypovolaemia). In the present study we investigated if the stretch induced by a balloon at this site inhibits a rapid onset salt appetite, and if this procedure modifies the pattern of immunohistochemical labelling for Fos protein (Fos-ir) in the brain. Male Sprague-Dawley rats with SVC-RAJ balloons received a combined treatment of furosemide (Furo; 10 mg (kg bw)(-1)) plus a low dose of the angiotensin-converting enzyme inhibitor captopril (Cap; 5 mg (kg bw)(-1)). Balloon inflation greatly decreased the intake of 0.3 m NaCl for as long as the balloon was inflated. Balloon inflation over a 3 h period following Furo-Cap treatment decreased Fos-ir in the organum vasculosum of the lamina terminalis and the subfornical organ and increased Fos-ir in the lateral parabrachial nucleus and caudal ventrolateral medulla. The effect of balloon inflation was specific for sodium intake because it did not affect the drinking of diluted sweetened condensed milk. Balloon inflation and deflation also did not acutely change mean arterial pressure. These results suggest that activity in forebrain circumventricular organs and in hindbrain putative body fluid/cardiovascular regulatory regions is affected by loading low pressure mechanoreceptors at the SVC-RAJ, a manipulation that also attenuates salt appetite.
Collapse
|
16
|
Sodium intake by hyperosmotic rats treated with a GABAA receptor agonist into the lateral parabrachial nucleus. Brain Res 2008; 1190:86-93. [DOI: 10.1016/j.brainres.2007.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 10/27/2007] [Accepted: 11/04/2007] [Indexed: 11/23/2022]
|
17
|
Abstract
Thirst and the hunger for sodium containing fluids and food (i.e., sodium appetite) are the consequences of the generation of unique central nervous system states. Altered body fluid homeostasis produces sensory and perceptional changes that arise from signals generated in the body that serve as indices of body fluid balance and distribution. These signaling mechanisms activate networks of brain neurons that use specific neurochemicals to communicate between cells and process information. The brain integrates information derived from various bodily sources so that thirst and sodium appetite are in a true sense the synthetic products of the nervous system. In recent years much has been learned about the stimuli and receptor systems involved in signaling the brain to reflect the status of bodily fluids and about the central neural substrates that process such inputs to generate thirst and sodium appetite. Knowledge about the sensory nature of thirst and sodium appetite provides a basis for understanding the biological constraints under which thirst and sodium appetite operate. This information is important for appreciating the extent to which thirst and sodium appetite motivational states and behaviors can be relied on to maintain and repair disruptions of body fluid homeostasis.
Collapse
Affiliation(s)
- Alan Kim Johnson
- Department of Psychology, University of Iowa, Iowa City, IA 52242-1407, USA.
| |
Collapse
|
18
|
Geerling JC, Loewy AD. Sodium deprivation and salt intake activate separate neuronal subpopulations in the nucleus of the solitary tract and the parabrachial complex. J Comp Neurol 2007; 504:379-403. [PMID: 17663450 DOI: 10.1002/cne.21452] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Salt intake is an established response to sodium deficiency, but the brain circuits that regulate this behavior remain poorly understood. We studied the activation of neurons in the nucleus of the solitary tract (NTS) and their efferent target nuclei in the pontine parabrachial complex (PB) in rats during sodium deprivation and after salt intake. After 8-day dietary sodium deprivation, immunoreactivity for c-Fos (a neuronal activity marker) increased markedly within the aldosterone-sensitive neurons of the NTS, which express the enzyme 11-beta-hydroxysteroid dehydrogenase type 2 (HSD2). In the PB, c-Fos labeling increased specifically within two sites that relay signals from the HSD2 neurons to the forebrain--the pre-locus coeruleus and the innermost region of the external lateral parabrachial nucleus. Then, 1-2 hours after sodium-deprived rats ingested salt (a hypertonic 3% solution of NaCl), c-Fos immunoreactivity within the HSD2 neurons was virtually eliminated, despite a large increase in c-Fos activation in the surrounding NTS (including the A2 noradrenergic neurons) and area postrema. Also after salt intake, c-Fos activation increased within pontine nuclei that relay gustatory (caudal medial PB) and viscerosensory (rostral lateral PB) information from the NTS to the forebrain. Thus, sodium deficiency and salt intake stimulate separate subpopulations of neurons in the NTS, which then transmit this information to the forebrain via largely separate relay nuclei in the PB complex. These findings offer new perspectives on the roles of sensory information from the brainstem in the regulation of sodium appetite.
Collapse
Affiliation(s)
- Joel C Geerling
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
19
|
Ward HG, Simansky KJ. Chronic prevention of mu-opioid receptor (MOR) G-protein coupling in the pontine parabrachial nucleus persistently decreases consumption of standard but not palatable food. Psychopharmacology (Berl) 2006; 187:435-46. [PMID: 16847679 DOI: 10.1007/s00213-006-0463-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Accepted: 05/29/2006] [Indexed: 12/01/2022]
Abstract
RATIONALE Acute pharmacological studies implicate mu-opioid receptors (MORs) in the parabrachial nucleus (PBN) of the brainstem in modulating eating. The long-term effects of preventing the cellular function of parabrachial MORs on food consumption remain to be elucidated. OBJECTIVES To determine whether (1) chronic inhibition of MOR-mediated G-protein coupling in the PBN of rats would persistently reduce eating and (2) food properties dictate the effects of MOR blockade. MATERIALS AND METHODS We microinfused the irreversible MOR antagonist, beta-funaltrexamine (beta-FNA) into the lateral PBN and measured the intake of standard and calorically dense palatable chow for 1 week. First, rats were given standard chow for 20 h daily and a calorically dense palatable chow for 4 h during the day. We infused the agonist, [D: -Ala(2), N-Me-Phe(4), Glycinol(5)]-Enkephalin (DAMGO), 1 week after beta-FNA to probe the acute effects of exogenous stimulation of MORs on palatable food intake. [(35)S]GTPgammaS autoradiography quantified regional loss of MOR cellular function. Next, we measured the actions of beta-FNA on food intake in rats given only standard or palatable chow for 1 week. RESULTS One infusion of beta-FNA persistently decreased consumption of standard but not palatable chow, regardless of feeding regimen. beta-FNA also blocked DAMGO-stimulated palatable chow intake, prevented DAMGO-stimulated G-protein coupling in the central and external lateral subnuclei of the PBN, and decreased coupling in the medial PBN. beta-FNA did not affect kappa-opioid receptors. CONCLUSIONS MORs in the lateral PBN serve a physiological role in stimulating consumption of standard food. Properties of the diet, such as high palatability or caloric density, may override the influence of inhibiting MOR function.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics, Non-Narcotic/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Behavior, Animal/drug effects
- Circadian Rhythm
- Eating/drug effects
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Feeding Behavior/drug effects
- Food Preferences/drug effects
- GTP-Binding Proteins/metabolism
- Male
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Pons/drug effects
- Pons/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Time Factors
Collapse
Affiliation(s)
- Heather G Ward
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | |
Collapse
|
20
|
Abstract
AIM: To observe the effect of cholecystokinin (CCK) on lipofusin value, neuronal dendrite and spine ultrastructure, and total cellular protein during the process of experimental neuronal aging.
METHODS: Experimental neuronal aging study model was established by NBA2 cellular serum-free culture method. By using single intracellular lipofusin value from microspectrophotometry, morphology of neuronal dendrites and spines from the scanner electron microscopy, and total cellular protein as the indexes of experimental neuronal aging, we observed the effect of CCK8 on the process of experimental neuronal aging.
RESULTS: Under the condition of serum-free culture, intracellular fluorescence value (%) increased with the extension of culture time (1 d 8.51±3.43; 5 d 10.12±3.03; 10 d 20.54±10.3; 15 d 36.88±10.49; bP<0.01). When CCK was added to serum-free culture medium, intracellular lipofusin value (%) decreased remarkably after consecutive CCK reaction for 10 and 15 d (control 36.88±10.49; 5 d 32.03±10.01; 10 d 14.37±5.55; 15 d 17.31±4.80; bP<0.01). As the time of serum-free culturing was prolonged, the number of neuronal dendrite and spine cells decreased. The later increased in number when CCK8 was added. CCK8 could improve the total cellular protein in the process of experimental neuronal aging.
CONCLUSION: CCK8 may prolong the process of experimental neuronal aging by maintaining the structure and the number of neuronal dendrite and spine cells and changing the total cellular protein.
Collapse
Affiliation(s)
- Xiao-Jiang Sun
- Department of Neurology and Neurobiology Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, No. 600 Yishan Road, Shanghai 200233, China.
| | | | | |
Collapse
|
21
|
Affiliation(s)
- Ole Skøtt
- Physiology and Pharmacology, Univ. of Southern Denmark, 21 Winsløwparken, DK-5000 Odense, Denmark.
| |
Collapse
|